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Preface

Writing a thesis is like gardening. Every spring of green ideas must be followed
by a careful process of pruning and tripping. Accordingly, the garden that is
forever fixed in this book shows only one of the many collections of ideas that
I have been cultivating over the years. But I believe it contains ideas that may
grow into trees one day, and perhaps even carry fruit.

When I started with the project ‘Inductive Rules and the Structure of Ev-
idence’, I knew very little to nothing of statistical inference. This has proved
to be an enormous advantage. Already after a few months, it became apparent
that the criticisms against Bayes’ rule that I had envisioned were unsound. The
reorientation of the project that resulted from this insight has laid the basis for
the research that I carried out in the remaining three and a half years.

The circumstances for gardening have been almost ideal. It has been a time
of great intellectual freedom. This is for a large part due to the setting in which
I found myself as a PhD in Groningen, and for this I am very grateful. It has
made the return to academic life from an occupation in consultancy into one
of the best decisions I have ever made. The intellectual freedom may further
explain the fact that next to some promising plants and trees, I seem to have
nurtured all sorts of weeds over the past years. There is no need for complaining.
I have come to the conviction that creative development is often the result of a
fearless engagement in error and confusion.

I invite the reader to wander around in the result of some four years of
gardening. Many ideas in it will still appear to have only just begun growing,
some others may look rather dull and dry. But luckily, as I am writing these
last words, spring is in the air.

J. W. R.
April 2005
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Outline

It is probably not the intention of the reader to go through this thesis from
cover to cover. To accommodate this eclecticism, chapters are set up more or
less independently. The technical parts of the chapters show a considerable
overlap, but each chapter emphasises other aspects of the technical material
relating to the current theme. On the other hand, since complete independence
of the chapters leads to too many repetitions, especially in the first part of the
thesis, preceding sections or chapters are sometimes presupposed.

1

3

9

2 4

7 8 65

The diagram summarises the relations of presupposition by means of arrows.
For example, the arrow from chapter 1 to chapter 2 indicates that the latter pre-
supposes the former. If a chapter presupposes only certain sections, references
to these sections are included in the chapter itself. The dotted arrows, as for
example from chapter 2 to chapter 3, mean that the former may be helpful for
a better understanding of the latter, while it is not necessary for understanding
the main line.

Two further comments are in order. Firstly, it may be noted from the di-
agram that the second part of this thesis is quite independent from the first
and third part. Even though it may be read without any specialist knowledge,
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the second part concerns a rather specialist subject within inductive logic. The
thesis has been organised so as to allow the reader to leave aside the second part
completely, and jump from chapter 3 to chapter 7. Secondly, the introduction
and conclusion are not included in the diagram. They provide a general under-
standing of the position of the chapters within this thesis, and of this thesis as
a whole in the debate on inductive logic and its relation to the philosophy of
science.



Introduction

“You will reply that reality has not the least obligation to be

interesting. And I will answer you that reality may avoid this

obligation, but that hypotheses may not.” – J.L. Borges in

Death and the Compass

Inductive Inference. This thesis concerns inductive inferences, that is, inferences
running from given observations to as yet unknown observations and general
observational statements. Inductive inferences are almost everywhere, and come
so naturally to us that they easily escape philosophical attention. We drink
water because it has always refreshed us, we stride forward confidently because
the earth has always attracted and carried us, and we give way to sleep because
we have always woken up to renewed presence. In all these cases, the trust that
we put in the stability of a pattern can be seen as a trust in the inherent inductive
inference. A bit further removed from the backbone of life, these inferences
perhaps become more easily recognisable. If the post has been delivered every
morning until now, we expect it to be delivered on future mornings too, but if
delivery is late on Saturday and Sunday, it will not take long before we only
expect it in the morning on weekdays. Here again, the trust in the stability of
the pattern is eventually a trust in an inductive inference.

The basic assumption of inductive inferences is that the world is a boring
place, and that the same pattern in the observations will keep repeating itself.
Usually the sameness is taken as the result of some structure in the world, which
is supposed to underpin the patterns in the observations. Fortunately, the world
is boring in a rather interesting way. Many observations show patterns that are
occasionally violated. For example, it may be that of two equally expensive
stalls at the market the fruit of one is usually better than that of the other. But
this need not be the case every week. These so-called weak patterns suggest
that the world contains a certain structure, but that this structure is perturbed
by other structures or effects, which may be deemed noise for the occasion. The
one merchant may be better in spotting good fruit at the auctions than the
other, but the trade at such auctions always contains an element of chance.
Nevertheless we may come to know that the fruit of the one stall is usually
better than that of the other. So inductive practice is able to pick up on weak
patterns as well.
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Inductive inferences are abundant in daily life, and no less so in the daily
life of scientists. Much of experimental science concerns the identification of,
possibly weak, patterns in the observations. The interdependence between elec-
trodynamic and magnetic forces is an example of a strong, exceptionless pattern.
The correlation between vaccination and disease in a population of cows exem-
plifies a weak pattern, because it only shows in large herds. In general, in
experimental science there is a basic trust in the stability of specific patterns,
and the typical activity of theoretical science is to motivate this trust by pro-
viding a picture or story on the structure behind the stable patterns. Of course,
the discussion on structures may get far removed from the observations, but this
must not distract from the original intention of experimental science to select
stable patterns, and to strip them of noise.

The problem of induction. Once we have realised how deeply both common
sense and science are permeated with inductive inference, the destructive force
of the problem of induction becomes apparent. David Hume, in his ‘Treatise on
Human Nature’ of 1739, was the first to put his finger on the sore spot. In book
1, part 4, section 2 he writes:

“Any degree, therefore, of regularity in our perception, can never be
a foundation for us to infer a greater degree of regularity in some ob-
jects which were not perceived, since this supposes a contradiction,
viz., a habit acquired by what was never present to the mind.”

So a perceived regularity never allows us to infer a greater regularity, that is, a
regularity that includes objects or facts that were not yet perceived. In other
words, observations alone can never justify inductive inferences. Any conclusion
that transcends observations is not properly inferred from these observations
alone, but invokes an additional component, namely the assumption of the sta-
bility of some pattern in the observations. Moreover, according to Hume this
assumption of stability is a component that cannot itself be derived from the
observations. Common sense and science are both resting on nothing more than
sheepish habit.

Not surprisingly, this destructive conclusion invited a lively discussion, to
which the present thesis is yet another contribution. The essential characteris-
tic of this contribution is its focus on the logical part of the problem of induction,
that is, the part that concerns the inferences themselves. I claim that this thesis
solves the logical problem, by presenting a scheme for valid inductive inference.
It further clarifies the role of the input components of this scheme, and employs
the scheme in clearing up some more specific problems concerning inductive
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inference. Note that the logical part is strictly separated from the epistemo-
logical part of the problem of induction, which concerns the input components
of inductive inference. The latter part is dismissed as irrelevant to the task of
the inductive logician. This perspective resembles the perspective of Howson
(2000), but it is more explicitly focused on a specific scheme for inductive infer-
ence. The general aim is a revival of inductive logic, and a better control over
inductive inference in science.

The remainder of this introduction provides a sketch of the framework within
which the inductive logic of this thesis finds its place. It then introduces
Bayesian inference, as it is used in this thesis, and discusses the relevance of
this thesis for scientific method and the philosophy of science more generally.
The introduction ends with an overview of the chapters.

Logical empiricist framework. Let me make the general perspective of this thesis
precise. First, as indicated in the foregoing, it is concerned with inductive
inference and the problem of induction. But in this context it has a specific aim,
and it assumes a particular framework and a particular position therein. As for
the aim, it is strictly normative. Inductive practice is only briefly discussed, and
only to contrast practice with the norms that this thesis is concerned with. As
for the framework, it is that of logical empiricism, as represented by Reichenbach
(1935) and most notably Carnap (1950, 1952). In this framework, observations
are considered to be clear-cut packages of information, which may be expressed
in a formal observation language. Further, inductive inferences are cast in the
form of probability judgements over this language. And finally, the inductive
inferences are primarily concerned with predictions of single observations. On
these three points, the present thesis adopts the framework of Carnap.

Before highlighting the differences with Carnap when it comes to the position
of this thesis within the logical empiricist framework, it may be noted that this
framework already pushes a number of philosophical positions on the problem
of induction out of the picture. Some of those positions stress the theoretical
content of observations over and above their empirical content. This surplus
value can then be used to derive more from the observations than is warranted
by their strict empirical content. The conclusion of this thesis picks up on this
line of argument, but considerations on the nature of observations are not part
of this thesis itself. Other positions on the problem of induction, such as the
so-called structuralist position, rely not so much on the theoretical content of
the observations, but on their structural aspects, which may then be connected
to a theory on structures behind the observations. The present thesis relates to
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this possibility only indirectly. Still other positions do not employ the notion
of probability, or eschew formal means altogether. Such alternative positions
will not be dealt with in this thesis at all, but it may be remarked that certain
forms of eliminative induction present a limiting case of the frameworks studied
in this thesis.

Positioning this thesis. While the framework of this thesis is basically the one of
Carnap, the position that will be developed is very different from the Carnapian
position. The next few paragraphs highlight the main point of departure. For
Carnapian inductive logic, valid inductive inferences are basically determined by
the choice of an observation language. More specifically, probability judgements
on future observations, or predictions for short, are derived by means of the no-
tion of logical probability, where logical probability comes down to applying a
principle of indifference to the observation language. It is supposed that before
obtaining any observations, all the exhaustive descriptions of some system have
the same epistemic status, and must therefore be assigned equal probability.
On the assumption of this logical probability, both the initial predictions and
the effect of accumulating observations on further predictions are determined by
the structure of the observation language. The Carnapian idea is thus that the
probabilistic predictions are analytic: they follow logically, namely according to
logical probability, from the observation language and the preceding observa-
tions.

The inductive logic of Carnap was dealt a severe blow when Goodman (1954)
proposed a new version of the problem of induction, calling it the new riddle of
induction. There is hardly any need to reiterate the famed puzzle for its own
sake. However, it provides a convenient way to make explicit the differences
between Carnapian logic and the treatment of inductive inference in this thesis.
For Carnap, all the work of induction is done by choosing the right predicates
for the language, which are in the words of Goodman the projectable predicates.
These projectable predicates select the weak or strong patterns that the induc-
tive inferences focus on. If, for example, we choose to employ the predicate
‘green’ in a study on emeralds, we can derive predictions of green emeralds in
the future, but if we employ ‘grue’, we can derive predictions of blue emeralds
with equal force. Now the new riddle is not damaging for Carnapian induc-
tive logic because the logic allows for crazy predictions, such as those on ‘grue’
and thus blue emeralds. Nobody has ever blamed deductive logic for generat-
ing crazy conclusions, since the responsibility for such conclusions lies in the
premises. The damaging aspect is rather that Carnapian logic can only start
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working after a choice of language, and thus of projectability assumptions, has
been made. It cannot itself express the choice of projectability assumptions as
part of the inductive inference.

This is where the present treatment deviates strongly from Carnapian logic.
Generally speaking, logic is concerned with the validity of arguments and not
with the truth of conclusions of the arguments: if the premises are true, then
so is the logically inferred conclusion, but there is no guarantee to truth if some
of the premises are false, or perhaps not even well-formed statements. How-
ever, as indicated above, some substantial assumptions of inductive inferences
cannot be expressed in Carnapian logic, simply because they are inherent to
the observation language and its logical probability assignment. It thus seems
that Carnapian logic provides not just valid inferences, but a number of implicit
premises as well. Certainly, from the point of view of Carnap these premises are
tautological, and therefore do not present implicit premises at all. But the new
riddle makes perfectly clear that in fact they do. It is to resolve this seeming con-
flation of premise and inference that the present thesis presents an alternative
logical scheme, following Ramsey (1921), De Finetti (1937) and Jeffrey (1984).
It turns out to be perfectly possible to express projectability assumptions in
an inductive logic, and thus to separate the part on valid inductive inference
from the part on true inductive premises. The failure to disentangle these two
aspects, so clearly separated in deductive logic, has obstructed a comparable
development of inductive logic.

Other perspectives. At this point it is illustrative to consider an alternative ap-
proach to the problem of induction, which has only been touched upon implicitly
so far. It is that the problem of induction presupposes a sceptical starting point
that need not be accepted. It seems that the destructive conclusion of the prob-
lem is immediate once a bare language of observations is put in place: if set
apart in that way, it is hardly controversial that the observations do not entail
anything about each other. The answer of Carnap, if viewed from this angle, is
to deny the sceptical starting point by employing a notion of logical probability
over the language, thus creating an inherent dependence between observations.
But note that he thereby reacts to the problem of inductive scepticism, or in
other words, he is solving a problem in epistemology. Put more dramatically,
Carnap seems to attack a problem in epistemology and one in logic at the same
time.

Against this, I propose to consider inductive scepticism not as a problem
in epistemology, but rather as a philosophical tool in logic. The tool allows
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us to analyze inductive knowledge in terms of observations and projectability
assumptions, which must both be given a place in a scheme for inductive infer-
ences. Moreover, after having settled the issue of valid inductive inference in a
logical scheme, there is also a natural way to resolve the epistemological prob-
lem of inductive scepticism, by using an externalist theory in which inductive
knowledge ultimately rests on the truth of inductive assumptions. I come back
to this latter point in the conclusion.

The logical perspective of this thesis must not be mistaken for a rather
different view on inductive logic, as developed in Maher (2004) and Fitelson
(2005), which is in a sense closer to the initial intentions of Carnap. In this view
inductive logic concerns an explication of the strength of the argument running
from evidence to a hypothesis, or, in other words, the degree of confirmation
that the evidence gives to the hypothesis. The position of Fitelson is that this
degree of confirmation is objectively given, but further that it is a three-place
function: next to evidence and hypothesis, it must include the probability model
on which the confirmation relation supervenes. Unlike Maher, I agree that the
probability model must be seen as a separate input component to inductive
logic. However, the logic contained in this thesis does not assess the strength
of arguments. Instead it simply classifies arguments as valid or invalid, and in
this sense it may even be considered deductivist.

The function of Bayesian inference. Let me return to a sketch of the logical
perspective of this thesis. In addition to the need for an expression of pro-
jectability assumptions as part of inductive inference, a truly logical view on
induction is in need of one more thing: an innocent, or epistemically neutral,
inference rule. By this I mean a rule that combines projectability assumptions
and given observations to produce valid inductive predictions, or more generally,
valid probability assignments, without entailing any substantial or synthetic as-
sumptions itself. In a sense, asking for such an inference rule is equivalent to
asking for a scheme that brings out all the assumptions that underlie inductive
inference. The conclusions of inductive inference derive completely from the
input components and the inference rule, so anything that is not implicit to the
rule is driven back into the corner of the input components, and anything made
explicit as input cannot hide away in the rule anymore. Employing an innocent
inference rule seems to provide a natural insight into all input components of
inductive inference, as conceived from within the chosen empiricist framework.

At this point, the Bayesian theory of probabilistic inference enters. Bayes’
rule, or strict conditioning, prescribes how observations can be incorporated
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in a probability assignment over an observation language. Many arguments
suggest that this rule is innocent in the required way, as long as we assign full
certainty to the observations that we have made. The specific aspect of Bayes’
rule that is significant here is that its use in incorporating observations induces
minimal changes to the probability assignment. In other words, Bayes’ rule is
maximally conservative. If used to incorporate a specific observation, it takes
care that no other change in the probability assignment is induced than those
effected by deeming the observation itself certain. Furthermore, along the same
lines, the Bayesian theory indeed determines the location of the projectability
assumptions. While it is not yet clear in what form these assumptions can be
stated, the assumptions must be implicit in the prior probability assignment over
the observation language. Thus the Carnapian decision to choose a particular
language and use logical probability is in the Bayesian scheme replaced by the
decision to adopt a particular prior probability, which encodes the projectability
assumptions.

Numerous Bayesianisms. It must be stressed that there is no unique Bayesian
theory of inference. There are some common roots and standard texts on induc-
tive inference and Bayesian statistics, most notably De Finetti (1936), Jeffreys
(1951), Savage (1956) and more recently Howson and Urbach (1996). But there
is certainly not a shared view on what it means to be a Bayesian.

Many of the quarrels among Bayesians come down to three related issues,
to wit, the interpretation of epistemic probability, the origin of priors, and the
basic form of the axioms of probability. Subjectivists take epistemic probability
to be the expression of free personal opinion, and declare this to be the origin
of all probability assignments. This point of view is associated with a further
defence of the Bayesian theory and its inference rule, based on the relation be-
tween probabilities and betting contracts. Objective Bayesians, on the other
hand, feel that there are certain rationality constraints on epistemic probability
assignments, which may derive from physical probability or some principle of
indifference. As for quarrels on the axioms of probability, subjectivism is some-
times associated with empiricist worries concerning probability assignments to
opinions that cannot be expressed in finite form, while some objectivists have
proposed to replace basic probability assignments with conditional probability
assignments.

Bayes’ Bayesianism. This thesis falls between all these positions. It employs
inferences that have most in common with the inferences first put forward by
the reverend Bayes himself. Statistical hypotheses occupy a central place in
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the original form of Bayesian inference. In the inferences, observations are first
reflected in a probability assignment over statistical hypotheses, from which
predictions on further observations can be derived. It may be noted that choos-
ing a collection of such hypotheses restricts the probability assignment over the
observation algebra. But more importantly, and as will be argued below, the
hypotheses are related directly to the patterns in the observations that are con-
sidered to be of interest. In this way the hypotheses provide direct access to
the projectability assumptions inherent in the prior probability assignment over
the observations. The replacement of language in the Carnapian logic with a
prior probability can therefore be made more precise. The choice of a range of
projectable predicates in the Carnapian scheme can be replaced by the choice
of a range of statistical hypotheses in a Bayesian scheme.

All this leads more or less to a middle position in between the above forms
of Bayesianism. Statistical hypotheses are taken as so-called tail events in the
observational algebra, and are defined by means of limiting relative frequencies.
As for the interpretation and origin of priors, it may be noted that the use of
hypotheses is connected to the dual nature of probability. On the one hand, the
hypotheses pertain to weak patterns in the observations and thus to physical
probability, and the restriction on the epistemic probability imposed by the hy-
potheses thus points to objective probability. On the other hand, the probability
assignment over hypotheses is entirely free and reflects personal opinion, so it
must somehow be interpreted subjectively. This is so even while it is difficult
to connect the probability assignments over hypotheses to betting contracts,
simply because statistical hypotheses cannot be tested with finite means. In
sum, the Bayesian scheme presented in this thesis leads to a mixture of physi-
cal, epistemic, objectivist and subjectivist views on both the interpretation and
origin of probability.

This blend of Bayesianism is much more natural than it may now seem.
Bayes’ original idea is precisely that epistemic and physical probability may be
used in the very same inference, and that these two probabilities can coexist
peacefully. It is a small step from this to the position that some epistemic prob-
abilities are subjective, whereas others are restricted by physical probabilities
and are thus objective, as in Jeffreys’ principle of direct probability. Apart from
that, the discussion on interpretation and origin loses some of its relevance once
we recall that in the present thesis a prior probability assignment is an expres-
sion of a premise in an inductive inference. In view of this, both the hypotheses
and the priors over them are instruments to express premises. Note that classical
deductive logic does not set itself the task to clarify the exact world picture or
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conceptual interpretation that lays behind a premise or truth assignment. The
task of logic only starts after the truth assignment has been given. Similarly, in-
ductive logic need not fix conceptual categories for the probability assignments
either. The main task is to investigate the inductive inferences themselves, and
the instruments for expressing premises in them. Conceptual categories and
interpretations are useful only insofar as they promote that task.

The use of hypotheses. As indicated, the central element in the Bayesian in-
ductive schemes sketched is their use of statistical hypotheses. On this point
the present treatment deviates most strongly from the empiricist and subjec-
tivist views of respectively Carnap and De Finetti. Where Carnap localised the
projectability assumptions in the choice of an observation language, this the-
sis makes the projectability assumptions explicit in the statistical hypotheses.
Moreover, the hypotheses are introduced as an extension of the Carnapian ob-
servation language, as they are defined by means of limiting relative frequencies.
Now the representation theorem of De Finetti revealed that statistical hypothe-
ses are redundant in inductive schemes: they can be replaced by exchangeability
requirements over the subjective inductive predictions. The present treatment
takes the opposite view. It shows that hypotheses, even while they are redun-
dant, are useful tools in expressing inductive assumptions and prior information.
They provide a grip on a number of issues in the philosophy of science.

Philosophical import of this thesis. With these remarks on the position of the
thesis and its relation to the Carnapian and Bayesian traditions in place, we can
zoom out again and look at the overall relevance of this thesis. I first discuss
its philosophical import.

With respect to the internal task of clarifying inductive inference, the Bay-
esian scheme presents a number of advantages over Carnapian inductive logic.
A large part of this thesis is dedicated to making these advantages clear. As
suggested, the Bayesian scheme provides a way of expressing and controlling the
assumptions on the relevance of patterns in the observations. This ability allows
us to solve a number of problems in Carnapian logic. A whole package of such
problems relates to analogical reasoning. Here the Bayesian scheme allows us
to take the package apart, and then to solve part of it. As it appears, this pack-
age is intimately related to another, seemingly different package of problems,
namely that of encoding relations of probabilistic independence into inductive
predictions. Furthermore, the Bayesian scheme is more readily applicable to
current themes in the philosophy of science. In particular, it suggests a specific
view on the problem of induction, it offers space to model dynamic changes
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in the projectability assumptions, and it sheds light on the role of theoretical
notions in inductive inference.

This brings us to the relevance of this thesis for the philosophical discussion
on induction and inductive knowledge. It is most easy to enter this discussion
at the point of tension between Carnapian inductivism on the one hand, and the
searchlight theory of Selz (1913) and Popper (1959) on the other. The former
states that knowledge may be built up by observation alone, while the latter
emphasises the importance of conjectures or theoretical starting points before
collecting information. Hintikka (1966) made clear that this methodological
distinction is not strict. With the perspective and scheme of this thesis, it
becomes apparent that there is no methodological tension at all. The notion
of conjecture may be combined with the inductivist point of view in a logical
scheme, and in this scheme it is even seen to be indispensable. Put in more
popular terms, Popper can finally be accepted as a member of the Vienna circle.

From this insight concerning inductivism we can move to the consequences
for inductive knowledge, and the related theme of scientific realism. The pro-
posed scheme can be used here to formalise a view that finds its roots already
in Kant, and that connects my position with that of Kuipers (2000). It is the
view that knowledge can only emerge on the intersection of observation, pre-
sented by a mind-independent world, and a conceptual framework, devised by,
partly world-independent, minds. I hope that both radical constructivists and
hardcore realists take this constructive realist message to heart.

Relevance of this thesis for science. Regarding the relevance of this thesis for
science, first note that the empiricist framework accords well with the statistical
inductive inferences of experimental science. In almost all experimental cases,
weak patterns in observations are dealt with by means of statistics, and it is on
these kind of inferences in experimental science that this thesis has its bearing.
In this context, the aim of the thesis is not so much descriptive but normative,
and more precisely, passively normative. The claim is not that scientists must,
in all their investigations, follow the scheme laid down in this thesis. There
may be practical reasons for using other procedures. However, scientists must
eventually be clear on the exact inductive inference that they are making, and
this they can find out by writing their procedures down in terms of the scheme
provided here. In other words, they can check the validity of their procedures
by writing them down in a Bayesian form.

This passive form of normativity indicates how the thesis relates to inductive
inferences performed by means of classical statistics, as presented in Cramèr
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(1946), Mood and Graybill (1973), Barnett (1999) and numerous other text-
books. It is well-known that classical statistics faces a number of paradoxes,
some owing to the base-rate fallacy, others owing to the failure to respect the
likelihood principle. But it is also well-known that procedures from classical
statistics sometimes provide practical solutions where Bayesian statistics re-
mains silent. Moreover, as far as the procedures of classical statistics are indeed
inferences, they do not necessarily lead to false conclusions. It would therefore
be misguided to advise scientists not to use classical statistics. On the other
hand, the inferential steps in the classical procedures are often elliptic, or in
other words, incomplete, and experimental scientists may not always be aware
of the things they are presupposing when using these procedures. Classical
statistics provides inferential shortcuts, whose applicability simply varies from
case to case. The Bayesian reformulation of classical procedures can help to
determine their applicability.

There is an enormous amount of literature on statistics, and many of the
points made in this thesis have in some form or other been made elsewhere.
Apart from the benefit of repeating the truth from time to time, the reader
may wonder what innovations this thesis offers in the field of statistics. One
innovative aspect is the connection of Bayesian inference with the Carnapian
programme, and specifically, the use of statistical hypotheses in solving prob-
lems on analogy and inductive dependence. Another innovative aspect concerns
the relation between Bayesian inference and problems with theory change and
underdetermination. But perhaps the most important innovation is the use of
frequentist chances in the Bayesian scheme. Statistical hypotheses can there-
fore be seen as part of an extended observation language, which allows for the
integration of empiricist, subjectivist and frequentist views on probability.

Overview of chapters. I will now briefly run through the chapters, and indi-
cate how their contents link up with the topics discussed in this introduction.
The first three chapters form the first part of the thesis. This part concerns
the reformulation of Carnapian inductive logic in terms of Bayesian logic and
the improvement of the latter logic by the explicit use of hypotheses. Chapter
1 presents Carnapian inductive predictions as the conclusion of valid induc-
tive inferences, and contrasts these with predictions deriving from the Bayesian
scheme. Chapter 2 then deals with the nature and use of statistical hypotheses,
and in particular with a frequentist semantics for hypotheses and the funda-
mental change they present to the Carnapian scheme. Chapter 3 argues that
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statistical hypotheses provide access to the projectability assumptions in the
inductive inferences.

Chapters 4, 5 and 6 form the second part of the thesis. They concern the use
of the Bayesian scheme in solving two problems in inductive logic, namely that
of analogical predictions and that of causal relations or correlations between
predicates. The general idea is that hypotheses provide a convenient handle on
inductive dependencies between predicates, which prove hard to capture in terms
of direct prediction rules. Chapter 4 shows that a natural system of prediction
rules for capturing so-called explicit analogical predictions can be understood
as the result of transforming a certain space of hypotheses. In chapter 5 these
transformations are employed further to include analogical predictions of any
kind, but unfortunately an exact match between the resulting predictions and
the classification of analogical effects cannot be derived. Finally, chapter 6
employs the very same techniques to tackle the seemingly different problem of
inductive inference for Bayesian networks. The mathematical structure of the
problem turns out to be exactly the same.

The last part of the thesis is much smaller. It contains three short chapters on
the Bayesian scheme in relation to venerable themes in the philosophy of science:
the problem of induction, the problem of new theories and theory change, and
the problem of underdetermination, which relates to abduction. It will be shown
that these problems in methodology can be elucidated with the Bayesian scheme.
In particular, chapter 7 investigates in what sense the Bayesian scheme solves
the problem of induction. Chapter 8 proposes an addition to the Bayesian
scheme that enables us to incorporate changes in the partition of hypotheses
that are used in an inductive inference. Chapter 9 concerns the use of theoretical
hypotheses in inductive inferences, and in this way provides a first sketch of a
Bayesian model for abductive inference. The thesis ends with some general
conclusions, and a perspective on further research.
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Bayesian Inductive Inference
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Carnapian and Bayesian Inductive Predictions

The first part of this thesis is concerned with a general introduction into in-
ductive predictions, and with the development of a logical scheme for these
predictions. This chapter, in particular, discusses two schemes for capturing
inductive predictions, the Bayesian and the Carnapian. The focus of the discus-
sion is on their logical nature. After an introduction into both schemes, they are
reformulated to disentangle the notions of premise and inference. The resulting
picture shows both schemes in the form of a Bayesian logical argument.

1.1 Introduction

A hunting example. The schemes discussed in this chapter are aimed at a con-
ceptual clarification of inductive predictions. Inductive predictions are taken to
be probabilistic statements on future events, given a set of past observations of
events and further relevant knowledge. As an example, take a series of obser-
vations made of a pond in the middle of a forest. We may want to predict the
animals to be observed in or around the pond, and it may be sensible to base
this prediction on the record of earlier animals spotted, and on further knowl-
edge we have of the animals in the forest. The necessity of accurate predictions
is perhaps made more vivid if it is added that we can spot an empty pond, some
tasty ducks, but possibly a hungry tiger, so that we must prepare for hunting
or hiding.

Since we cannot be certain whether the next observation will be of a duck
or a tiger, we naturally attach degrees of belief to these events. For example,
if we have spotted many ducks, we may be tempted to expect spotting more
ducks in the future, based on the supposition that the record of observations is
representative for the numbers of ducks and tigers in the forest. Similarly, if we
know the pond to be a place that is regularly visited by ducks, the initial degree
of belief for spotting a duck must be high. However, because ducks usually flee
from tigers, spotting a single tiger may cause us to expect no ducks for some
time. The two schemes to be discussed in this chapter serve to clarify exactly
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such predictions of uncertain events based on a record of earlier events, data for
short, and other relevant knowledge.

The logic of inductive predictions. Before presenting the schemes, I need to say a
bit more on the kind of clarification that this chapter offers. This is particularly
useful for those readers who have skipped the introduction of this thesis. For
those who have read the introduction, it may serve to connect the introduction
of the thesis to the agenda of this chapter. The two schemes discussed in this
chapter look at predictions as the result of inductive inference. So clarifying
these predictions involves not only a formal expression of the predictions them-
selves, but also of the inductive inference steps leading up to them. A scrutiny
of inference is generally the task of logic, and the schemes are thus concerned
with the logic of inductive predictions.

The fact that the object of the schemes is logic rather than rationality or
decision theory is of importance to the kind of clarification that they offer.
Let me take classical deductive logic to be the paradigmatic case, and the case
that sets the standards. This logic makes a crucial distinction between validity
and truth: valid reasoning need not necessarily result in a true conclusion,
and a true conclusion may follow from invalid reasoning. Logic is restricted to
characterising valid reasoning, and leaves the matter of truth aside. Classical
deductive logic therefore enables us to make valid arguments for the most silly of
claims, for example for the claim that ducks love tigers: if only we assume that
ducks love furry animals, and further that tigers are furry, then the conclusion
that ducks love tigers follows unproblematically. This is not to say that classical
logic holds that ducks love tigers. The logic just relates the premises to a
conclusion, but refrains from telling whether the conclusion is true. It only
claims that if the premises are true, then so is the conclusion.

Now it may be argued that assuming the rules of classical logic to be truth-
preserving or sound comes down to making substantial metaphysical claims,
because it is in a sense a contingent fact about the world that these rules indeed
work. But it carries us too far into the philosophy of logic to follow that line.
Here it is important only to keep in mind the distinction of validity and truth.
It is the particular perspective of validity that is at the core of the clarification
that the schemes in this chapter offer. In the following I attempt to maintain
a strict separation between premises, which the schemes take as input, and the
inferences, which are inherent to the schemes. These inferences must be free of
synthetic assumptions, because, parallel to classical logic, their only task is to
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take us from the premises to the conclusion, in this case the predictions, in a
valid way.

Ampliative premises. The adoption of the logical perspective has some conse-
quences for the way in which the schemes will be characterised and evaluated. It
is sometimes claimed that inductive inference is inherently ampliative, because
the conclusions say more than what the data warrant. For example, on the basis
of a long morning of observing an empty pond, we are tempted to conclude that
we will not see the ducks or the tiger in the afternoon either. This reasoning is
ampliative because the data do not themselves contain such a conclusion. But
in view of the above, I will not say that the inferences of inductive logic are
ampliative, but rather that inductive logic takes more input than just the data.
It also takes as input particular premises on what the data purport to tell us.
In other words, inductive logic as a whole may be called ampliative, but the
ampliativeness resides not in its inferences, but in the fact that the logic takes
not only data as input but also, as it were, ampliative premises. In the exam-
ple, the ampliative premise is that a particular regularity in past observations,
namely there being no ducks or tigers, is projectable onto future observations.
The main point on which the two schemes will be evaluated is precisely on how
they make these ampliative premises explicit.

It may strike the reader as disappointing that a conceptual clarification of
inductive predictions remains silent on the most interesting parts, namely on
what a good inductive prediction is, and what kind of premises good inductive
predictions take as input. I admit that a full analysis of inductive reasoning must
also contain an assessment of the premises and predictive performance, and that
in this sense the present chapter, and more generally this thesis, is incomplete.
One of the main ideas of this thesis is, however, that these questions are separate
ones, and that it makes sense to consider the logic of inductive predictions on
itself, and independently from the justification of its premises or the performance
of its predictions. If a scheme for clarifying inductive reasoning is to function as
a logic, it must in fact be neutral towards any ampliative assumptions we may
want to make. I here side with Howson (2000), who argues that to solve the
problem of induction, we have to provide a logic which tells us how to relate
assumptions, for example on the uniformity of nature with respect to some
predicate, to the empirical data. It is not part of the task of justifying inductive
inference to advise simultaneously about what premises to use.

Deviating from Carnap. Note that this perspective on inductive reasoning dif-
fers significantly from the perspective that Carnap (1950) chooses in his analysis
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of induction. It differs in at least two ways. First, the present discussion focuses
explicitly on logical arguments, and not necessarily on a confirmation relation.
It is quite natural to place the inductive arguments in a larger confirmation
framework, but there is much more to confirmation than is expressed in the
schemes of this chapter, particularly when it comes to the confirmation of sci-
entific theories.

Second, we may say that Carnap deems inductive predictions tautological
once an observation language is chosen. Put more carefully, he provides an
observation language, and then derives so-called logical probabilities over this
language from specific symmetry considerations. These logical probabilities fix
the predictions relative to preceding observations, and are supposed to explicate
valid inductive reasoning. Carnapian inductive predictions are therefore deter-
mined by the observation language and the preceding observations. By contrast,
classical deductive logic enables us to choose premises after a language has been
chosen. In the perspective of this thesis, Carnap therefore delivers the logic of
inductive predictions together with the premises it takes as input.

The following is intended as an improvement on the Carnapian project in
two ways. First, I define a scheme for valid inductive inference, and second, I
provide tools to capture the notion of inductive premise. This latter task extends
to the next two chapters. For this chapter the plan is as follows. In section
1.2 I introduce the formal notions of data, degree of belief, and predictions,
after which I introduce the Carnapian scheme, and the λγ of Stegmüller rule
as a typical example. The Bayesian scheme is introduced in section 1.3. Its
exposition includes a discussion on hypotheses, updating over hypotheses, and
priors. Section 1.4 introduces the notion of a probabilistic model, shows that
both the Carnapian and the Bayesian scheme take such models as input, and
thus sketches a logical picture for these schemes. The Bayesian scheme can then
be seen as a generalisation of the Carnapian scheme.

1.2 Inductive predictions

This section introduces the formal framework for inductive predictions, which is
used in both schemes. After that it defines the simplest of the two schemes for
making inductive predictions, the Carnapian scheme. This scheme is illustrated
with the so-called λγ continuum.
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1.2.1 Observation framework

The framework for characterising observational data is based on set theory.
Such a framework most easily accommodates a characterisation of degrees of
belief in terms of the probability theory of Kolmogorov (1933). I first define a
finite set-theoretical framework based on observation statements, after that a
framework with so-called cylinder sets, and finally an infinite extension of this
latter framework. Both frameworks using cylinder sets are employed below.

Observation language. Let K be a finite set of possible observations at any time,
typically {0, 1, 2, . . . , L} and let qi be a single observation q at time i, so that
qi ∈ K. Define et to be a finite string of indexed observations, et = q1q2 . . . qt,
and Kt the t-th Cartesian product of K, and thus the set of all strings of length t.
Finally, define et(i) to be the term qi in the string et. For example, the possible
observations may be an empty pond, some ducks and a tiger, encoded in the
numbers q = 0, 1, 2, whereby it is assumed that tigers and ducks never appear
together. The observations e6 = 〈0, 0, 0, 1, 1, 0〉 then mean that the pond is
empty for three time units, after which ducks settle in the pond during two time
units, only to leave again after that. Thus we have a complete specification of
the finite set-theoretical framework of observations, in which single observations
or finite observation strings are elements in the sets K and Kt respectively.

This framework is finite because it does not include infinitely long sequences
of observations. It may be noted that the finite framework can easily be asso-
ciated with the observation language that Carnap (1950) used. The qi can be
seen as statements that the observation at time i had the result q, and strings
of observations et can be taken as conjunctions of such observation statements.
This chapter, however, does not exactly use such a statement-based framework.
Instead it uses a framework with so-called cylinder sets, denoted with capital
letters. The idea behind this framework is that the notions representing sin-
gle observations and finite observation strings are not individual elements, but
subsets in the set of all infinitely long strings of observations. In defining prob-
abilities over sets representing subsequent observations, this framework is much
more convenient.

Cylindrical algebra. Let K again be the set of all possible observations, and let qi

be a single observation at time i. Define e to be the infinite string e = q1q2q3 . . .,
and Kω the set of all such infinitely long strings. Within Kω, define the set Eet

t

to be the set of all strings e that start with the string et and may contain any
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infinite string after that:

Eet
t = {e : ∀i ≤ t (e(i) = et(i))}. (1.1)

Also define Qq
i ⊂ Kω, the set of strings e that start with any string ei−1, have

the same result q for observation i and may contain any infinite string after
that:

Qq
i = {e : e(i) = q}. (1.2)

In the following, the sets Qq
i and Eet

t represent observations and strings of
observations respectively. For the expression Eet

t I usually omit reference to the
string et for sake of brevity. The small letters qi and et encode the content of the
observations. Note that the numbers and the sets are different mathematical
entities, just as the event of observing q at time i, denoted Qq

i , is different from
the content of that observation, namely q.

The sets Qq
i can now be collected in an algebra Q0, which consists of all

sets that may be constructed by any finite number of intersections and unions
of these observations. The algebra Q0 will be called an observation algebra.
Note that the sets Et can be written down as repeated intersections of single
observations Qq

i :

Eet
t =

t⋂
i=1

Q
et(i)
i (1.3)

This also means that Et+1 ⊂ Et, as is illustrated in figure 1.1. The sets Et

are sometimes called cylinder sets. As soon as we make the observation Qq
t+1,

the cylinder Et, comprising of sequences e that agree on et and that contain
any infinite string after that, is narrowed down to the smaller cylinder Et+1,
in which the sequences e only diverge after et+1. So the sets Et are really like
nested cylinders. It may further be noted that the observations Qq

i , as it is
called, separate Q0: for any pair e 6= e′ there is at least one Qq

i for which e ∈ Qq
i

while e′ ∈ Qq
i . Each infinite sequence, or possible world, e can therefore be told

apart by some observation. Note finally that the sets Qq
i and Et can also be

written down directly in terms of the finite framework, as Ki−1qKω and etK
ω,

which is the notation used by Kuipers (1978).
It is important to be clear on how the finite and the infinite set-theoretical

frameworks for observations relate. An observation result qi is a variable which
can take on a value in K, while an observation Qq

i refers to a set of infinitely
long sequences of observations e which have the value e(i) = q in common.
However, when it comes to expressive force, the algebra Q0 of sets Qq

i is simply
equivalent to the finite framework with small letters. The so-called σ-algebra
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Figure 1.1: Graphical representation of the observation sets Q1
1, Q1

2, and E2 as part of a

cylindrical algebra.

of sets Qq
i , denoted Q = σ(Q0), is the extension of Q0 that also contains sets

that can only be obtained by infinitely many set-theoretical operations with
elements from Q0. The algebra Q is called the extended observation algebra,
because it is essentially richer than the algebra Q0. In this chapter I employ
only the algebra Q0. The richer algebra Q will be used in subsequent chapters.

1.2.2 Carnapian scheme

Probability assignments representing beliefs. I can now define the formal notions
of belief and prediction in this framework. As suggested, beliefs are represented
by a probability function over the algebra of observations Q0. The probability
function

p[et] : Q0 7→ [0, 1] (1.4)

represents the beliefs of some observer who is given the observations et, that is,
whose empirical knowledge exactly comprises these observations. Every empir-
ical knowledge base et is connected to a unique set of beliefs expressed in p[et].
Note that the functions p[et] are defined over all elements of the algebra Q0,
and conform to the Kolmogorov probability axioms. Popper, Renyi (1970) and
more recently Hájek have argued that conditional probabilities are more natural
as basic elements than unconditional ones, and that in fact the axioms must be
rewritten to define probability as a two place function. In view of the later use
of statistical hypotheses, this may be a useful reformulation.
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It is natural to suppose that an observer who has made the observations et

assigns a probability 1 to the corresponding set Et ∈ Q0, that is,

p[et](Et) = 1. (1.5)

This is a particular regularity condition, to which I shall adhere in all of the
following. As will be seen below, it is a stronger condition on the functions p[et]

that they are related by Bayes’ rule, as the above regularity condition follows
from that. However, as it stands now, the representation leaves room for other
relations between subsequent belief states. I come back to the use of Bayes’ rule
in sections 1.3.2 and 1.4.

Inductive predictions. With the above representation of beliefs in place, we can
define inductive predictions. A prediction of some observer given some set of
observations is basically any assignment of a probability to an observation that
is not already entailed or excluded by the data, that is,

p[et](Q
q
t+i) = pr (1.6)

for any i > 0. Since p[et] is a probability function, we have 0 ≤ pr ≤ 1. Most
of the discussion in this chapter focuses on predictions for which i = 1, which I
call direct predictions. Direct predictions concern the observation immediately
following the given observations, for example whether the next observation is of
an empty pond, of ducks, or of a tiger.

With the notion of inductive prediction at hand, we can define Carnapian
prediction rules. As said, the scheme uses the observation algebra Q0 and the
probability functions p[et]. The further component of a Carnapian scheme is a
valuation of all direct predictions, denoted p[et](Q

q
t ):

p[et](Q
q
t+1) = pr(q, et). (1.7)

The valuation of the direct predictions, pr(q, et), can also be called a prediction
rule. Note that pr is a function of q and et, which are natural numbers in K

and strings of such numbers in Kt respectively. The function pr determines a
probability assignment p[et], so we must have∑

q∈K

pr(q, et) = 1. (1.8)

Furthermore, the valuation must be complete, meaning that every combination
of q and et is assigned a value by pr. In chapter 2 this restriction is discussed
in more detail.
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Carnapian scheme. Carnap was the first to study such prediction rules pr

systematically, considering them over a finite observation language containing
the terms et and qt+1. He developed specific prediction rules in his (1950, 1952),
using his notion of logical probability. Stegmüller (1973) eventually derived the
so-called λγ continuum of inductive methods:

prλγ(q, et) =
tq + γqλ

t + λ
. (1.9)

The parameter tq is the number of results q in the sequence et. If for example
K = {0, 1}, and e3 is given by 〈0, 1, 1〉, then t0 = 1 and t1 = 2. The parameter
t is the length of the sequence et, and can thus be called the time parameter.
The special case of λ = L, the number of possible observations q, and γq = 1
for all q is the rule discussed by Laplace, and eventually dubbed the straight
rule by Reichenbach (1948). As Zabell (1982) shows, Johnson (1921) already
derived the continuum as a generalisation of the straight rule.

Rewriting the above expression provides a better understanding of the func-
tion of the parameters λ and γ:

prλγ(q, et) =
(

t

t + λ

)
tq
t

+
(

λ

t + λ

)
γq. (1.10)

The λγ rule can thus be seen as a mixture of an initial probability γq for q, and
the observed relative frequency tq

t , regulated by the factors t
t+λ and λ

t+λ . At
t = 0 we have t

t+λ = 0, so that the initial probability p is determined entirely
by γq. At t = λ the value of θ is just the mean of γq and tq

t , and for t � λ the
import of γq vanishes. Thus λ is a parameter that expresses the willingness of
the observer to learn from the observations.

There is much more to be said on the derivation of the Carnapian prediction
rules from the notion of logical probability. But I will not deal with these
derivations here. The main aim of this chapter is to put forward a rather
different position on inductive logic, while using the basic Carnapian framework.
Apart from Carnap (1950) and the more specific (1952), there are excellent
discussions of Carnapian inductive logic which the reader may consult. The
standard works are Carnap and Jeffrey (1971) and (1980). See Suppes (2002:
190-98) for a quick reference, and Schilpp (1963), Kuipers (1978), and Festa
(1993) for more specific discussions.

This thesis does not use the notion of logical probability, for reasons given
in 1.1 and in the introduction to this thesis. In the context of this thesis, a
Carnapian scheme is therefore characterised by the function pr(q, et). Apart
from the fact that this function must be normalised and must offer a complete
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valuation, any function pr(q, et) is permitted. The function pr may be a Car-
napian rule as defined above, in which case repeated observations of some q

enhance the probability for q’s in subsequent observations. But the function
pr may also express the gambler’s fallacy, in which repeated observations of
some q cause the probability for subsequent q’s to decrease. The Carnapian
scheme, as it is presented in this thesis, does not yet impose restrictions on the
kind of patterns in the observations that the inductive predictions are aimed at.
Considered as such, the Carnapian scheme is just one way of conceptualising
inductive predictions. The next chapter introduces an alternative way.

1.3 Bayesian scheme

The Carnapian scheme is an attractive scheme for capturing inductive predic-
tions. It is simple, and it seems that any prediction rule can be subsumed under
it. The other scheme of this chapter, which I call the Bayesian scheme, is a
bit more complicated. It employs the same framework for observations, but to
arrive at predictions it takes a detour. First it uses Bayesian updating to assign
probabilities to hypotheses on the basis of input probabilities and observations.
The probability distribution over a suitable collection of hypotheses can then
be used to generate inductive predictions.

1.3.1 Predictions from statistical hypotheses

Statistical hypotheses. This section concerns the use of statistical hypotheses
in making predictions. Statistical hypotheses are here taken to be statements
that induce a complete probability assignment over an observation algebra. In
the following, whenever I speak of hypotheses, I intend to refer to statistical
hypotheses of this type. To illustrate, recall the hunting example and consider
the statistical hypothesis h that a tiger is hunting the ducks in the pond just
like we are. This fact may be described by the following set of statements,
namely that the tiger appears with a chance of 1

2 if ducks are in the pond and
disappears directly after that, that the tiger hides in all other cases, that the
ducks do not appear for a while after the tiger appeared, and that there is
otherwise a constant chance 1

3 of ducks appearing or staying in the pond.
We can now construct a valuation of probabilities pr[h] that captures the sta-

tistical hypothesis h that a tiger is hunting ducks. We use the above statements
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and the encoding of empty pond, ducks and tiger in q = 0, 1, 2 respectively:

pr[h](1, et) =

 1
3 if et(t) 6= 2,

0 otherwise,
(1.11)

pr[h](2, et) =

 1
2 if et(t) = 1,

0 otherwise,
(1.12)

pr[h](0, et) = 1− pr[h](1, et)− pr[h](2, et). (1.13)

The above cases cover all sequences et, so that the probability assignment is
indeed complete. Because of prediction (1.13), normalisation is also satisfied.

A single statistical hypothesis prescribes a single prediction rule pr[h] over
the observation algebra Q0. But the Bayesian scheme is designed to deal with
a collection of such statistical hypotheses, minimally two. In the example, take
the hypothesis h1 = h that tigers hunt ducks and the hypothesis h0, stating
that tigers and ducks wander independently, but that ducks appear nine times
more often than tigers, but that the pond is ten times more often empty than
filled with ducks. The above stipulations already specify the probabilities over
the observations according to the former hypothesis, namely pr[h1] = pr[h]. For
the hypothesis h0 we must choose

pr[h0](q, et) =


9
10 if q = 0,
9

100 if q = 1,
1

100 if q = 2.

(1.14)

Many other such hypotheses can be constructed. For example, hypotheses may
cover the statement that tigers operate alone, that ducks are reluctant to leave
the pond, that when we see a duck a tiger will appear soon, and so on. As
with Carnapian prediction rules there are only two restrictions. First, the hy-
pothesis must respect the normalisation condition (1.8). And second, they must
each cover all possible preceding observations et, so that they determine direct
predictions over the whole observation algebra.

Predictions from a partition. The Bayesian scheme considers collections of hy-
potheses H = {h0, h1, . . . , hN}. For reasons that will become apparent later,
such collections are called partitions. Instead of defining beliefs with probability
functions over a single observational algebra Q0, the Bayesian scheme defines
beliefs over the product of partition and observational algebra:

p[et] : H×Q0 7→ [0, 1]. (1.15)
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Here every hypothesis is associated with its own observational algebra, Hj =
{hj} × Q0, and its own direct predictions over this algebra. In this sense a
Bayesian scheme is really a generalisation of the Carnapian scheme. In section
2.5 it will become apparent that the Bayesian scheme can also be seen as a
special way of defining a Carnapian scheme.

In the Carnapian scheme, predictions are determined by a single prediction
rule, p[et](Q

q
t+1) = pr(q, et). In the Bayesian scheme, by contrast, the predic-

tions are determined by the law of total probability, applied to a partition of
statistical hypotheses:

p[et](Q
q
t+1) =

∑
j

p[et](Hj)p[et](Q
q
t+1|Hj). (1.16)

To make predictions, we therefore need the probabilities for all the hypotheses
Hj in H, denoted p[et](Hj), and the direct predictions associated with these
hypotheses, denoted p[et](Q

q
t+1|Hj). The remainder of this section makes these

two input components precise.
The direct predictions associated with statistical hypotheses are called the

likelihoods of the hypotheses. These terms are given by the probability assign-
ment over the observations according to the statistical hypotheses:

p[et](Q
q
t+1|Hj) = pr[hj ](q, et), (1.17)

The likelihoods of the hypotheses, which are defined for certain observations,
are thus the probabilities, according to the hypotheses, of these observations.
Note that every hypothesis represents a separate Carnapian scheme, and that
the Bayesian scheme takes a range of such schemes as input. Again, these
prediction rules are not restricted to the Carnapian rules, which may be derived
from applying the notion of logical probability to the observation language.
Hypotheses can be chosen freely, and so can the likelihoods associated with
them.

1.3.2 Probability assignments over hypotheses

The following discusses Bayesian updating over hypotheses. See Jeffrey (1984)
and Howson and Urbach (1996) for more details.

Updating over a partition. The probability over hypotheses after et, which also
figure in the prediction (1.16), require more elaborate discussion. These terms
are not immediately given, but they can be worked out by means of Bayesian
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Figure 1.2: A graphical representation of an update of the probability assignment over the

two hypotheses H 1
3

and H 2
3
, for the observation E1 = Q1

1. The areas represent the size of the

probability, the dotted areas represent those infinite sequences in which the next result is 1.

On the left we start with all sequences, E0. After observing q1 = 1, we zoom in on the cylinder

set E1 = Q1
1, containing all infinite sequences for which e(1) = 1. Within this cylinder set,

the probability for the next result being 1 is different, only because the probabilities over the

hypotheses have shifted.

updating, or Bayes’ rule for short. In the above framework, this rule can be
defined as a recursive relation between the probability functions p[ei] and p[ei+1],

p[ei+1](Hj) = p[ei](Hj |Qq
i+1), (1.18)

in which q = ei+1(i + 1) is the last observation. The rule expresses that the
degree of belief assigned to Hj after observing ei+1 must be the same as the
degree of belief assigned to Hj after ei, conditional on the further occurrence
of qi = ei+1(i + 1). For this reason it is sometimes called conditioning. The
operation is illustrated in figure 1.2.

Let me elaborate on the use of Bayesian updating for the purpose of deriving
a probability assignment over statistical hypotheses. Some more general remarks
on conditioning can be found in section 1.4. For now, note that the conditional
probabilities in the foregoing can be written as follows:

p[ei](Hj |Qq
i+1) = p[ei](Hj)

p[ei](Q
q
i+1|Hj)

p[ei](Q
q
i+1)

. (1.19)

This expression is known as Bayes’ theorem. It follows simply from the axioms
of probability. Thus, to compute the probability for some Hj relative to a data
set ei+1, we need the preceding probability assignment p[ei](Hj), the observation
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q = ei+1(i+1) by means of which we can pick out the correct set Qq
i+1, and the

probabilities p[ei](Q
q
i+1|Hj) and p[ei](Q

q
i+1) defined for that set.

This allows us to trace back the probability over the hypotheses p[et](Hj)
to their likelihoods for the specific observations et and an initial probability
p[e0](Hj). As indicated, the probabilities of the observations p[ei](Q

q
i+1|Hj)

are assumed to be given with the hypotheses. Furthermore, the prediction
p[ei](Q

q
i+1) can again be written in terms of the likelihoods and the probability

p[ei](Hj). We can then apply the above recursive relation repeatedly and write

p[et](Hj) = p[e0](Hj)
t∏

i=1

p[ei−1](Q
et(i)
i |Hj)∑

j p[ei−1](Hj)p[ei−1](Q
et(i)
i |Hj)

. (1.20)

Bayesian updating thus determines the probability assignment over the hy-
potheses p[et](Hj) on the basis of observations et, prior probability assignments
p[e0](Hj) and the likelihoods p[ei](Q

q
i+1|Hj).

Prior probability assignment. The probability assignments p[e0](Hj) are an ir-
reducible input component for making predictions in a Bayesian scheme. In the
same way as that we assume the likelihoods of each of the hypotheses, we must
therefore assume a prior probability assignment over the hypotheses themselves:

p[e0](Hj) = p(hj). (1.21)

Here Hj = {hj}×Q0 is a subset of H×Q0. Note that we must have p(hj) ≤ 0
for each j, and

∑
j p(hj) = 1. In other words, p is a probability function running

over H. The initial degrees of belief over the hypotheses, expressed in p, are
usually referred to as priors.

It is useful to distinguish between two separate aspects of choosing priors.
One aspect of it is that we allocate prior probabilities after we are given a
particular partition of statistical hypotheses. As will be argued, by allocating the
probabilities over a given partition we can express specific inductive knowledge.
Another aspect of choosing priors is in deciding what range of hypotheses to use
in the first place. In the example, the likelihoods are the prediction rules pr[h0]

and pr[h1]. Together with the prior probabilities p[e0](H0) and p[e0](H1), these
likelihoods determine the inductive predictions that derive from the Bayesian
scheme. By choosing the prior probabilities to be nonzero only for hypotheses
in the partition H = {h0, h1}, we determine which likelihoods play a role in
the Bayesian scheme. This second aspect of choosing priors, which concerns the
choice of possible statistical models, is therefore very important. It is discussed
at length in chapter 3.
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This chapter, however, need not invite discussion over the issue of choosing
hypotheses or priors. Recall that its aim is to present two schemes for making
inductive predictions, and to reconstruct these schemes in terms of inductive
logical inferences. The issue of choosing priors is important, but as explained
in the introduction of this chapter, the schemes as such cannot be expected
to offer any guidelines here. The choice of priors concerns premises in the
inductive logical arguments. Of course, it must be part of the development of a
logical scheme to elucidate how this notion of premises relates to bits of relevant
knowledge. Later chapters suggest tools for relating specific knowledge to the
choice of priors. But for now I leave it at the somewhat loose remark that priors
must be chosen to reflect initial beliefs and accord with relevant knowledge.

To sum up, in the Bayesian scheme the predictions p[et](Q
q
t+1) take as in-

put the prior probabilities p[e0](Hj) for every 0 < j ≤ N , and the likelihoods
p[ei](Q

q
i+1|Hj) for every 0 < j ≤ N and 0 < i ≤ t. The beliefs attached to the

hypotheses, denoted p[et](Hj), function as an intermediate state in determin-
ing the predictions. Degrees of belief over hypotheses are updated by means of
conditioning. Having obtained an expression for these degrees of belief, we can
compute the predictions p[et](Q

q
t+1) with equation (1.16).

Infinite partitions. An important refinement in the Bayesian scheme is pre-
sented by partitions with an infinite number or even a continuum of statistical
hypotheses, with which I shall now deal.

Consider the partition H = {Hθ}θ∈[0,1] in which the index j is replaced
by a variable θ over a continuum of values [0, 1] ⊂ R. The probability assign-
ments over the hypotheses p[et](Hj) then turn into so-called probability distribu-
tions p[et](Hθ)dθ, whose form is determined by the so-called density functions
p[et](Hθ). In the predictions (1.16), the summation over hypotheses must be
replaced by an integration:

p[ei](Q
q
i+1) =

∫ 1

0

p[ei](Hθ)p[ei](Q
q
i+1|Hθ) dθ. (1.22)

Further, Bayesian updating becomes an operation which transforms the density
function p[et](Hθ), employing the above expression for the predictions:

p[ei+1](Hθ)dθ =
p[ei](Q

q
i+1|Hθ)

p[ei](Q
q
i+1)

p[ei](Hθ)dθ. (1.23)

In all other expressions, the index j must be replaced with the variable θ. But
apart from that, there are no changes to the update machinery.
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1.4 A logical picture

This section sketches a logical picture of the above schemes. It characterises
inductive arguments, assuming Bayesian updating as a rule of valid inference,
and introduces probability models as part of the input in both the Bayesian and
the Carnapian scheme.

1.4.1 Conclusions and inference rules

In deductive logic, to put it bluntly, an argument consists of premises, inference
rules, and a conclusion. Inductive logic, if it is to mimic this blunt picture of
deductive logic, must also consist of these three elements.

Notion of conclusion. On the notion of conclusion I can be very brief. Since
I am considering schemes for making direct predictions, the conclusions of the
inductive arguments are direct predictions, that is, probability assignments of
the form p[et](Q

q
t+1) = pr. The remainder of this subsection deals with the

inference rules. The premisses of the Carnapian and the Bayesian schemes are
dealt with in the next two subsections.

Inference rules. From probability assignments of the function p[et] we may derive
further assignments of that function according to the axioms of probability
theory. I propose to view these axioms as inference rules. The suggestion here
is that the axioms generalise the rules for classical truth values over a Boolean
algebra, allowing a continuum p ∈ [0, 1] of truth values where classical truth
values have p ∈ {0, 1}. This idea is strongly related to ideas in Ramsey (1921)
and De Finetti (1937). The axiom that p[et](U) = 1− p[et](K

ω \ U) generalises
negation, the axiom p[et](U ∪ V ) = p[et](U) + p[et](V ) for U ∩ V = ∅ generalises
the operation of conjunction, and the axiom that p[et](K

ω) = 1 − p[et](∅) = 1
fixes the relation to Boolean truth valuations.

The above suggestions do not settle that we are dealing with a proper formal
logic, and the remainder of this thesis will not settle that matter either. For
one thing, the logical scheme is cast entirely in the language of mathematics,
and complications arising from that are simply left aside. Allusions to the
logical nature of the picture are here intended to convey a specific perspective
on inductive inference, while the logic itself is not spelled out in a formally
rigorous way. For a more elaborate treatment of these issues I refer to Cox
(1961) and Scott and Kraus (1966).

The above probability assignments p[et] are always relative to the same em-
pirical knowledge base et. Inductive inference must also accommodate changes
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in the knowledge base. It must allow for a representation of the addition of
certain premisses, namely the addition of observations. In the logical scheme
these additions can be seen as nonmonotonic inferential steps. The natural can-
didate for relating assignments with different knowledge bases is Bayes’ rule in
its general form:

p[et](·) = p[e0](·|E
et
t ). (1.24)

In the logical picture of this chapter, Bayes’ rule is the only inference rule that
links probability assignments with different knowledge bases. Note that the
above rule applies to all elements of the algebra H × Q0, both to hypotheses
Hj = {hj} × Q0 and to observations such as Qq

t . But apart from that, the
above expression is equivalent to the expression of Bayes’ rule for hypotheses,
as introduce in the Bayesian scheme. Iterated conditioning of a probability
function p[et] on new observations Qq

t+1 is just a shorthand form of conditioning
the probability p[e0] on a sequence Et+1 = Et ∩Qq

t+1 in one go.
There are several arguments for the validity of conditioning, for example

in Birnbaum (1962) and Rosenkrantz (1992). To my biased eyes, conditioning
looks very natural: after we have observed Qq

i+1, the probability for hypothesis
Hj becomes the probability we assigned to hypothesis Hj on the supposition
that this observation occurred. But the intuitiveness of conditioning is perhaps
illustrated best by considering it in the so-called cylinder algebra of section 1.2,
which resembles the muddy Venn diagrams of Van Fraassen (1989). The idea is
illustrated in figure 1.3. If we obtain the observation Qq

i+1, we can discard all
possible worlds e in which e(i+1) 6= q, as we are sure not to inhabit any of those
worlds. We zoom in on the cylinder set Ei∩Qq

i+1, which contains all the possible
worlds that match the knowledge base ei+1. The probabilistic expression of this
zooming operation is that we assign the cylinder Ei ∩ Qq

i+1 a probability 1.
Within this cylinder set, however, there is no reason to change the probability
assignment any further. That is, the proportions of the probabilities within the
set Ei ∩ Qq

i+1 must remain invariant under the zooming operation. In more
technical terms, the change in probability must respect rigidity. Conditioning
is the only operation that respects both these aspects of zooming in.

Criticisms against Bayesian inference. Despite its naturalness, Bayesian up-
dating has been subject to heavy criticism. It must here be noted that those
opposing Bayesian updating do not oppose Bayes’ theorem, expression (1.19),
which can be derived from the axioms of probability. The discussion concerns
the rule that links different probability assignments, expression (1.24), and the
claim that this rule determines how we must adapt beliefs to observations if
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1

Figure 1.3: Illustration of conditionalisation. The areas represent sizes of the probabilities,

the dotted areas represent possible worlds in which the next observation result is 1. After

finding q = 1 at time t = 1, as represented by the observation Q1
1, we zoom in on those

possible worlds e for which e(1) = 1. New predictions can be derived from the probability

assignment within this patch of the cylinder algebra.

we want to follow a rule at all. First I want to set aside one important line of
criticism against this claim. It is sometimes supposed that conditioning cannot
accommodate certain modes of inference. As argued in Bacchus (1990) and Van
Fraassen (1989: 160-170), abduction is essentially at variance with Bayesian
updating. For this criticism I refer to chapters 3 and 9, which both challenge
the incompatibility claims.

Another criticism must be given more careful attention here. It contends
that Bayesian conditioning is irrational. In particular cases it seems to pre-
scribe unintuitive, irrational or even inconsistent probability assignments, as for
example in the discussion on the reflection principle in Van Fraassen (1989), in
the drinking and driving example of Maher (1993: 105-29), in epistemic logic
as discussed in van Benthem (2003), and in the sleeping beauty problem as
discussed by Elga (2000), Lewis (2001), Dorr (2001) and many others. Now it
must first be remarked that this thesis is not concerned with rationality. It is
not a problem that the proposed schemes for making inductive predictions fall
short of providing rational guidelines, as long as rationality is not actively pre-
cluded by the schemes. If we derive irrational conclusions by means of Bayesian
conditioning, this simply means that we had irrational starting points. Along
the same line, it is not immediately problematic that the results of updating
may violate intuitions.
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The real worry is that conditioning is inconsistent, because an inconsistent
inference rule can never yield a viable analysis of inductive inference. However,
the inconsistency results in the above example cases can only be derived in an
observational framework that allows for the expression of opinions about opin-
ions, or otherwise for curious events such as memory loss or intoxication. The
framework for observations does not leave room for opinions over opinions, or
for such drug-related circumstances. It can only incorporate observation events
and general observational hypotheses. In chapter 2 I shall come back to this,
when I discuss opinions about opinions in relation to a semantics for statistical
hypotheses. The general contention is that inconsistency of Bayesian condition-
ing can always be resolved by refining the algebra over which the subsequent
probability assignments are defined.

1.4.2 Probability models as premises

With both the conclusion and the inference rule in place, we can now turn to
the premises. This subsection deals with the premises in the Carnapian scheme,
which prepares for a discussion of Bayesian premises in the next section.

A probability model from direct predictions. Apart from the observations, the
input to the Carnapian scheme consists of a direct prediction rule. As will
become apparent, such a rule can be summarised in a so-called probability
model M, which consists of an algebra Q0, and a probability assignment over
this algebra, p : Q0 7→ [0, 1]. A probabilistic model is a 2-tuple

M = 〈Q0, p〉. (1.25)

In the following I first show that under the assumption of Bayes’ rule, any
prediction rule pr(q, et) can be derived from a single probability model. These
probability models can then be used as a formal notion for elaborating the
Carnapian scheme in full detail.

It is easily seen that direct predictions can always be derived from a single
probability model. Consider the Carnapian scheme, in which the direct predic-
tions are given as follows:

p[et](Q
q
t+1) = pr(q, et). (1.26)

Under the assumption of Bayes’ rule, we can write

p[e0](Q
q
t+1|E

et
t ) = pr(q, et), (1.27)
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and with the definition of conditional probability, this is equivalent to

p[e0](Q
q
t+1 ∩ Eet

t ) = pr(q, et)p[e0](E
et
t ). (1.28)

This is a specific restriction to the probability assignment p[e0], which may be
taken to underlie the direct predictions of pr.

I now show that the above restriction indeed determines a unique and com-
plete probability p[e0] = p, and thus a unique probabilistic model M over the
observation algebra Q0. Note first that the probability p(Et) for any et can be
determined by mathematical induction over t. We can use p[e0](E0) = p(E0) = 1
as induction base, and the above restriction, here written

p(Ei+1) = pr(q, ei)p(Ei), (1.29)

as inductive step. We can therefore determine the probability of any intersection
of two observation sets Qq

t and Qq′

t′ for t′ < t, using 1.26 and 1.29:

p(Qq
t ∩Qq′

t′ ) =
∑

Et−1⊂Qq′
t′

p(Qq
t |Et−1)p(Et−1). (1.30)

Here Et−1 ⊂ Qq′

t′ concerns all et−1 for which et−1(t′) = q′. With this we have
defined the probability for all sets in the so-called π system of observations,
which consists of all sets Qq

i and all countable intersections of them. It is then a
theorem of probability theory that there is a unique extension of this probability
function to the algebra Q0 generated by this π system, for which the reader may
consult standard textbooks in measure theory, e.g., Billingsley (1995: 36-44).

Under the assumption of Bayes’ rule, the Carnapian scheme can therefore be
said to take a single and complete probability function p as its input probability
p[e0]. That is, adopting a particular prediction rule pr(q, et) is the same as
equating the initial belief state p[e0] with a probability function from some model
M, and updating the probability assignments according to Bayes’ rule. Thus,
for the Carnapian scheme a single probabilistic model and the observations are
in fact all that is needed.

The Carnapian scheme. This leads up to the following reformulation of predic-
tions that derive from the Carnapian scheme in terms of a Bayesian inductive
argument:

◦ 1 p[e0](·) = p(·), a complete prior over the observation alge-
bra,
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◦ 2 et, some sequence of observations,

⇒ 3 p[et](Q
q
t+1) = p[e0](Q

q
t+1|Et), the prediction (1, 2 and Bayes’

rule).

By choosing the probability p appropriately, we may replicate any prediction
rule pr. The bearing that the observations have on predictions is encoded in
the probabilistic model, which is entirely under the control of the observer. In
chapters 3 and 7, I will come back to this aspect of inductive arguments.

The use of Bayesian updating may cause some confusion here. Notice that
Bayes’ rule is now intended as an inference rule. But in the foregoing it has
been presented as a rule for transforming beliefs on the occurrence of some new
element of data. It may be objected that a logical inference is not at all like
changing beliefs, but more like making explicit certain elements that are already
contained in the beliefs. The logical picture can therefore better work with a
single probability assignment to represent beliefs, and a notion of conditioning
that does not involve different probability functions. There is no need for Bayes’
rule, as opposed to Bayes’ theorem, in such a logical picture.

In the present context, it is more appropriate to work only with conditioning
on a single probability p: indexing every probability assignment with et is overly
elaborate. The second part of this thesis is in fact organised in that way. How-
ever, it may be taken as an attractive feature of the present schemes that they
express the addition of observations as a kind of nonmonotonic move. More-
over, I want the logical picture to leave room for inferential steps which cannot
be captured with conditioning alone. I employ Bayes’ rule in this way in order
to leave open the formal possibility of deviating from conditioning in linking
up probability assignments that have different knowledge bases. Chapter 8 will
return to this issue.

1.4.3 Multiple probability models

The Bayesian scheme. I now deal with premises in the Bayesian scheme. Again
the observations are part of the premises. The scheme further uses a whole
range of probability models p[hj ], and a prior probability over the hypotheses
Hj that are associated with these models.

The inductive argument is therefore more complicated in the Bayesian sche-
me. It concerns a derivation of probabilities in the algebra H×Q0:

◦ 1 ∀j : p[e0](Hj) = p(hj), a prior over hypotheses,
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◦ 2 ∀j : p[e0](·|Hj) = p[hj ](·), the likelihoods for each of the
hypotheses,

◦ 3 et, some sequence of observations,

⇒ 4 ∀j : p[et](Hj) = p[e0](Hj |Et), a posterior over hypotheses
(1, 2, 3, probability axioms, Bayes’ rule),

⇒ 5 ∀j : p[et](Q
q
t+1|Hj) = p[e0](Q

q
t+1|Hj ∩ Et), the updated

likelihoods (2, 3, probability axioms, Bayes’ rule),

⇒ 6 p[et](Q
q
t+1) =

∑
j p[et](Q

q
t+1|Hj)p[et](Hj), the prediction (4,

5, probability axioms).

Note that the likelihoods and the posterior probability over the hypotheses are
both derived with Bayesian updating.

Some remarks are called for. First, note that we may use expression (1.18)
and the probabilities p[et](Hj) for computing p[et+1](Hj). The observation Qq

t+1

is then incorporated in a new inductive argument, but this argument has poste-
riors from an earlier argument among its premises. Second, the Bayesian scheme
of section 1.3 leaves aside updates on likelihoods in order to present the Bayesian
scheme as a generalisation of the Carnapian scheme. But as part of the logical
picture, the likelihoods are updated after all, both in the Carnapian and in the
Bayesian scheme. Third, in the case that the hypotheses are associated with
constant predictions, as for example h0 in the hunting example, we have

p[e0](Q
q
i+1|Hj ∩ Ei′) = p[e0](Q

q
i+1|Hj). (1.31)

But there are also hypotheses for which the predictions do depend on earlier
observations, as for example h1. In that case the update operation affects the
likelihoods.

Logical arguments. One aspect of the logical picture concerns the Carnapian and
the Bayesian scheme equally: the use of probability models. It must be stressed
here that I do not take probability models as objective models, and also not as
complete or partial representations of beliefs actually held by some reasoner. A
probability model p is a premise in an inductive argument. It is a formal tool
for elucidating inductive schemes, and not more than that. Also, there is no
restriction that the probability model must somehow match the world. Leaving
aside reductios, the usefulness of the conclusion of an argument depends on
the truth of the premises, but the argument as such can be perfectly valid
independently of that. Probability models are thus similar to truth valuations
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or models in classical logic: it is not inherent to the use of models in classical
logic that they are accepted as true by some reasoner, and they need not match
the world in any way either. Premises are adopted, literally, for the sake of an
argument.

Another aspect of the logical picture must be mentioned here briefly. A
proper logic will advertise itself with a soundness and a completeness result, and
the inductive logical schemes here may be expected to provide such results too.
However, I have not developed the formal semantics of the schemes sufficiently
to provide these results. Chapter 2 will deal with some aspects of semantics, and
soundness and completeness results are sketched in chapter 7. But unfortunately
this thesis does not contain a proper treatment of the subject.

Finally, it is again notable that apart from the observations, the Bayesian
scheme consists of a range of input probabilities which are entirely free for choice.
There is no further restriction on what input probabilities may be rational or
acceptable. This aspect of the inductive arguments is of key importance to the
rest of this thesis. It is that both in the Carnapian and in the Bayesian scheme,
the observations do not determine what predictions are warranted. In choosing
the input probabilities we effectively determine the patterns in the observations
on which the predictions focus, but there is no restriction stemming from the
observations alone.

1.5 Normative aims

The foregoing has introduced two schemes for making inductive predictions.
Both of them use the observational algebra Q0 and probability functions p[et]

to characterise observations and beliefs respectively. However, there is a lot of
controversy over the framework of algebra and probability, especially when it
comes to representing beliefs by means of probability functions. In this section
I want to make clear how this controversy affects the current discussion. The
section may be left aside without impeding further reading.

Descriptive adequacy. Many arguments that are critical of a probabilistic frame-
work are concerned with descriptive aims. As such arguments go, a scheme for
inductive predictions cannot use a framework with probability, because human
reasoning cannot be adequately described in it. Experiments in cognitive psy-
chology, as recorded in Kahneman and Tversky (1982) and also Gigerenzer
(2001), show that humans do not reason in accordance with probability the-
ory. However, the aim of the schemes discussed in this chapter is normative
and not descriptive. And because the aim is not to represent human inductive
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reasoning as accurately as possible, it cannot be used as an argument against
the framework itself or against the schemes it facilitates that real humans do
not comply to it. To draw the analogy with deductive logic once again, there is
strong evidence for the fact that people do not reason in compliance with the
rules for material implication, which has been discussed in Wason (1968) and
more recently Van Lambalgen and Stenning (2001). But most logicians do not
see this as a reason to abandon classical logic as a normative theory of reasoning
either.

The normative aim of this thesis is to characterise valid inductive inference.
Put more carefully, it is to provide a scheme that describes inductive practice
as valid inference. Clearly, the form of the inference scheme may deviate from
practice, and in this sense the critical arguments mentioned above can indeed
be deemed irrelevant. However, the specific normative aim does make certain
considerations of descriptive adequacy relevant after all. To see this, imagine
that as a normative scheme of inductive inference I presented a cookery book.
This book is obviously inappropriate as a normative scheme, because inductive
inference is not at all like cooking. Now it is of no help here to state that the
normative theory need not be descriptively adequate. Indeed, actual inductive
practice need not be described adequately, but we do want the normative scheme
to provide norms for exactly those types of inferences that are exhibited by
actual inductive practice. In short, the norms must still be applicable to the
practice. Secondly, inspired on Earman in (1992: 56-7), it may be that inductive
logic is overplaying her hand when it devises a normative scheme that is so far
removed from practice that nobody knows even how to strive towards the norms.
Thus, both for the applicability of norms and for their attainability, the criticism
that the framework is not descriptively adequate cannot be ignored completely.

It is hardly necessary to illustrate problems that relate to the attainability of
the goals laid down by the schemes. Bayesian schemes in particular are notorious
for their computational intractability, and this problem is only partly solved
by the use of computers and computational tools such as Bayesian networks.
Nevertheless I feel that problems with the applicability of norms are potentially
more harmful to the aims of this thesis. In the remainder of this section I
want to illustrate two such problems. Neither can be discarded by pointing
to the normative nature of the schemes, and in both cases it must simply be
disclaimed that they are solved in the present study. A third problem is only
briefly mentioned, and discussed more elaborately in chapter 2.
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Applicability problems. First, it can be noted that the probability functions do
not capture all types of uncertainty that may be involved in reasoning. This is
because a belief cannot always be associated with a sharply delineated extension
in the possible world semantics. As an example of this kind of uncertainty,
consider the problem of logical omniscience. Imagine that we are given a Boolean
algebra, and are then confronted with an expression of five pages, which as a
matter of fact is a logical tautology. Since it is a tautology, probability theory
prescribes a probability 1 for it. However, if we see the five-page tautology for
the first time, it seems natural to feel some uncertainty over its truth. But
in such cases, we are not uncertain about the probability measure that is to
be allocated to the extension of the expression in the algebra. Rather, we are
uncertain on what the extension of the five page expression in the algebra is,
or in more common terms, we are uncertain on what the five page expression
means. This kind of uncertainty in beliefs is not captured adequately in the
probabilistic framework, because probability can be assigned to statements only
after the extension of the statement is given. The above schemes therefore do
not provide the norms for dealing with this kind of uncertainty.

Second, apart from the fact that the framework leaves a particular kind of
uncertainty out of the picture, the nature of the uncertainty that the schemes
are actually concerned with may not be captured adequately by the mathe-
matical notion of a probability function. This problem concerns the fact that
probabilities have sharp values within the real interval [0, 1]. One of the conse-
quences of having sharp values is that the uncertainties attached to statements,
or sets of possible worlds, form a complete ordering. But in actual cases, as
famously discussed by Keynes (1921) and later by Kyburg (1974), it may not
be true that any pair of observations can be compared with respect to the de-
gree of belief that we attach to them, even if we have some opinion on both of
them separately. It seems wrong to state this complete ordering as a norm for
reasoning with uncertainty, and thus to force this ordering onto our assessment
of uncertainty.

A third worry concerns the interpretation of probabilities as representations
of beliefs. Clearly, inductive inferences concern degrees of belief, and are thus
associated with epistemic, as opposed to physical, probability. If, for instance,
on the basis of data I assign a probability of 2/3 to the event that a tiger appears
next, this means that I consider it more likely than not that the tiger appears
next, and not in the first place that there is a tendency in the tiger itself to
appear with that chance. For all we know, the tiger may be perfectly determined
in all its hunting decisions. On the other hand, as will be seen later, this thesis
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also involves explicit reference to chance processes, in which the probabilities
are objective and connected to physical probabilities. For example, I may assign
an epistemic probability of 3/4 to the statement that the objective chance for
any tiger to appear directly after a duck is smaller than 1

2 . Chapter 2 argues
that both objective and epistemic probability can be given an unproblematic
interpretation in such a setting. But in the present chapter I cannot resolve the
tensions that may result from their simultaneous usage.

Disclaimers. Generally, I concede that there are mismatches between the present
framework and actual reasoning, and that the schemes therefore cannot present
a complete set of norms for inductive reasoning. However, it will be assumed
that these mismatches are not destructive to all the aims of the schemes. I
take the above considerations to show rather that the norms presented by the
schemes are not detailed enough, and that they are therefore not applicable
without further idealising assumptions. Such assumptions are similar to those
we may make when it comes to the applicability of laws of nature: even though
the conditions under which the laws function are almost never met, we still take
the laws to be applicable, and we say that the description in terms of laws is
incomplete rather than inapplicable.

1.6 Conclusion

Summary. The above presents a particular picture of the Carnapian and the
Bayesian schemes for making predictions. According to this picture, both
schemes accommodate new observations with Bayes’ rule, and both schemes
take probabilistic models and observations as input. For both schemes the log-
ical picture isolates a notion of conclusion, namely the predictions, a notion of
inference, namely that of the probability axioms and Bayes’ rule, and finally,
a notion of a set of premises, which consist of observations and probabilistic
models. These latter premises bring out the assumptions needed for making
inductive predictions. Thus the picture emphasises the logical nature of the
schemes, but it also highlights that the observations do not entail anything by
themselves.

The role of Bayesian inference. For anyone familiar with the pervasiveness of
Humean criticism, the fact that the picture leaves the inductive predictions
completely underdetermined will not be surprising. The import of the problem
of induction is not just that the data alone do not tell everything, it is more
that the data alone do not tell anything. One of the reasons for presenting
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the predictions as conclusions of the above arguments is exactly because these
arguments reveal the assumptions underlying the predictions, and bring to the
fore that these assumptions do all the inductive work. As already sketched in
the introduction, this may be viewed as an advantage offered by the logical
picture.

It is perhaps felt by some that not all the inductive work is done by the
assumptions in the logical picture. This is related to the criticism that Bayes’
rule, as used in the Carnapian scheme, cannot capture all modes of inference,
and that for example abduction cannot be captured by it. In the above picture,
this amounts to the claim that Bayes’ rule allows to derive more than the prob-
abilistic conclusions already implicit in the input probabilities. However, the
above discussion shows that any prediction rule pr(q, et) corresponds to adopt-
ing some prior probability assignment p[e0] = p, and the use of Bayes’ rule for
the inferences. This means that, at least on the level of inductive predictions,
the rule is not restrictive at all: any prediction rule can result from it. By the
same light, the rule is not restrictive in the Bayesian scheme either.

Dogmatic aspects to Bayesian inference. Once we have chosen a probability
model for the Carnapian scheme, or a prior over hypotheses and a set of such
models for the Bayesian scheme, Bayes’ rule fully determines the predictions.
This is similar to the case in deductive logic, where the inference rules do not
restrict the possible conclusions, while choosing particular premises compels us
to particular conclusions. Of the initial objection that Bayes’ rule introduces
unintended or even unacceptable restrictions, the core may very well be that
the rule forces us to choose a prediction rule at the onset, and to stick to it after
that. Certainly van Fraassen (1989) is concerned with this in his discussion of
Bayes’ rule. I must admit that it presents an unusually dogmatic aspect of the
flexible theory of Bayesianism that everything must be fixed at the start.

In reaction to this criticism, let me first remark that rule following is inherent
to all logical schemes. It therefore makes little sense to defend the above logical
schemes against criticisms that concern this rule following aspect. However, just
as in classical logic, there is no problem in deciding to start a new inductive
inference if the need arises, that is, to simply drop premises that have led into
useless conclusions and use the observations again in another inference. Chapter
8 proposes a formal model for a similar move, as an add-on to the Bayesian
scheme, but needless to say, starting a new inference may be perfectly rational
also if a formal model for such epistemic moves is lacking.
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Finally, let me address a worry that is strongly related to the dogmatism
that seems to be inherent in Bayesian logic. It is that in using this rule, the
conceptual work may be distributed inefficiently over premises and inference:
some other rule may allow for more readily applicable or easily accessible input
probabilities, or for a relation between premises and conclusions that more nat-
urally reflects inductive inference. In short, the innocence of Bayes’ rule may
come at a price. It is only in chapter 3 that I can present an argument to the
contrary.

Carnap versus Bayes. One final remark must be made about the relation be-
tween the Carnapian and the Bayesian scheme. As indicated, the Bayesian
scheme can be seen as a generalisation of the Carnapian scheme. The Carnapian
scheme takes only one probabilistic model as its input, whereas the Bayesian
scheme incorporates a range of models. To deal with this range, it allocates a
probability assignment over them, and updates this assignment over the models,
or hypotheses, just as it updates the likelihoods, or direct predictions, within
the models. But the Bayesian scheme eventually leads to predictions that can
also be captured in the simpler Carnapian scheme. Seen from this angle, the
Bayesian scheme may be nothing more than a useless complication. Again, chap-
ter 3 argues for the use of the Bayesian scheme in connecting relevant knowledge
with prior probabilities.



2

A Frequentist Semantics of Hypotheses

This chapter proposes a frequentist interpretation of statistical hypotheses. In
this interpretation, statistical hypotheses are associated not with probability
models over a whole algebra Q0, but rather with strict subsets of the observation
so-called σ-algebra Q, the extension of Q0. The Bayesian scheme can then be
taken as a further specification of the Carnapian scheme, in which hypotheses
appear as convenient extensions to the observation language.

The chapter first discusses statistical hypotheses in the logical picture, and
indicates how a frequentist interpretation can elucidate their use. Then it defines
a specific set of statistical hypotheses, for which such an interpretation can
indeed be given. Under this interpretation the Bayesian scheme is seen to be
formally, and not just extensionally, equivalent to the Carnapian scheme: both
schemes take a completely specified probability p over a single observational
algebra as input. Some considerations on hypotheses and models complete the
chapter.

This chapter presupposes chapter 1 as a whole. It is itself useful reading for
chapters 3 and 8.

2.1 Statistical hypotheses

This section shows that statistical hypotheses are identical in terms of the ob-
servational algebra, and different only in the probability models associated with
them. It is thus natural to view the probability over hypotheses as a second
order probability, but such a probability seems at odds with the logical pic-
ture sketched in the preceding chapter. On the other hand, if this introduction
of second order probability is avoided, more positive reasons for adopting the
frequentist view remain.

Statistical hypotheses: algebraic or probabilistic?. The Bayesian scheme of the
preceding chapter employs the algebra H×Q0. Hypotheses are identified with
sets Hj = {hj} ×Q0, which each consist of the same observational algebra Q0,
while their elements are labelled hj differently. In terms of algebraic structure,
there is nothing in the hypotheses Hj to tell them apart. That is, they all have
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the same observational content. This reflects the fact that purely statistical
hypotheses are consistent with any finite sequence of observations and therefore
cannot be verified or falsified. But it may then seem rather strange that we are
at the same time using observations to decide between statistical hypotheses. In
technical terms, if within a sequence of observations Et the hypotheses coincide,
these observations cannot be used to distinguish between the hypotheses. The
use of conditioning to decide between hypotheses seems to lack intuitive basis
if the hypotheses cannot somehow be told apart in the observational algebra.

Clearly the hypotheses Hj = {hj} × Q0 are distinct in another aspect: the
probability models defined over them are different. This difference in probability
models is what connects the labels hj to the observations, and thus provides
the hypotheses with distinct observational content. In other words, hypotheses
indeed overlap in the algebra, but within specific sequences of observations Et

the probabilities assigned to the hypotheses differ. However, this seems to land
us in another puzzle. Recall that the Bayesian scheme offers a probability
assignment p[e0] over the hypotheses. If the hypotheses are only distinct because
of the probability models, it seems that we are in fact assigning probabilities to
these probability models. This seems to turn the probability p[e0](Hj) into a
kind of second order probability assignment, ranging over models Mj and not
just over the hypotheses Hj . And we may then wonder how this squares with
the Kolmogorov definition of probability, in which probability is only assigned
to elements of an algebra.

All this is portrayed as problematic a bit too eagerly. After all, in the
Bayesian scheme the probabilities p[et](Hj) are assigned to sets Hj = {hj}×Q0,
which are elements of the algebra H × Q0, just as the observations Qq

t+1 and
Et. The sets Hj may be identical in terms of the observational algebra, but
nevertheless they are different sets if only for the mere fact of their different
labelling. The fact that, apart from the labelling, these sets differ solely be-
cause the probability over the observations within them is different must not
distract us too much. Furthermore, even if it is conceded that the probabil-
ity assignments to hypotheses are essentially of second order, there is nothing
inconsistent or flatly wrong in introducing such probability assignments. The
use of second order probabilities has many proponents, as for example Sahlin
(1983). Moreover, second order probabilities are at the heart of so-called expert
systems, as discussed by Gaifman (1986), van Fraassen (1989) and others.

Motivating a frequentist semantics. The foregoing leads up to a number of
reasons for developing an alternative interpretation of statistical hypotheses.
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Consider the case in which the probability over hypotheses is taken as second
order. Recall that in the logical picture, the premises of inductive arguments
consist of observations together with a probability assignment p[e0]. In this
picture, the assignment may be read as a generalised truth valuation, which
comprises a continuum of truth values. But the probability assignment p(hj)
is taken as some kind of second order probability over the models, p[e0](p[hj ]),
and not as a probability on the level of sets, p[e0](Hj). This move of taking
probability assignments as arguments of the probability assignment runs paral-
lel to taking propositions on truth valuations in classical logic as propositions
themselves. And it is well known that this opens the door for problems such
as the liar paradox. As an example, the inconsistency of Bayesian updating
as revealed in Maher (1993:105-29) crucially depends on the use of probability
assignments within statements that are themselves assigned probability. In the
logical picture sketched above, it seems much safer, as well as more in line with
classical deductive logic, to determine premisses in terms of a single probability
assignment.

Hypotheses were in the preceding chapter introduced in this way: they were
presented as sets in the algebra, Hj = {hj} × Q0, and not as probabilistic
models. However, also in this presentation, a number of reasons for an alter-
native interpretation may be advanced. Firstly, note that the logical picture of
chapter 1 stays close to the empiricist roots of inductive logic. As suggested in
that chapter, it is too much to strive for the derivation of a completely analytic
probability assignment from the structure of the language. But I do feel that,
where possible, we must attempt to associate probability assignments to obser-
vations, or more specifically, to elements in an observational algebra. It seems
to me that the Bayesian use of hypotheses as separate observational algebras,
Hj = {hj}×Q0, removes us unnecessarily far away from the empiricist roots of
inductive logic.

Secondly, there is a rather natural way in which the statistical hypotheses
can be given an interpretation as statements in an observational algebra after all.
This interpretation is based on frequentism. The idea is to connect statistical
hypotheses hj to sets of infinite sequences e that have the probabilities p[hj ] as
their limiting relative frequencies. As will become apparent, not all statistical
hypotheses lend themselves for such an interpretation. But for those hypotheses
that do allow for a frequentist interpretation, the theoretical interpretation of
hypotheses appears as conceptual decadence: it employs a multitude of algebras
Q0, where in fact we can do with just one extended algebra, or σ-algebra,
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Q = σ(Q0). In my preferred terminology: the frequentist view of von Mises can
be used as a razor to cut the beard that Kolmogorov is sporting.

The general idea of this chapter is that statistical hypotheses, or probability
models, need to be given some kind of empirical content. Without such a
content, they cannot be given a natural place in an empiricist inductive logic.
The next two sections provide this observational content for a specific class of
hypotheses. The concluding section of this chapter will return to the advantages
of this alternative interpretation of statistical hypotheses.

2.2 A restricted class of hypotheses

This section gives a formal definition of a class of probabilistic hypotheses,
associated with a specific collection of models. Only statistical hypotheses from
this restricted class can be connected to elements of the observational algebra.
The definition of the class is based on a frequentist interpretation of probability.

Relation with Von Mises. Von Mises (1928) introduced the so-called frequen-
tist interpretation of probability as part of a systematic study into statistical
phenomena. The interpretation is not an attempt to derive probability models
from finite or even infinite sequences of observations. Rather it is an attempt
to specify what probability means by defining this notion in terms of specific
infinite sequences of observations e, the so-called Kollektivs. In the following
I employ the frequentist interpretation in the exact opposite direction: I start
with defining a certain class of statistical hypotheses, associated with certain
probability models, and after that I define the hypotheses as sets of specific se-
quences e by employing the frequentist interpretation of probability. I thereby
leave aside many of the subtleties involved in the frequentist interpretation itself.
It must be stressed that I do not attempt to justify the frequentist interpreta-
tion of probability, or to somehow prove its adequacy. Rather I am using the
frequentist interpretation to provide an alternative semantics of the hypotheses
hj . This alternative semantics does not associate hypotheses with the complete
observational algebra Hj = {hj}×Q0, but rather with strict subsets Hj ( Kω,
and thus with elements in the extended algebra Q.

Defining statistical hypotheses. Before making this restricted class of statistical
hypotheses precise, let me sketch the idea behind it. Every statistical hypothesis
in it is associated with a probability model, and thus prescribes, for a range of
possible circumstances or states, a probability for the observations, denoted
Qq

t+1. The states must at every position t in the string be determined by the
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observations within e that are already given, et = 〈e(1), e(2), . . . , e(t)〉, and they
must further occur infinitely often in the infinitely long sequence of observations
e. For every such e, the probability of Qq

t+1 in some state is associated with a
relative frequency of q’s occurring in this state. The subset of a hypothesis can
then be identified with the set of infinitely long sequences e for which all the
relative frequencies associated with the states match the probability model.

The definition of this class of statistical hypotheses has two ingredients: a set
of identity functions marking the states, and a set of probability vectors, each
of them associated to one selection function annex state. The identity functions
serve to characterise the states in which the corresponding probability vector
applies.

Definition Let w(et) be a function assigning a natural number
{0, 1, . . . ,M} to all sequences et. Further let θ = {θ1, θ2, . . . , θM}
be a set of fixed probability vectors θm of which the components
θqm ∈ [0, 1] satisfy

∑
q∈K θqm = 1 for each 0 < m ≤ M . Then the

statistical hypothesis hwθ determines a, possibly partial, probability
model

p[hwθ](Q
q
t+1|E

et
t ) = θqw(et). (2.1)

If w(et) = 0 the conditional probability remains undefined.

Hypotheses that can be written down in this way are called statistical. If all
θqm > 0, the hypothesis is called purely statistical. Note that these hypotheses
do not yet specify the class of hypotheses that may be interpreted in a frequentist
manner.

Some remarks may help to clarify the foregoing. First, the hypotheses hwθ

distinguish different states w(et) = m, depending on the sequence of observa-
tions et. Further, they associate with each of these states a probability vector
θm ranging over possible next observations q ∈ K. For any sequence of observa-
tions et, not more than one such probability vector is chosen by the hypotheses.
Note also that the probability model can still be partial, because the function w

need not assign a number m > 0 to all sequences et. Below I define two further
restrictions on statistical hypotheses which clarify the point of this complica-
tion. Finally, recall that if every et is assigned an m > 0, the probability model
is defined completely. From this we can derive a complete prediction rule.

Restrictions for frequentist hypotheses. I now impose two further restrictions,
which, together with the above, define the intended class of hypotheses F . Recall
from section 1.4 that with the direct probabilities we can recursively derive
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values for all p(Eet
t ). A sequence et is deemed possible by the probability model

of hwθ if and only if p[hwθ](E
et
t ) > 0. The first restriction is that there may at

most be finitely many sequences et which are deemed possible by hwθ, but which
nevertheless have w(et) = 0. If we collect the corresponding Et in a special set,
denoted Ew=0, we can formulate this requirement in the following way:

∀t > 0, ∀Et /∈ Ew=0 : p[hwθ](E
et
t ) > 0 ⇒ w(Eet

t ) > 0. (2.2)

This means that hwθ must assign a probability to the observation Qq
t+1 in all

those cases in which the observation set Et that preceded the observation Qq
t+1

has nonzero probability and does not belong to Ew=0. Note that this presup-
poses that the probabilities for all observations Qq

i for which Et ⊂ Qq
i were also

nonzero. This complicates the requirement, but it does not present any real
difficulty.

The second restriction is that in any possible infinite string e, all states m

are repeated infinitely often:

∀m, ∀Et′ : ∃Eet
t ⊂ Et′ : p[hwθ](Et) > 0 ∧ w(et′) = m. (2.3)

This is to make sure that it makes sense, eventually, to talk of relative frequencies
of observations in all the states. The class of frequentist statistical hypotheses
comprises all statistical hypotheses, as defined with the above definition, that
satisfy restrictions (2.2) and (2.3). This class of hypotheses covers a partic-
ular subset of possible statistical hypotheses. The identification of statistical
hypotheses with elements Hj ∈ Q only works for this limited class.

An example hypothesis. To get to know the class of frequentist hypotheses, let
me consider the example of chapter 1 again. In that example we have K =
{0, 1, 2}, referring to observations of the empty pond, ducks and a tiger. Now
recall the hypothesis h on tigers hunting ducks. It may be defined in the terms
of the function w, given in

w(et) = et(t) + 1

and in terms of probability vectors θ, here consisting of nine components:

θ1 = 〈2/3, 1/3, 0〉,

θ2 = 〈1/6, 1/3, 1/2〉,

θ3 = 〈1, 0, 0〉.

In words, this hypothesis states that there are three possible cases. If a tiger has
not appeared in the last observation, et(t) 6= 2 and if there are no ducks in the
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pond, et(t) 6= 1, they may appear with a chance of 1
3 while the pond may stay

empty with a chance of 2
3 . If a tiger has not appeared in the last observation

and if there are ducks, they may stay with a chance of 1
3 , leave with a chance of

1
6 , and a tiger may appear with a chance of 1

2 . If, finally, a tiger has appeared
in the last observation, the pond stays empty for one time unit with certainty.

It must be noted that not all sequences of observations et are assigned a posi-
tive probability. Specifically, sequences such as e3 = 〈0, 0, 2〉 or e5 = 〈0, 1, 2, 1, 0〉
are assigned zero probability in the probability model of h1. Thus frequentist
hypotheses are not necessarily purely statistical. Note also that the probability
model associated with h1 is complete, because we have m(et) > 0 for all et.
But this need not always be the case. For hypotheses in the frequentist class
there can always be some finite number of sequences et for which the hypothesis
does not prescribe probabilities. The above hypothesis h does not illustrate this
possibility, but I return to it in chapter 3.

The reach of frequentist hypotheses. The class of frequentist hypotheses com-
prises many more hypotheses like h. There are hardly any restrictions on what
kind of statements may be used as hypotheses. For example, they also include
the formal equivalent of the statements that tigers operate alone, that ducks
wander in packs, that when we see a duck a tiger is not far away, and any other
such statement. The only restriction for the hypotheses is that their formal
equivalent must be of the form presented above. As will be argued below, this
comes down to the requirement that the probability models have an observa-
tional content, so that they can be identified with an element in the observation
algebra.

On the other hand, many hypotheses cannot be deemed frequentist. As an
example, consider the hypothesis that as a result of hungry tigers the number
of ducks decreases:

θ10 = 1− 1
3
e−ρt, (2.4)

θ11 =
1
3
e−ρt (2.5)

In a hypothesis with probabilities that change in such a way, there are no re-
peatable states with fixed probabilities. Another example is presented by the
Carnapian λγ rule, conceived as a probability model. The probability for some
Qq

t+1 given earlier observations Et are according to this rule determined by two
statistics, to wit, the index t and the fraction of the number of earlier occurrences
of q in et, denoted tq. With every fraction tq

t and value of t we can effectively
associate another state m, but depending on e there may be infinitely many of
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such states, and moreover, some of these states are not repeated infinitely often.
So the Carnapian λγ rule is not frequentist either.

While some hypotheses are not frequentist because their probabilistic models
cannot be associated with limiting relative frequencies, other hypotheses are
excluded because they are more specific than what limiting relative frequencies
allow us to express. An example of the latter kind is presented by the so-
called constituents in the αλ-system of Hintikka (1966). To illustrate, consider
the constituent H¬2 = {e : ∀i(e(i) 6= 2)}, which for obvious reasons may be
called duck heaven. At first sight it may seem that this constituent is covered
by the union of all statistical hypotheses that assign a zero probability to the
observation of a tiger, q = 2. But the Hintikka-constituent H¬2 is more specific,
because it does not only mean that the limiting relative frequency for tigers in
the e included in H¬2 must be zero, but also that in these sequences e there are
no tigers at all. The sequence e = 012000 . . . has zero limiting relative frequency
for 2, but it is not part of the Hintikka constituent. Because of this notorious
measure-zero gap, the Hintikka-constituents are not frequentist, even while such
constituents seem to be among the most basic patterns at hand.

In sum, it appears that the class of observational patterns is wider than the
class covered by the notion of frequentist statistical hypothesis. Against this,
one can also argue that, for example, Hintikka constituents are not observational
patterns at all, or in any case much less observational than their frequentist
variants.

2.3 Hypotheses as elements of Q

This section presents an interpretation of hypotheses as elements of the extended
observation algebra Q. After that it briefly discusses the relation between these
elements and the Kollektivs of Von Mises, and it elaborates on the notion of a
partition.

2.3.1 Definition of the elements Hwθ

Hypotheses as sets of infinite sequences. We are now in the position to define
the set Hwθ that is associated with a frequentist hypothesis hwθ. Central to
this definition is the identification of probabilities and relative frequencies. A
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relative frequency of some result is defined by the following:

Wqi(e) =

1 if e(i) = q,

0 otherwise,
(2.6)

fq(e) = lim
t→∞

1
t

t∑
i=1

Wqi(e). (2.7)

The frequentist interpretation is thus used to translate probabilities on obser-
vations, as prescribed by a hypothesis, into properties of infinite strings of ob-
servations. It is then possible to connect a probability assignment to a set of all
those e for which the above relative frequencies exist, and for which they have
the matching values.

To pin down the relative frequencies of observations occurring in some state
determined by w(et) = m, we may define for every e the subsequence em of
all those observations qt+1 following the positions t at which w(et) = m. First
define Im(ei) = 1 if w(ei) = m, and Im(ei) = 0 otherwise. Then define

sm(e, t) = Im(et)
t∑

i=1

Im(ei) (2.8)

with ei = 〈e(1), e(2), . . . , e(i)〉 the first i entries of e. Then sm(e, t) is a sequence
that has an increasing number on positions t where w(et) = m, and 0 on all
other positions t. Then define

em(sm(e, t)) = e(t + 1). (2.9)

for all sm(e, t) > 0, while em(0) remains undefined. The resulting sequence em

contains exactly those observations made in the state m.
The set which corresponds to a hypothesis hwθ ∈ F can now be obtained by

selecting all those e ∈ Kω for which all the subrows em have exactly θqm as the
relative frequencies of the observation results q. Formally,

Hwθ = {e : ∀m, q [fq(em) = θqm]} (2.10)

This is a subset Hwθ ( Kω. Note also that only the statistical hypotheses
hwθ that comply to restriction (2.3) can be identified with such a strict subset.
This is because the definition of the relative frequencies fq only works for sub-
sequences em that have infinite length, and because these subsequences have
infinite length only if (2.3) is fulfilled.
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To illustrate the foregoing, consider the hypothesis h0 of the hunting exam-
ple, which is associated with the probability model

p[h0](Q
q
t+1|Et) =


9
10 if q = 0,
9

100 if q = 1,
1

100 if q = 2.

(2.11)

For this probability model there is no need for distinguishing different states
w(et). The corresponding hypothesis may therefore be defined as an element
H0 quite easily:

H0 = {e : f0(e) =
9
10
∧ f1(e) =

9
100

}. (2.12)

To this element we can now assign a probability p[e0](H0). Furthermore, within
the set of sequences H0 the probability of the observations is fixed by the model.

Extending the observation algebra. Statistical hypotheses are in the above pre-
sented as subsets of Kω, but they are not made part of any observational algebra
yet. I now discuss the extension of the observation algebra Q0 that is needed
for accommodating hypotheses as elements of it.

By defining frequentist hypotheses as strict subsets of the space Kω, I am
providing them with something of an observational content. But this content
is not observational in the ordinary manner. Note that any finitely decidable
observational hypothesis hw can be associated with the element Hw of the finite
observation algebra Q0. As an example, the hypothesis that more than half of
the first n observations have the result q can be decided within n observations.
Hypotheses Hwθ are not finitely decidable in this way. That is, the probability
models prescribed by the frequentist hypotheses cannot be verified or falsified
by any finite sequence of observations. Therefore frequentist hypotheses are not
part of the finite observation algebra Q0.

With the above definition in place, however, we can associate the hypotheses
hwθ with an element of the σ-algebra Q, the infinite extension of the observation
algebra Q0. A hypothesis Hwθ is a so-called tail event in this algebra. It is
an event in the observation algebra whose occurrence can only be verified or
falsified at infinity. This corresponds to the fact that the hypothesis hwθ is not
finitely decidable, but that it is, in the vocabulary of Kelly (1996), refutable
in the limit. It may be noted that hypotheses that are higher up in Kelly’s
hierarchy of decidability can still be associated with elements of an algebra Q.
Hypotheses may also be gradually refutable or verifiable, and they may have an
even more complicated structure. Moreover, Bayesian updating can perfectly
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well accommodate hypotheses that are undecidable to various degrees. However,
the frequentist semantics proposed here restricts hypotheses to ones that are
either gradually refutable or gradually verifiable.

With frequentist hypotheses as elements in the observational algebra, the
hypotheses need not be treated as probability models over the observational
algebra anymore. This means that we can assign probability to hypotheses
just as we can assign probability to observations, which accords well with the
empiricist roots of inductive logic. Moreover, the frequentist view on hypotheses
leads to a picture in which the inductive inferences are all made from a single
probability assignment over a single algebra Q, and in which there is no need
for second-order probability. This is discussed further in section 2.5. Note also
that the proposal to view frequentist hypotheses in terms of a partition of the σ-
algebra shows similarities to the formal characterisation of Hintikka-constituents
in terms of a partition of the algebra by Kuipers (1978). As made clear in the
preceding section, there are differences between statistical hypotheses and these
constituents, but the general idea may very well be the same.

Finally, and most importantly, note again that frequentist hypotheses are
not part of the finite algebra Q0 that is used in the Carnapian scheme. Sta-
tistical hypotheses can be used as the result of an enrichment of the algebra,
or alternatively, observation language. This enrichment accounts for a larger
expressive force that the frequentist hypotheses allow us. As will become clear
in chapter 3, this enlarged expressive force is one of the driving forces behind
the conceptual innovations that this thesis offers.

2.3.2 Collections of Kollektivs

I now deal with the relation between the frequentist interpretation of probabil-
ity and the above definition of hypotheses as elements in Q. More specifically,
I investigate the connection between the set of infinite sequences Hwθ and col-
lections of so-called Kollektivs.

Infinite sequences as Kollektivs. Following the discussions in Von Plato (1994)
and Van Lambalgen (1987), a Kollektiv is a specific infinite sequence of ob-
servation results e. Two properties define a Kollektiv: the limiting relative
frequencies of the observations in e must exist, and it must be impossible to
select, with some fixed procedure, positions within the sequence e such that
the selected subsequence has different limiting relative frequencies. This latter
property has become known as the so-called law of excluded gambling systems,
which nicely expresses the idea behind the property: when selectively gambling
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on results in a Kollektiv, we cannot find a gambling procedure that changes the
probabilities for any of the results. Or in again other words, apart from the
patterns fixed by the relative frequencies, there is no further weak pattern in
the observations.

We can use this notion of Kollektiv to elaborate the above definition of fre-
quentist hypotheses. Recall that the hypotheses themselves already present a
specific selection procedure, namely w(et). But within the subsequences em cre-
ated with this selection, the notion of Kollektiv becomes applicable. As a start,
we can characterise the hypothesis Hwθ as sets containing all those sequences
e of which the subsequences em are Kollektivs associated with the probabili-
ties θqm. However, this is not a suitable characterisation. The definition of
the hypotheses does not preclude the existence of further selections within the
subsequences em, within which the relative frequencies are different from the
probabilities θqm.

To see this, consider hypothesis h0 above, which prescribes a single vector
of probabilities for the whole sequence e. Because this is the only criterion
for membership of the corresponding element H0, the hypothesis H0 also in-
cludes sequences e′ in which every even indexed observation is of an empty
pond with certainty, so that the relative frequencies for even observations are
simply 〈1, 0, 0〉, while the relative frequencies of the results on the odd positions
are 〈 8

10 , 18
100 , 2

100 〉. The resulting relative frequencies in such sequences e′ is then
in accordance with the probabilities prescribed in the model for h0, while the
sequences e′ are not Kollektivs for these probabilities.

It is perhaps appealing to sharpen the definition of hypotheses as subsets in
Kω, and to include only the sequences whose subsequences em are Kollektivs
for the corresponding probabilities θqm. This involves formalising the law of
excluded gambling systems. The notion of admitted selection procedure can be
given a proper mathematical formulation by means of recursive functions, which
is here employed implicitly as domain for the function w. However, sharpen-
ing the definition of hypotheses to include only the Kollektivs involves a more
detailed treatment of these recursive functions, which leads us too far away
from the main line of this chapter. Moreover, there are independent reasons
for preferring the looser definition given in the foregoing. The reason lies in
the possibility of finding further structure in the observation results. They are
made explicit in chapter 8.

In the following hypotheses Hwθ are sets of sequences e whose subsequences
em, defined with a function w, have limiting relative frequencies matching the
probability model, θqm. Some of these subsequences are Kollektivs for these
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probabilities, but others are Kollektivs of a more complicated probability struc-
ture. So frequentist hypotheses are composed of collections of Kollektivs.

Other intentions than Von Mises. As a last remark on hypotheses and frequen-
tism, let me stress again that the use of frequentist notions here is opposite to
von Mises original use of it. For von Mises the emergence of Kollektivs from
sequences of actual observations was an empirical matter, which has to do with
statistical phenomena. In this chapter Kollektivs and limiting relative frequen-
cies are a purely formal tool. But more importantly, the aim of von Mises was
to use these Kollektivs for understanding probabilities, that is, to interpret the
notion of probability with these Kollektivs. In this chapter, by contrast, I give
priority to the probability models. The use of the frequentism is only to provide
an interpretation of these probability models in an observation algebra. Con-
sequently, the interpretation is only given after the models have been specified.
In view of this it is natural that, next to frequentist probabilities, we can also
use the subjectively interpreted probabilities over the hypotheses.

2.3.3 Partitions

The remainder of this section discusses the notion of a partition. It may be
recalled from chapter 1 that a Bayesian scheme employs collections of hypothe-
ses, which were there called partitions. The foregoing only shows how, within
a restricted class, we can construct strict subsets representing these hypothe-
ses. But now we can also make clear in what way the collections of hypotheses
form a partition. That is, the hypotheses themselves can be said to partition
the observational algebra, meaning that they can form a collection of mutually
exclusive and jointly exhaustive sets in Kω.

A patchwork of hypotheses. To see the general idea, consider a collection of
hypotheses Hwθ based on some fixed selection function w, but with different
probability vectors. For any such collection, we may define a complete partition
of the observation algebra, by adding hypotheses with the same selection func-
tion w, but with probability vectors θ that are not covered in the collection yet.
In other words, the frequentist interpretation allows to cover the whole algebra
with a patchwork of hypotheses.

Let me elaborate this with an example. Consider again the hypothesis h0,
which has the selection function w(et) = 1 for any et and a single probability
vector θ = 〈 9

10 , 9
100 , 1

100 〉. Consider the alternative hypothesis H ′
0, which uses the

same selection function but prescribes probabilities θ′ = 〈 1
3 , 1

3 , 1
3 〉. The two sets
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H0 and H ′
0 are then mutually exclusive: sequences e ∈ H0 have limiting relative

frequencies that differ from the probabilities of θ′, and vice versa. However, the
probability vectors θ and θ′ are just two elements from the set of all possible
vectors, C = {θ :

∑
q θq = 1}. There are many more hypotheses with a

uniform selection function, and the hypotheses H0 and H ′
0 are therefore not

jointly exhaustive. A partition must minimally include all hypotheses Hwθ with
the selection function w(et) = 1 that have a probability vector from C.

But we are not ready with defining the partition. Even when taken together,
the hypotheses Hθ with θ ∈ C are not jointly exhaustive. Some sequences
e do not have limiting relative frequencies for the observations at all. As an
example, take the sequence e = 01 0011 000000111111 . . . , in which the result 2
does not occur, the number of consecutive 0’s always equals the total number of
observations preceding those 0’s, and the number of consecutive 1’s equals the
number of consecutive 0’s that precede it. The observed relative frequencies of
this sequence will keep fluctuating between 〈 3

4 , 1
4 , 0〉, which is reached after each

package of consecutive 0’s, and 〈 1
2 , 1

2 , 0〉, which is reached after the consecutive
1’s. On the whole, there is no limiting relative frequency. Therefore, only if we
also provide a hypothesis H¬θ that contains all sequences e for which the limiting
relative frequencies fq(e) are not all defined, we can define a real partition of
the space Kω.

In sum, a Bayesian scheme with the hypotheses H0 and H ′
0 involves a par-

tition C = {H¬θ, {Hθ}θ∈C}. In this partition we may then assign zero prior
probability to all hypotheses other than H0 and H ′

0 to return to the original
collection.

Generalisations. Two further remarks on partitions conclude this section. First,
note that partitions, as introduced above, can easily be generalised. Every
admitted selection function w leads to a specific generalised partition. Such
partitions generate predictions that are, as it is called, partially exchangeable.
To give an intuitive idea, a partition based on a selection function w results in
predictions that are invariant under permutations of any two observations qt+1

and q′t′+1 as long as we have w(et) = w(et′) for the observations preceding these
observations. The notion of exchangeability is more elaborately discussed in
chapter 3. For partial exchangeability I refer to De Finetti (1972) and Diaconis
and Freedman (1980). It leads us too far away from the aim of this chapter to
discuss it here.

Second, we may also consider partitions in which more than one selection
function is used. As an example, we may want to add the hypothesis H1,
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discussed at the start of subsection 1.3.1, in the partition of hypotheses C,
which is based on the uniform selection function. To do this, we must first find
the vector θ ∈ C that results from the probability model of H1. We must refine
this specific hypothesis Hθ in the partition C into the hypothesis H∗

θ ∪H1. The
hypothesis H∗

θ contains all those infinite sequences that have the limiting relative
frequencies θ, except for those sequences e that also have the more complicated
pattern described in h1. If we employ the adapted hypothesis H∗

θ , we may
then simply add H1 to the partition C. Clearly, many much more complicated
combinations of hypotheses may be united in a single partition in the same way.
I hope that the example here suffices to suggest the general idea.

2.4 Objective probability models

Traditionally the frequentist interpretation of probability serves to describe
physical probability or, in one word, chance. In the context of inductive logic
chances are used mainly to give an objective content to epistemic probability.
Below it will be discussed how this use of the frequentist interpretation relates to
hypotheses and probability models in inductive logic. It turns out that chances
connect naturally to the definition of hypotheses as elements in Q.

2.4.1 Objective probability

Probability models as models of the world. Now that we have a frequentist
interpretation of statistical hypotheses Hwθ, it is natural to link the probability
models Mwθ = 〈Q0, p[hwθ]〉 to models of the world. The probabilities are then
interpreted as physical probabilities or chances. Chance models may be taken
as weakened versions of deterministic models, in which the probabilities are
fixed to 0 or 1 and thus specify a single string e in the observational algebra.
An example of a deterministic model is that directly after the appearance of
a pack of ducks a tiger appears, after the tiger the ducks hide for one time
unit, after which the ducks appear again, and so on. The associated sequence
is e = 0120120120120 . . ., assuming an empty pond at the onset.

Probability models can be viewed in very much the same way. In the hunting
example, we can say that at any time the chances of there being an empty pond,
a pack of ducks or a tiger are 9

10 , 9
100 and 1

100 respectively. As in the determin-
istic model, the numbers may here be interpreted as tendencies or propensities
of events in the world, and not as expectations of observations. They pertain to
something physical. However, if we subsequently take these probability mod-
els as input to an inductive argument, they cannot be interpreted as chances
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anymore. In that case they are objective epistemic probabilities. They are
epistemic because they serve as input to an inductive scheme, which concerns
opinions and expectations. But they are also objective, because they refer to
and are informed by physical probabilities or, in other words, chances in the
world.

Subjectivist criticisms. Subjectivists such as Ramsey, De Finetti, Savage and
Howson may be opposed to an interpretation of probability models as objec-
tive. And because of the strong link between subjectivism and Bayesianism,
it is certainly not a standard practice in Bayesianism conceived more broadly
to interpret the likelihoods of the hypotheses in terms of objective probability
models. Many Bayesians explicitly deny that probability can have objective
content. They adhere to a purely subjectivist view, which states that any prob-
ability assignment is an expression of belief, and in this role cannot concern some
objective aspect of the world. But it goes too far to discuss the relation between
strict subjectivism and Bayesianism here. I want to leave it at two remarks to
put possible criticisms of the use of objective probability in perspective.

Firstly, it must be emphasised again that the schemes of this thesis already
endorse an epistemic interpretation of the probability functions p[et]. They
are explicitly intended to represent beliefs. The fact that, on top of that, the
probabilities are objective means that these beliefs refer to and are informed
by chances in the world. It accords with generally objectivist statistical infer-
ence in science to interpret the probability models associated with hypotheses
in this objective epistemic manner. Furthermore, as argued in the foregoing,
this objective interpretation helps us to arrive at hypotheses as elements of the
observational algebra, which leads to a more natural logical picture of inductive
inference. Secondly, the use of a Bayesian scheme does not make the simultane-
ous use of objective and subjective epistemic probabilities impossible. Pluralist
views on probability are as old as Poincaré (1952) and as current as Gillies
(2000). Nothing in the Bayesian scheme itself precludes the use of objective
probability.

2.4.2 Deriving direct probabilities

But let me return to the main line of this section, which is to connect the
probability models to the hypotheses as elements of the observation algebra.

Reformulating the Principal Principle. It may be argued that there is at least the
following connection between the objective chances p[hwθ] in the model of some
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hypothesis, and the beliefs associated with that hypothesis: if we conditionally
accept some model as the model of the world, we must declare its objective
chances on observations to be the correct probabilities of the observations. It is
a small step to develop this connection into the following principle:

p[e0](Et|p[hwθ](Et) = f(w, θ)) = f(w, θ). (2.13)

In words, conditional on some probability model p[hwθ] the belief we assign to
observations must be the same as the chance that this model prescribes for
the observations. This principle has first been formulated by Jeffreys (1939) as
the principle of direct probabilities. Later it was given the name of Principal
Principle by Lewis (1980), who linked it to a notion of admissible evidence and
who took it not as a restriction on subjective probabilities, but rather as an
implicit definition of chance. In one interpretation or another, the principle
now enjoys wide popularity.

Note that the principle is formulated in terms of a second order epistemic
probability p[e0] over both observations and a probability assignment p[hwθ].
With the above interpretation of hypotheses as elements inQ, we may present an
alternative formulation. Now the hypothesis Hwθ, as opposed to the probability
model p[hwθ], may be included in the condition:

p[e0](Et|Hwθ) = f(w, θ) (2.14)

This accords much better with the Kolmogorovian theory of probability, in
which probability can only be assigned to elements in the algebra. Moreover, in
this reformulation there is a rather natural argument for adopting the principle
of direct probability, as I show below. This in itself presents yet another reason
for adopting the interpretation of hypotheses as elements in Q.

From hypothesis to probability model. The natural question is whether the def-
inition of a hypothesis, as an element Hwθ ∈ Q, determines the probability
model associated with it, that is, whether it determines the likelihoods.

For one thing, the likelihoods are restricted by the definition of conditional
probability in combination with the axioms of probability:

p[e0](Et|Hwθ) =
p[e0](Hwθ ∩ Et)

p[e0](Hwθ)
, (2.15)

where I am assuming that p[e0](Hwθ) > 0. Whenever a hypothesis hwθ deems
some sequence of observations Et to be either impossible or positively certain,
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this carries over to the likelihoods via the definition of Hwθ:

Hwθ ∩ Et = ∅ ⇒ p[e0](Et|Hwθ) = 0, (2.16)

Hwθ ∩ Et = Hwθ ⇒ p[e0](Et|Hwθ) = 1. (2.17)

In the case of a continuum of hypotheses, it is difficult to make sense of the
above expression for conditional probability. Here it is better to resort to the
alternative axiomatisation of probability using conditional probability assign-
ments.

Statistical hypotheses are not purely deterministic. So it is not exactly
straightforward to link the elements Hwθ in the algebra with likelihoods of these
hypotheses, expressed in p[e0](Et|Hwθ). However, the following argues that we
can employ the characteristics of the elements Hwθ to derive these likelihoods.
Recall that the likelihoods are a function of the selection function w and the
vector components θqm, as determined by the probability model of hwθ. For
present purposes it therefore suffices to derive the probability vectors only.

Deriving a probability model. To derive these probability vectors, we need one as-
sumption on the probability assignment within the hypotheses: the probability
distribution over the possible subsequences em constructed from the sequences
e ∈ Hwθ must be uniform. For all sequences e ∈ Hwθ, the function w determines
which states occur at which positions. Independently of how these states follow
up on each other, we can formulate, for each state separately, the assumption
that among the subsequences em that build up the sequences e according to the
function w there are no preferred ones. That is, for each state m separately,
the subsequences em are assumed to be equally probable. We may say that this
assumption is based on some form of the principle of indifference. The uniform
probability within hypotheses expresses that, apart from isolating the hypothe-
ses Hwθ in the algebra and thus focusing on specific sets of sequences e, we have
no further reason to prefer one sequence over another.

This uniformity can be used to derive the likelihoods θqm. I will not give
a complete proof but provide a proof sketch only. The general idea in the
sketch derives from ergodicity theory: on the assumption of uniform probability
within the hypotheses, the long-run relative frequencies may be used as single-
case probabilities. The proof has two main ingredients. First, note that for
every e ∈ Hwθ, the fractions of results q in the subsequences em are always
θqm. Second, note that any possible subsequence em with specific relative fre-
quencies can be constructed by permuting, possibly using an infinite number of
operations, one single sequence with those frequencies. Therefore, as a further
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specification of the second ingredient, to state that the probability is uniform
over the subsequences is the same as saying that all permutations of a single
subsequence em are equally probable.

Now consider all the possible permutations of the subsequence em, and look
at a specific position t within it. After one permutation, any one of the results
em(i) may end up in the specific position t. But because all permutations are
equally probable, all the results em(i) are equally probable to end up there.
And since, according to the first ingredient, a fraction of θqm of the results
em(i) has the value q, the probability of subsequences em to have a q at position
t is also exactly θqm. From the characteristics of Hwθ and the assumption of
a uniform probability over subsequences we have thus derived the values θqm

for the likelihoods p[e0](Q
q
t+1|Hwθ ∩Et). We thus obtain the principle of direct

probabilities.

An additional reason for frequentist semantics. The foregoing provides addi-
tional reasons for adopting a picture in which hypotheses are associated with
elements in the algebra Q. First, the principle can be formulated in terms of a
single probability assignment over an observational algebra. There is no need
for second-order probability. Second, the principle of direct probability can be
derived from an assumption of uniformity. Now it may be that hardcore sub-
jectivists will not be impressed by this line of argument, since they may not be
willing to accept such assumptions of uniformity over the probability assignment
in the first place. But such subjectivists are not likely to be moved by the prin-
ciple of direct probability itself either, certainly not if that principle is taken as
an implicit definition of the objectivist notion of chance. For all those in favour
of some form of the principle of direct probability, the derivation suggested here
may be a natural motivation.

2.4.3 Physical models

The above use of objective probability models must not be confused with another
such use, which originates in Polya (1954) and has also been discussed in Kuipers
(1978). In this use of models, the objective interpretation does not apply to the
probability of observations conditional on the hypotheses, but to the predictions
that result from the inductive scheme as a whole. The remainder of this section
is devoted to some observations on these so-called physical models.

Polya urn models. As a first example, consider the Carnapian prediction rule
prλγ for two possible observations with λ = 2 and γq = 1

2 , which is sometimes
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called the straight rule:

p(Qq
t+1|Et) =

tq + 1
t + 2

. (2.18)

Here tq is the number of results q in et. As discussed more elaborately in the
following chapters, this rule is suitable for predicting the results generated by a
device that produces results with a constant but initially unknown chance.

Interestingly, there is also an objective interpretation of the probabilities
generated by the prediction rule. That is, we can construct a physical system
that generates the results q with probabilities exactly matching the predictions.
Imagine an urn consisting of one blue and one green ball, so that q ∈ {0, 1}. If
we pick a ball from the urn at random, each of the two colours have a chance
of 1

2 of being picked, which matches the straight rule for t = 0. Now let us say
that the first ball is green. We then put back this ball into the urn, and add
one further green ball, so that there are 3 balls in the urn, namely two green
ones and one blue. If we subsequently pick a ball from the urn, the chances of
picking a green or a blue one again match the prediction rule. This time, there
is a chance of 2

3 on green, and of 1
3 on blue. More generally, by always replacing

the ball just picked and adding one of the same colour after that, we can take
care that the chances on colours keep matching the predictions.

Petri dish models. This is just one example of a physical system replicating the
predictions generated by some inductive scheme. Many more such systems may
be constructed. For example, instead of urns with balls we may imagine drawing
strings of beads from a jewellery box and adding beads to these strings, with
the observations being the individual beads on the strings. Such systems are
useful for replicating so-called partially exchangeable processes, using specific
selections of strings of beads. Another system, which is more similar to the
balls in Polya urns, is presented by colonies of bacteria in a Petri dish. This
specific system is particularly suited for replicating predictions that derive from
a partition of hypotheses in a Bayesian scheme, as I will now show.

Consider two colonies of bacteria mixed together in a Petri dish, and let
us say that at the start of the investigations the two colonies have equal size.
The colonies of bacteria differ in the proportion of certain types of cells, for
example, blue and green cells. More in particular, for colony H0 a proportion
of 2

3 is of the blue type, q = 0, while the rest is of the green type, q = 1. For
colony H1, on the other hand, a proportion of 2

3 is of the green type while the
rest is of the blue type. Now imagine that a scientist samples a single cell from
the Petri dish at random, and after determining its type, removes bacteria of
the other type from the Petri dish. So if the sampled cell is of the green type,
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q = 1, a proportion of 1
3 of colony H1 is removed, while 2

3 of H0 is. After that,
the scientist leaves the bacteria to grow back and fill up the Petri dish again.
Since the colonies have the same growing rate, colony H1 is twice as large as
H0 in the new mixture. Further, after the growth both colonies have restored
the respective original proportions between the types, which are again 1

3 and 2
3

or vice versa. The scientist may then repeat the whole procedure.
As already suggested by the notation, the determination of the type of a

randomly sampled cell in the above experimental setting replicates exactly the
predictions resulting from a Bayesian scheme with two hypotheses, H0 and H1,
which have likelihoods 〈 2

3 , 1
3 〉 and 〈 1

3 , 2
3 〉 for the possible results q = 0 and q = 1,

respectively. It will be clear that the setting may be generalised to any number
of types or colonies. Perhaps surprisingly, taking an infinity of colonies all
associated with different proportions 〈θ, 1− θ〉 comes down to the same system
as the Polya urn described above. The next chapter returns in more detail to
this equivalence, which is a special case of De Finetti’s representation theorem.

2.5 Comparing inductive schemes

In this last section I consider the two schemes presented in the preceding chap-
ter. I first show that with hypotheses as elements of the observation algebra Q,
the Bayesian and Carnapian schemes are formally equivalent. The second sub-
section discusses whether the two schemes allow for the same range of inductive
predictions.

Carnapian scheme over a σ-algebra. Recall from chapter 1 that a Carnapian
prediction rule pr comes down to a complete probability assignment p over the
algebra Q0. By contrast, when using a frequentist semantics for hypotheses
a Bayesian scheme minimally requires an extended algebra Q = σ(Q0). This
is because the frequentist hypotheses Hwθ are associated with elements in Q
that fall outside the algebra Q0. Fortunately, as proved in Billingsley (1995:
36-41), every probability function over an algebra Q0 can be extended uniquely
to a probability function over the σ-algebra generated by it. So the probability
function p over the algebra Q is already implicit to the Carnapian scheme.

There is a considerable conceptual price for the extension of the probability
from Q0 to a unique probability over the σ-algebra Q. For one thing, the whole
idea of a σ-algebra seems at variance with empiricist views: it allows for sets
such as Hwθ, which consist of infinite disjunctions of infinite conjunctions of
single observations. Such sets seem entirely unempirical. Moreover, even if we
grant the use of a σ-algebra, the unique extension of the probability over it can
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only be derived if the first three Kolmogorov axioms are supplemented with an
axiom on so-called σ-additivity. This axiom states that the probability of an
infinite disjunction of disjoint sets can be written down as an infinite sum of
the probabilities of these sets. Following the discussion in Williamson (1999),
the axiom has a dubitable status for both empiricists and subjectivists. For
example, it is impossible to justify the axiom of σ-additivity by reference to
betting contracts.

Nevertheless, given the conceptual clarity offered by the use of frequentist
hypotheses, I am myself more than willing to pay the conceptual price. In fact,
I find the use of infinite set operations and σ-additivity only marginally more
farfetched than the whole project of finding a formal framework for inductive
inference, such as probabilistic inductive logic. From this point of view, the use
of frequentist hypotheses is a small and profitable investment.

The razor of Von Mises. It remains to be seen that the Bayesian scheme can
indeed be defined by a single probability assignment over the algebra Q. I will
now present a more detailed argument for that, and show that it presents a
further reason for the frequentist semantics.

Recall that in the scheme of chapter 1, each hypothesis hj ∈ H is associated
with a labelled algebra {hj} × Q0, so that the space over which we define the
probability functions p[et] is given by H×Q0. With the definition of hypotheses
as elements in Q, we can reform this scheme in two steps. As a first step, we
can extend the probability assignments p[hj ] to a probability over the extended
algebraQ assuming σ-additivity. This yields a probability p[hj ] over each algebra
{hj} × Q. We are then facing a rather awkward conceptual possibility; we can
employ the hypotheses Hj , as elements in the algebra Q, as arguments in their
own probability assignments: p[hj ](Hj). However, for frequentist hypotheses
hj the weak law of large numbers entails that the probability of the set Hj ,
according to its own probability model, is p[hj ](Hj) = 1. Thus, in the extension
of p[hj ] to the algebra Q, all probability is located within the tail event Hj ∈ Q.

This brings us to the second step in reforming the scheme. If we consider
the extended algebra H×Q, it seems that we can merge the algebras along the
range of hypotheses hj . The sets in the respective algebras {hj}×Q that carry
the probability mass, namely the hypotheses Hj , do not overlap. In each of the
hypotheses {hj} × Q the probability p[hj ] is concentrated within the sets Hj ,
but these latter sets are mutually exclusive. Because of this, we can harmlessly
compress the range of algebras {hj} × Q into a single algebra Q, within which
the hypotheses are simply given by the sets Hj . So the second step in reforming
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Figure 2.1: The Bayesian scheme and the Carnapian scheme come down to the same thing.

Both determine a probability over the extended observation algebra Q. The Bayesian scheme

can be viewed as the microstructure of the Carnapian scheme. Prediction rules result from

integral expressions over statistical hypotheses in a Bayesian scheme.

the scheme is that instead of using a range of extended observational algebras
H×Q, we can make do with a single extended algebra Q.

This is where the razor of Von Mises finds its application. In the Kolmogoro-
vian picture of the preceding chapter, hypotheses hj are each associated with
a separate algebra Q0. But following the two steps of the foregoing, it seems
that we can trim away this abundance of algebras and leave only the single ob-
servational algebra Q. This can be done by identifying the probability models
with elements in the extended algebra according to the frequentist interpreta-
tion. Indeed, the razor of von Mises shaves the long Kolmogorovian beard of
algebras.

It follows that the Carnapian and Bayesian schemes are formally equivalent.
Both schemes may be defined by a single probability p over the observation alge-
bra Q. The choice of this probability p may be effected by choosing a prediction
rule pr(q, et), but also by choosing a partition of hypotheses, associated with
a range of probability models, along with a prior probability assignment over
these hypotheses. As depicted in figure 2.1, the Bayesian scheme thus emerges
as a detailed version of the Carnapian scheme, and not as the generalisation
which is presented in chapter 1. The Bayesian scheme may be said to present
the microstructure underlying the Carnapian scheme.
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Reasons for a frequentist semantics. The frequentist semantics makes for a more
integrated picture of the Bayesian scheme. First, the definition of statistical
hypotheses as elements in the observation algebra avoids the use of second-
order probability, thus connecting better to the Kolmogorov axioms. Second,
in view of the empiricist roots of inductive logic I think that the use of a single
algebra Q is more natural than the use of H×Q0. Third, it is advantageous that
both objective and subjective probabilities find a natural place in the Bayesian
scheme, making the discussion on the interpretations of probability somewhat
less ardent. The likelihoods may even be derived from frequentist hypotheses
at the cost of a uniformity assumption. And finally, as discussed below, it is
rather nice that the difference between the Carnapian and the Bayesian scheme
can be traced back to an enrichment of the language or algebra that is used in
these schemes.

Limits of the Bayesian scheme. The formal equivalence that is derived by means
of the frequentist semantics also adds to the urgency of the question why we
are considering two schemes in the first place. After all, if they can be written
down in the same format, studying one of them will be enough, and simplicity
considerations then lead us to the Carnapian scheme. The remainder of this
section is concerned with this question. A natural answer is that the two schemes
allow us to express different probability assignments over the algebra. It may
seem obvious that any Bayesian scheme comes down to some Carnapian scheme:
the Bayesian scheme generates predictions, and these predictions can always be
summarised in a prediction rule, and thus in a Carnapian scheme. But in reality
it proves very difficult to find elegant expressions for the particular prediction
rule that corresponds to some Bayesian scheme. This may be a reason for
employing a Bayesian scheme after all. To such reasons I will come back more
elaborately in chapter 3.

Focusing only on the range of prediction rules and not on the possibility to
express these rules in a convenient form, the Carnapian scheme can accommo-
date any Bayesian scheme. But it is not so obvious that the Bayesian scheme
can accommodate any Carnapian prediction rule. Clearly, the equivalence be-
tween the Carnapian and the Bayesian scheme becomes trivial if we are allowed
to consider any hypothesis we like. We may then simply use one hypothesis h in
the Bayesian scheme, and give it likelihoods that correspond to the predictions
of the rule that we want to replicate. But there are many prediction rules that
do not coincide with a probability model associated with a frequentist hypoth-
esis. As argued above, the class of frequentist hypotheses is rather restricted.
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Frankly, I do not know whether prediction rules can always be replicated with
a Bayesian scheme using frequentist hypotheses, and I also do not know what
kind of argument may eventually settle that matter. But for lack of any such
argument towards the affirmative, it seems that Carnapian schemes have a slight
advantage over Bayesian schemes. With the use of frequentist hypotheses we
run the risk of unknowingly restricting the range of possible prediction rules.

It may be argued that statistical hypotheses that are not frequentist do not
deserve consideration in the first place. If indeed there are restrictions imposed
by only using frequentist hypotheses, we must accept these simply because there
is otherwise no proper interpretation for the probabilities in the scheme. This
is indeed a very dogmatic reaction. It seems unwise to make it part and parcel
of the Bayesian scheme itself.

Hypotheses as enrichment of the language. There is another difference between
Carnapian and Bayesian schemes that is significant in the next chapter, and in
this thesis more generally. The two schemes are equal in the sense that they
both determine a single probability function over Q, but they differ in that they
determine it by specifying different sets. To return to one of the points of section
2.3.1, the introduction of hypotheses as tail events in the algebra amounts to an
enrichment of the language used to express inductive predictions. With the sets
Hwθ, new events or terms are added to the observational terms already present
in the algebra Q0. This enrichment allows us to specify the input probability
of inductive arguments in a different way, which will be seen to have clear
conceptual advantages. It will be argued below that the Bayesian scheme offers
a more detailed description of inductive predictions, and a more natural grip
on the inductive predictions themselves. In particular, the Bayesian scheme
allows us to express the projectability assumptions that precede any inductive
argument. The Bayesian scheme is therefore more suitable than the Carnapian
for conceptualizing, applying, and adapting inductive predictions.





3

Hypotheses as Inductive Assumptions

This chapter reveals the advantages of Bayesian schemes in generating induc-
tive predictions. It discusses Carnap-Hintikka inductive logic, and two ways in
which the Bayesian schemes may expand it. Bayesian schemes are then illus-
trated with two partitions. One partition results in the Carnapian continuum
of prediction rules, the other results in predictions typical for hasty generalisa-
tion. Following these examples I argue that choosing a partition comes down
to making inductive assumptions on patterns in the data, and that by choosing
appropriately any inductive assumption can be made.

The inductive predictions in this chapter are cast in the framework of sec-
tion 1.2.1, and in particular in the Bayesian scheme introduced in section 1.3.
Familiarity with these sections is essential to an understanding of this chapter.
The introduction to this chapter is especially useful for those readers who have
not read the preceding chapters, but apart from that it also indicates the main
line of this chapter.

3.1 Introduction

Inductive predictions. This chapter concerns inductive predictions, taken as the
result of inductive inferences. The premisses of an inductive inference include
a set of observations and possibly some further assumptions. The conclusions
may be predictions or general hypotheses, where predictions concern future
observations, and general hypotheses are observational generalisations of some
sort or other. For example, from the fact that some internet start-up has had
decreasing stock price on all days until now, we may derive that the next day
it will have decreasing stock price as well. This is a prediction about a single
observation, namely the decrease of stock price on the next day, based on data
of the stock price movements on all days until now. From the same data set we
may also derive that the internet start-up will have a decreasing stock price on
all future days, which is a general hypothesis about the observations.

The Bayesian scheme uses hypotheses to arrive at predictions. The data
are first reflected in an opinion about a partition of hypotheses. For example,
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from the data on decreasing stock price we first derive an opinion about hy-
potheses on the state and nature of the internet start-up. The predictions on
the internet start-up are subsequently derived from this opinion about hypothe-
ses, together with the data. These predictions and opinions about hypotheses
are thus expressed in terms of probability functions. In sum, this chapter con-
cerns probabilistic inductive inferences in which hypotheses are used for making
predictions. In conformity with the preceding chapters, I will say that such pre-
dictions are based on Bayesian schemes, or alternatively, based on partitions.

Organisation of chapter. The main line of the chapter is the following. First
I show that the Bayesian scheme enables us to describe predictions typical for
hasty generalisation. The predictions can be generated by choosing a specific
partition of hypotheses for the scheme. This example triggers two separate
discussions on the function of hypotheses in the Bayesian schemes. The main
conclusion of the discussion in this chapter is that hypotheses are tools for mak-
ing inductive assumptions. They determine which patterns are identified in the
data, and subsequently projected onto future observations. Another discussion,
which concerns Bayesian schemes in relation to the problem of induction, is
presented in chapter 7.

In more detail, the structure of the chapter is as follows. In section 3.2,
I introduce the dominant tradition in formalising inductive predictions, called
Carnap-Hintikka inductive logic. The Bayesian scheme of this chapter is seen
to expand the Carnap-Hintikka tradition. For the Bayesian scheme itself I refer
to section 1.3. Section 3.3 considers two prediction rules working on the same
data, but based on different partitions, and shows that they result in different
predictions. It further elaborates the relation between inductive predictions
and the Carnap-Hintikka tradition. In section 3.4 the examples are given a
further philosophical interpretation. Specifically, the hypotheses are related to
inductive assumptions. The conclusion connects these insights to the schemes
of the preceding chapters.

3.2 Carnap-Hintikka inductive logic

This section discusses the Carnap-Hintikka tradition of inductive logic. It em-
phasises two characteristic features of this tradition: its focus on exchangeable
prediction rules, and its reluctance, certainly within the Carnapian literature,
to employ general or statistical hypotheses. The inductive predictions of this
chapter, and more generally of this thesis, extend the Carnap-Hintikka tradition
by departing from these two features.
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Carnapian prediction rules. Let me briefly rehearse Carnapian predictions for
the purpose of this chapter. Recall that predictions are probabilities over future
observations based on observations and further assumptions. The observations
are encoded in indexed natural numbers qi, and collected in ordered tuples
et = 〈q1, q2, . . . , qt〉. The further assumptions can be encoded in some collection
of parameters X. We may then construct a prediction rule prX(q, et) for the next
observation having the result q in terms of a probability function of the preceding
observations et, the next observation qt+1 and the collection of parameters X.
Inductive predictions can be studied by designing and comparing classes of such
probability functions, which I call inductive prediction rules.

An exemplary class of probabilistic inductive inference rules for making pre-
dictions is given by the λγ rules referred to earlier, as developed in Carnap
(1950, 1952) and defined fully in Stegmüller (1973):

prλγ(q, et) =
(

t

t + λ

)
tq
t

+
(

λ

t + λ

)
γq. (3.1)

The function prλγ , the probability for observing q at time t + 1, is a weighted
average of the observed relative frequency tq

t of instances of q among the ordered
set of known observations et, and the preconceived or virtual relative frequency
of observing q, denoted γq. The weights depend on the time t and a learning
rate λ. With increasing time, the weighted average moves from the preconceived
to the observed relative frequency. The learning rate λ determines the speed of
this transition.

After Carnap, inductive prediction rules have been studied extensively. Ax-
iomatisations, elaborations and synthesisations of inductive prediction rules
have been developed by Kemeny (1963), Hintikka (1966), Carnap and Jef-
frey (1971), Stegmüller (1973), Hintikka and Niiniluoto (1976), Kuipers (1978),
Costantini (1979), Festa (1993) and Kuipers (1997). To this research tradition
I refer with the names of Carnap and Hintikka.

Exchangeability. Most of the work in this tradition concerns exchangeable pre-
diction rules. Exchangeability of a prediction rule means that the predictions do
not depend on the order of the incoming observations. These exchangeable rules
typically apply to settings in which the events producing the observations are
independent. So they have a very wide range of application. Moreover, on the
assumption that the prediction rule is exchangeable, it can be proved that the
predictions eventually converge to optimal values. That is, if the observations
are produced by some process with constant objective chances, the predictions
of an exchangeable rule will, according to Gaifman and Snir (1982), almost al-
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ways converge on these chances, whatever the further initial assumptions. Both
for their range of applicability and for this convergence property, exchangeable
rules are a main focus in the Carnap-Hintikka tradition.

Representation theorem. The second feature of this tradition that I want to
emphasise can only be made explicit after presenting the connection, in both
directions, between the exchangeability of observations and the independence
of the events that may be supposed to produce these observations. For this I
must first elaborate on the notion of independence. A first component of this
notion is the assumption that the events producing the observations are in fact
part of some underlying process. A second component is that if this underlying
process generates the events with constant objective chances, then the chance
of an event is independent of events occurring before or after it, so that we can
speak of independent events.

The connection reaching from exchangeability to independence is then es-
tablished by the representation theorem of De Finetti, as discussed in (1964).
This theorem shows that any exchangeable prediction rule can be represented
uniquely in a Bayesian scheme, using hypotheses that are associated with con-
stant chance processes. Section 3.3 deals with this representation theorem in
some more detail. The connection reaching from independence to exchange-
ability, on the other hand, is established by the fact that any Bayesian scheme
using hypotheses on constant chance processes must result in an exchangeable
prediction rule. This is seen most easily from the fact that updating the prob-
ability over the hypotheses for new observations is a commutative operation.
The order of such updates is therefore inessential to the resulting probability
assignment over the hypotheses, and thus inessential to the predictions result-
ing from this assignment. Again, section 3.3 discusses this in more detail. For
now it is important to note that the assumption of the independence of the
events producing the observations can be equated with the use of exchangeable
prediction rules for these observations.

Against general hypotheses. I can now make explicit the second characteristic
feature of the Carnap-Hintikka tradition. De Finetti interpreted the represen-
tation theorem as a reason to omit all reference to underlying processes, and
to concentrate on exchangeable prediction rules instead. As Hintikka (1970)
argues, this is not so much because of a subjectivist dislike of the objective
chances featuring in the underlying processes. Rather it is because these chance
processes are described by general hypotheses, which cannot be decided with
finite data. De Finetti deemed such hypotheses suspect for empiricist reasons.
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In a similar vein, Carnap maintained that all universal hypotheses have measure
zero. Now there are large differences between De Finetti and Carnap, but both
used the representation theorem to show that it is simply unnecessary to employ
chance processes. We can obtain the same results using the exchangeability of
the prediction rule, and in this way we stay closer to the empiricist roots of
inductive logic.

In line with this, most of the Carnap-Hintikka tradition focuses on the prop-
erties of prediction rules, such as exchangeability, and eschews reference to the
chance processes that may be underlying these rules. Prediction rules with
this feature I call Carnapian. This terminology signals that this second feature
is not fully applicable to the Hintikka part of the Carnap-Hintikka tradition.
Indeed, in Hintikka (1966) and Tuomela (1966) we find a different attitude to-
wards underlying chance processes, or at least towards the use of hypotheses in
inductive logic. More in particular, Hintikka employs universal generalisations
on observations in the construction of his αλ continuum of inductive prediction
rules. Tuomela discusses more complicated hypotheses on ordered universes,
and refers to Hintikka for the construction of prediction rules based on these
universal statements. Both these authors thus employ hypotheses to inform
predictions in a specific way.

Innovations of this chapter. While this already presents a valuable extension,
I feel that hypotheses have not been employed with full force in the Carnap-
Hintikka tradition. Perhaps some empiricist feelings have remained, which have
curbed the further development of Hintikka systems. The αλ continuum of
Hintikka offers little room for varying the kinds of hypotheses used, since the
continuum concerns universal generalisations only. It is certainly an advantage
that, in the improved versions of Hintikka and Niiniluoto (1976) and Kuipers
(1978), the role of these generalisations is not entirely determined by the single
parameter α. However, as Hintikka himself remarks in (1997), it is eventu-
ally much more convenient to be able to express such universal statements in
terms of proper premisses, so that other kinds of universal statements can be
employed too, and also controlled more naturally. However, many prediction
rules in which the use of specific universal statements seems very natural do not
employ such statements in their construction. Take, for example, the inductive
prediction rules for Markov chains by Kuipers (1988) and Skyrms (1991), and
the prediction rules describing analogical reasoning by Niiniluoto (1981) and
Kuipers (1984). Here the construction of the rules is based on particular predic-
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Figure 3.1: The Bayesian scheme employs hypotheses to mediate between observations and

predictions.

tive properties, which, as an aside, are all non-exchangeable. Underlying chance
processes are not really used in the construction of these rules.

I can now indicate more precisely the innovations that this chapter offers. It
extends the Carnap-Hintikka tradition in inductive logic in two ways, connected
to the two characteristic features noted above. First, this chapter proposes a
prediction rule that is not exchangeable, by adding hypotheses concerning a
particular deterministic pattern to an existing partition of constant chance hy-
potheses. Second, and following up on this, it advocates the explicit use of
chance processes, or hypotheses on such processes, in the definition of inductive
predictions. In accordance with the Bayesian scheme of chapter 1, and as illus-
trated in figure 3.1, hypotheses are used to mediate between observations and
predictions. The claim following from this is that partitions of hypotheses are a
tool in making assumptions about patterns in data, which widens the scope of
the Carnap-Hintikka tradition. In connection with the discussions in chapters 1
and 2, it may be said that this chapter presents the main reason for preferring
the rather complicated Bayesian scheme over the Carnapian.

Remark and disclaimer. In connection with chapter 2, it may be noted that
the hypotheses that may be used in a Bayesian scheme belong to the class
of frequentist hypotheses. One aspect of this class is in this chapter given a
further illustration. Recall that the class also encompasses the hypotheses Hwθ

employing a selection function w that sometimes assigns state w(et) = 0 to
sequences et that are not given a zero probability by the hypotheses, but that
only does so for a finite number of sequences et. Such hypotheses, it was argued,
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still allow for being connected to tail events in the algebra Q. This chapter
employs hypotheses of exactly this sort, namely the so-called crash hypotheses.

Finally, let me disclaim the treatment of some topics that otherwise compli-
cate the discussion too much. First, it can be noted that the prediction rules of
this chapter are somewhat similar to those in the paper by Tuomela on ordered
universes. Both focus on predictions based on the specific patterns in the data.
But, for lack of space, I will not elaborate on this similarity in the following. Sec-
ond, I will not discuss the representation theorem of De Finetti in full generality,
and similarly I will not touch upon the various brands of partial exchangeabil-
ity. The focus of this chapter is on a particular non-exchangeable prediction
rule, generated by hypotheses concerning particular chance processes, and on
the moral that derives from the use of such hypotheses. There are excellent
discussions of representation theorems on offer.

3.3 Examples on crash data

This section gives two applications of the scheme of section 1.3. The first appli-
cation employs hypotheses on constant chances for the observations, and results
in the Carnapian λγ rules. This also serves as an illustration of the representa-
tion theorem of De Finetti. The second application provides an extension of the
Carnap-Hintikka tradition. Apart from the hypotheses on constant chances, it
employs hypotheses concerning a particular pattern in the data. The resulting
predictions are not covered by the λγ continuum, and they are not in general
exchangeable.

3.3.1 Bernoulli partition

Stock market data. The example concerns stock price movements. Consider
the following strings of data, representing stock prices for t = 35 days. In the
strings, qi = 0 if the stock price decreased over day i, and qi = 1 if the stock
price increased or remained unchanged over that day. Here are two possible
histories of the prices of a stock of some internet start-up:

e35 = 01000100000010110000010000000010000,

e∗35 = 01001010111010000000000000000000000.

Note that e35 and e∗35 have an equal number of trading days i with qi = 1, but
that the order of increase and decrease is different for the strings. In particular,
e∗35 shows what can be called a crash: from some day onwards we only observe
decreasing stock price.
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Defining Bernoulli hypotheses. Now imagine a marketeer who aims to predict
stock price movements based on observed price movements over foregoing trad-
ing days. Further, assume that she employs the partition B with a continuum
of hypotheses to specify her predictions. To characterise the hypotheses, define

f(e) = lim
t→∞

1
t

t∑
i=1

e(i). (3.2)

For any infinitely long sequence of days e, the function f(e) gives the ratio of
trading days i for which e(i) = 1. Note that f(e) is undefined for some of the
e ∈ Kω. Now define Ihθ

as follows:

Ihθ
(e) =

1 if f(e) = θ,

0 otherwise,
(3.3)

in which θ ∈ [0, 1]. Further define Ih¬θ
(e) = 1 if f(e) is not defined, and

Ih¬θ
(e) = 0 otherwise. Then B = {H¬θ, {Hθ}θ∈[0,1]} is a partition including a

continuum of hypotheses on relative frequencies: every e belongs to a unique
hypothesis. I call B the Bernoulli partition, after Johan Bernoulli who first
studied chance processes of this form.

Assume that the marketeer employs the following input probabilities:∫ 1

0

p[e0](Hθ)dθ = 1, (3.4)

p[e0](Hθ) = 1, (3.5)

p[e0](H¬θ) = 0, (3.6)

∀i > 0 : p[e0](Q
q
i+1|Hθ) =

 θ if q = 1,

1− θ if q = 0.
(3.7)

where again θ ∈ [0, 1]. Equations (3.4) and (3.5) state that the probability dis-
tribution over the hypotheses Hθ is uniform. This may be motivated with an
appeal to the principle of indifference or some other symmetry principle. Equa-
tion (3.6) states that those sequences e in which the frequency of trading days
with e(i) = 1 has no limit are negligible. This assumption is not compulsory. It
is here made for computational simplicity, as it allows us to ignore hypothesis
H¬θ in further calculations. Moreover, it is required if we want to illustrate the
representation theorem.

Equation (3.7) can be motivated with the restriction on likelihoods as dis-
cussed in section 2.4. We may further assume that at every i the Bayesian agent
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Figure 3.2: Predictions p[et](Q
0
t+1) against time t, based on the partition B. The dashed

line shows the predictions for the normal data e35, the unbroken line shows the predictions

for the crash data e∗35.

updates the likelihood that is used in the next prediction to

p[ei](Q
q
i+1|Hθ) = p[e0](Q

q
i+1|Hθ), (3.8)

so that, in conformity with the definition of the hypotheses Hθ, the accumulation
of data ei does not change the original likelihoods. The hypotheses Hθ on
relative frequencies then have constant likelihoods p[ei](Q

q
i+1|Hθ) = θ.

Resulting predictions. With the prior density p[e0](Hθ) and the likelihoods
p[ei](Q

q
i+1|Hθ), we have specified all probabilities that are needed. We can

compute the predictions on next observations p[et](Q
q
t+1) that the marketeer

makes when confronted with the observations e35 and e∗35 respectively. I have
calculated these predictions and depicted them in figure 3.2. In the remainder of
this subsection I make some remarks on these predictions, and on the Bayesian
scheme with the Bernoulli partition in general.

Note that after 32 days, the predictions in figure 3.2 are the same for both
strings of data. This shows the exchangeability of the above Bayesian update
procedure. Probability assignments after any et are invariant under the permu-
tation of results et(i) within that et, and as said, e35 and e∗35 have the same
number of 1’s. For both e35 and e∗35 it is further notable that the predictions
p[ei](Q

0
i+1) converge to 1. The speed of convergence, however, decreases with the

addition of further instances of et(i) = 0. More precisely, the second derivative
to time of the predictions, taken as a function over time, is negative. Thus the
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predictions do not accommodate the fact that the data e∗35 may be the result of
a crash.

The Bayesian scheme using B illustrates the representation theorem of De
Finetti. The hypotheses Hθ are the hypotheses on processes with constant
chances that I alluded to in sections 3.2. The representation theorem is that
any exchangeable prediction rule prX(q, et) can be represented in a Bayesian
scheme with the partition B. Different exchangeable prediction rules may be
defined by choosing different priors p[e0](Hθ). For example, choosing a Dirichlet
density for p[e0](Hθ) results in a λγ prediction rule. As described in Festa (1993),
the parameters of the Dirichlet density fix the values of γ and λ in this rule.
Specifically, choosing the uniform prior of equation (3.5) results in the so-called
straight rule, which has the parameters λ = 2 and γq = 1

2 . Note however that
the range of the representation theorem is much wider than the equivalence of
the λγ rules and the Dirichlet distributions over B.

As section 3.2 indicated, the representation theorem was welcomed as a way
to replace Bayesian schemes using B for exchangeable prediction rules. One
reason for the replacement was that the Bayesian schemes committed to the
assumption of underlying chance processes and the assignment of probability
to universal hypotheses. Another, more immediate reason for not using the
Bayesian schemes may be that they are unnecessarily roundabout: in the end
they generate the same predictions as the Carnapian scheme. In the foregoing
and in the following, however, I explicitly use the Bayesian schemes to design
and study predictions. In section 3.4 I argue that there are independent reasons
for doing so.

3.3.2 Crash hypotheses

Alternative hypotheses. Figure 3.2 shows the inductive predictions of a marke-
teer who is not sensitive to the possibility of a crash. Below I alter the partition
in such a way that this sensitivity is modelled. This is done by adding hypothe-
ses to the Bernoulli partition, thus implicitly altering the resulting prediction
rule. In particular, I add the hypotheses gq

γλτ to the Bernoulli partition, the
meaning of which can be phrased as follows: until trading day τ , stock price
behaves like the λγ rule says, but from trading day τ onwards, all stock price
movements are q.

Let us denote the partition consisting of the Bernoulli hypotheses hθ and
the crash hypotheses gq

γλτ with C. The crash hypotheses can be associated with
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sets Gq
γλτ in Q using a characteristic function that selects for crashes:

Igq
γλτ

(e) =

1 if e(τ) 6= q ∧ ∀i > τ : e(i) = q,

0 otherwise,
(3.9)

Gq
γλτ = {e : Igq

γλτ
(e) = 1}. (3.10)

Note that the parameters γ and λ do not occur in the definition of the sets
Gq

γλτ . The sets can be defined solely on the basis of the crash starting at time
τ .

The hypotheses Gq
γλτ can be given likelihoods that reflect the above meaning:

p[e0](Q
q
i+1|G

q′

γλτ ∩Ei) =


iq+λγq

i+λ if t < τ,

1 if i = τ − 1, q 6= q′, or i ≤ τ , q = q′,

0 if i = τ − 1, q = q′, or i ≤ τ , q 6= q′,

(3.11)

where iq denotes the number of results q in the observations ei. The last two
clauses of the likelihood definition are motivated with the definition of the sets
Gq

γλτ . However, as there is no restriction on the first τ −1 observations in these
sets, there is no restriction motivating the first clause. The likelihoods before
τ may be chosen in accordance with the predictions generated by the partition
B, so that, when the hypotheses Gq

γλτ are added to that partition, they only
distort the predictions insofar as there is a crash pattern in the data. Note that
the likelihoods of Gq

γλτ thus depend on the actual data ei. This means that the
likelihoods change with the update of every observation before τ .

Choosing a prior. The hypotheses Gq
γλτ may be given prior probabilities of the

following form:

p[e0](G
0
γλτ ) = α (1− δ) δτ , (3.12)

p[e0](G
1
γλτ ) = 0, (3.13)

where τ > 0 and 0 < δ < 1, so that (1−δ)δτ is a discount factor, which describes
how a trader slowly grows less suspicious for crashes. The factor α is the total
probability that is assigned to all the crash hypotheses. From the definition
of the discount factor, we have α =

∑∞
τ=0 p[e0](G

0
γλτ ), so that we must choose

0 < α < 1. Note that because of equation (3.13), booming markets, in which
from some time onwards prices only go up, are not considered.
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The probability 1−α can be divided over the remaining hypotheses from B
according to ∫ 1

0

p[e0](Hθ)dθ = 1− α, (3.14)

p[e0](Hθ) = 1− α, (3.15)

where in this case θ ∈ (0, 1]. The likelihoods of the crash hypotheses can be
made to accord with this prior by setting λ = 2 and γq = 1

2 . Note from the
domain of θ that the hypothesis H0 is excluded from the subpartition B. This
is because all e ∈ G0

γλτ have the relative frequency f(e) = 0, so that for each τ

we have G0
γλτ ⊂ H0. However, according to the original likelihoods of H0 the

hypotheses G0
γλτ must have zero probability within H0, because any observation

of q = 1 is given zero probability within it. The simplest solution to all this is
to exclude the hypothesis H0 from the partition altogether. Since hypothesis
H0 had a negligible measure in the original Bayesian scheme with B anyway,
banning it from the combined partition C does not affect the prediction rule
that was initially derived for B.

In sum, we have created a new partition C, including both Hθ and G0
γλτ .

As will be seen, updating over this partition generates predictions which ex-
press a sensitivity for crashes. Choosing values for α and δ determines to what
extent this sensitivity influences the predictions. Admittedly, the partition C
involves considerable idealisations, for example that a crash lasts forever and
that the prior probability for a crash slowly diminishes. These idealisations are
not compulsory: the Bayesian scheme offers space for further elaborations in
these respects. In the following, however, I want to focus on the fundamental
possibilities that the freedom in choosing partitions presents. The idealisations
of C, and the ways to avoid them, are not discussed here.

Resulting predictions. We can calculate the predictions p[et](Q
q
t+1) using the

partition C. Figure 3.3 shows a comparison of two marketeers confronted with
the crash data e∗35. The diamond curve shows the predictions based on the use
of the partition C, and the bullet curve shows the predictions of the Bernoulli
partition B. The hypotheses G0

γλτ of this particular update have α = 1
2 and

δ = 4
5 . Note that the predictions based on C deviate from the predictions based

on B. As the unbroken string of qi = 0 grows, the marketeer using C picks up
on the crash regularity, and in subsequent days gives higher probability to the
prediction that next days will show the result q = 0 as well. Further, note that
the exchangeability of the observations within the data e∗35 is indeed violated
with the use of the alternative partition C. This is because the probability
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Figure 3.3: Predictions p[et](Q
0
t+1) against time t for the crash data e∗35. The bullet curve

is based on the partition B, the diamond curve is based on the partition C.

assignments depend directly on whether the data et show an unbroken string of
0’s up until t. The partition C thus introduces a sensitivity for the occurrence
of a crash pattern in the data, in addition to the usual attention that is given
to the relative frequencies of the results.

It must be stressed that using the partition C in no way violates the Bayesian
scheme. The probabilities p[et](G

0
γλτ ) are updated by conditioning just as well.

They are turned to zero every time i > τ at which qi = 1, or immediately if
i = τ and qi = 0. Further, it is not problematic to assign nonzero priors to the
hypotheses in C, even while these hypotheses had negligible or zero probability
in the original partition B. Assigning nonzero probabilities to hypotheses on
specific patterns has been proposed before, for example by Jeffreys (1939) and
also in the aforementioned Hintikka systems (1966). Howson (1973) provides
an overview of arguments against the claim that it is inconsistent or wrong to
assign strictly positive priors to generalisations.

3.4 The use of partitions

This section discusses the use of partitions in the Bayesian scheme. After some
discussing some immediate insights, I develop the idea that partitions function
as inductive assumptions, or projectability assumptions, in the inductive argu-
ments. In the last subsection I discuss how this presents an advantage for the
Bayesian scheme.
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3.4.1 Immediate insights

Pattern recognition. Several insights may be drawn from the example that uses
partition C. Firstly, the above example shows that inductive predictions based
on hypotheses can be adapted to model pattern recognition, and in this par-
ticular case, hasty generalisation. This can be done by adding hypotheses that
pertain to the relevant kind of pattern. Following Putnam’s critical remarks on
the Carnap-Hintikka tradition in (1963a) and (1963b), this is already a useful
extension of that tradition. Moreover, and as also discussed above, the mod-
elling of hasty generalisation may convince those who consider updating on
generalisations impossible due to the negligible measure of these generalisations
in the observation field.

Secondly, and related to this, the example may be taken to qualify the fact
that Bayesian updating is not suitable for modelling ampliative reasoning, as
is argued by van Fraassen (1989). It is true that Bayesian updating cannot
capture reasoning that decides between hypotheses with the same observational
content, which therefore have the same likelihoods in the Bayesian schemes. But
the above reasoning can nevertheless be called ampliative on the level of pre-
dictions: hasty generalisation is a typically ampliative inferential move. Thus,
even though Bayesian updating is itself not ampliative, the predictions resulting
from a Bayesian update can in a sense model ampliative reasoning. Note that
the ampliativeness is implicit in the choice of the partition C, and not in the
inference rule of the inductive scheme.

The partition as a pair of glasses. In choosing a different partition, I implicitly
alter the resulting prediction rule: the straight rule, generated by the partition B
with uniform prior, is replaced with some other prediction rule prαδ(q, et). Put
differently, the probability assignment p[e0] over the field Q, initially determined
by the partition B and some prior probability assignment over it, now encodes
a different prediction rule, determined by the partition C and its prior. The
probability over the added hypotheses of C depends on a crash pattern in the
data, and the resulting predictions will therefore not be exchangeable. Thus we
have defined a different prediction rule by choosing a different partition in the
Bayesian scheme.

In the examples, the influence of the observations is really determined by
the partition. We first choose a partition and, define a prior probability as-
signment over it, and via the observations determine a posterior probability
assignment. The predictions can then be derived from this posterior probability
and the likelihoods, which are given with the choice of partition. So the pos-
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terior probability over the partition is the only term in the predictions which
depends on the observations. As Niiniluoto (1976) puts it, a partition defines a
closed question, which has a limited set of possible answers, for the observations
to decide over. So partitions do not provide an impartial or completely general
view on the observations. Rather they are a pair of glasses for looking at the
observations in a particular way.

3.4.2 Partitions as inductive assumptions

In this subsection, the function of choosing a partition is subject to further
scrutiny. I shall characterise how partitions limit the view of an observer on
observations, and how this connects to inductive assumptions.

Sufficient statistics. Consider the Bernoulli partition B. The posterior proba-
bility over this partition can be computed from the prior and the observations.
However, we do not need to know all the details of the observations for this
computation. In fact, it suffices to know specific characteristics of the obser-
vations: for all q we must know the number of times that it occurred within
the data et. These numbers were denoted by tq in the above. They are the
so-called sufficient statistics for computing the probability over B at time t, and
thus for generating the predictions based on B. The statistics tq express those
characteristics of the observations which are taken to be relevant for the pre-
dictions. Note that the exchangeability of the predictions based on B follows
from the fact that the sufficient statistics are independent of the order of the
observations.

The partition with crash hypotheses C limits the view on the observations
in a different way. As with the Bernoulli partition, we can identify a set of
sufficient statistics for it. This set includes not just the numbers tq, but also
the length of the time interval [τ, t] within which all results are 0. The numbers
tq and the number t − τ are employed together in a full determination of the
probability over C at time t, and therefore in the generation of the predictions
based on C. It is notable that, because the value of t− τ depends on the order
of the observations et, the resulting predictions are not exchangeable.

The above exposition shows how partitions limit the view on observations:
partitions determine a set of sufficient statistics, and these statistics represent
the characteristics of the observations which are taken to be relevant for further
predictions. Put differently, by choosing a partition we focus on a particular
set of patterns in the data, and by making predictions based on the partition
we deem these patterns relevant to future observations. However, from the
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above discussion it is not clear what the exact function of this limitation is, or
more specifically, what the nature of this relevance is. As Skyrms suggests in
(1996), the answer is that sufficient statistics determine the so-called projectable
characteristics of data. The function of partitions then is that they determine
the projectable characteristics of the observations. They are a tool in controlling
the projectability assumptions that are used in inductive predictions.

Partitions as projectable patterns. Now let me explicate in general terms how
the use of a partition relates to the assumption of a projectable pattern in
the observations. Recall that the hypotheses in a partition are all associated
with a likelihood function. These likelihood functions may be in accordance
with the actual observations to differing degrees: hypotheses that have high
overall likelihoods given the observations are said to fit the data better than
those with low overall average likelihoods. An update over a partition can thus
be viewed as a competitive struggle among the hypotheses in the partition, in
which hypotheses that fit the observations best acquire most probability. Note
further that the likelihood functions associated with the hypotheses describe
probabilistic patterns in the observations. An update over a partition is thus
also a competition between probabilistic patterns in the observations. Choosing
a particular partition thus limits the range of possible patterns that are allowed
to compete in the update.

Furthermore, if we go on to employ the results of such a competition for
the generation of predictions, we implicitly assume that those probabilistic pat-
terns that fitted the observations better in the past are more likely to perform
better in the future as well. This is because predictions of future observations
are mainly based on the hypotheses which, relative to the chosen partition,
were most successful in predicting the past observations: those hypotheses gain
more probability in the update. This is exactly where the assumption on the
uniformity of nature, with respect to a specific set of probabilistic patterns, is
introduced into the Bayesian scheme.

These considerations show in what way the partitions are assumptions on
the projectability of patterns in the observations: a partition determines a col-
lection of probabilistic patterns, all of them patterns which may be employed
for successful predictions, or projectable patterns for short. A prior probability
over the hypotheses expresses how much these respective patterns are at the on-
set trusted with the predictive task, but the observations eventually determine
which patterns perform this task best on the actual data. The predictions are
subsequently derived by means of a weighing factor, the probability assignment
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over the partition, which favours the patterns that perform best. However, it
must be stressed that the projectability assumption concerns not just these best
performing patterns, but the partition as a whole, because the patterns perform
better or worse only relative to a collection of patterns. The projectability
assumptions are therefore implicit in the common features of the hypotheses
involved. Limiting the collection of patterns to a collection with some general
feature amounts to the assumption that the observations themselves exhibit this
general feature, and that this general feature can therefore be projected onto
future observations.

Finally, let me illustrate the projectability assumptions as general charac-
teristics of the partitions, and link them with the sufficient statistics alluded to
above. Recall once again the examples of section 3.3. Choosing the Bernoulli
partition B means that we limit the possible probabilistic patterns to those for
which the observations occur with specific relative frequencies. The projectabil-
ity assumption is therefore exactly that this characteristic of the observations,
namely the relative frequencies, are in fact exhibited in the observations. This
is quite naturally related to the sufficient statistics for this partition, which are
the observed relative frequencies tq. Similarly, choosing to include hypotheses
on crashes means that we include this particular set of crash patterns in the
set of possible patterns. The projectability assumption is therefore exactly that
this characteristic of a crash may be exhibited in the observations too. This
additional focus of the partition is reflected in the additional statistic t− τ .

3.4.3 Advantages of the Bayesian scheme

The main conclusion of the foregoing is that choosing a partition functions as
a projectability assumption, by focusing on a set of sufficient statistics and by
specifying how these statistics are used in the predictions. In the remainder of
this section, I shall draw two further conclusions which derive from this main
one.

Access to projectability assumptions. Within the inductive schemes presented in
this thesis, any inductive argument must be based on some kind of projectabil-
ity assumption. This can be concluded from the abundant literature on the
Humean problem of induction, and the further literature on projectability, as
collected in, for instance, Stalker (1996). So an inductive argument is a method
that is sensitive to past observations. Prediction rules that completely ignore
data and predict the same irrespectively of these data are not inductive. But
in that case, any inductive argument must assume that past observations are
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somehow indicative of future observations, which comes down to a projectability
assumption. Inductive prediction rules in a Carnapian scheme therefore employ
projectability assumptions just as well as the Bayesian scheme does. For Car-
nap himself, the projectability assumptions are part and parcel of the choice of
language. But the fact that the language provides a basis for the projectability
assumptions in the Carnapian scheme must not distract from the fact that there
are such assumptions in the first place.

I can now make explicit the reasons for adhering to the Bayesian schemes
as opposed to Carnapian prediction rules. Recall that any update over the
Bernoulli partition B results in exchangeable predictions. Further, the use of a
Dirichlet density as prior probability assignment over this partition results in
predictions that are identical to those produced by the λγ rule. As indicated,
these results have been interpreted as a reason to refrain from using underlying
chance processes or hypotheses, and to use the simpler prediction rules instead.
However, the foregoing claims that there are good reasons for adhering to the
complicated Bayesian schemes after all: these schemes provide direct insight
into the projectability assumptions, as represented in the statistical hypotheses.
Moreover, even though Hintikka systems did employ universal hypotheses in the
construction of inductive prediction rules, we saw that these systems did not
make full use of the possibilities that hypotheses offer. In short, the Bayesian
scheme has an advantage over the Carnapian scheme because it provides imme-
diate access to the projectability assumption.

Control over projectability assumptions. The advantage of Bayesian schemes is
not just that they provide insight into the projectability assumptions. It may be
argued that the λγ rules, for example, provide this insight just as well, because
these prediction rules depend on the data et only via the sufficient statistics tq.
The further advantage, which perhaps discriminates more clearly between the
Bayesian and the Carnapian scheme, is that Bayesian schemes provide better
control of the projectability assumptions.

Let me illustrate the control over inductive assumptions with the crash ex-
ample. Imagine that we already model a focus on relative frequencies, using a
λγ rule, and that we want to model an additional focus on a crash pattern in
the observations. Then we must somehow incorporate the statistic t−τ into the
λγ rule we are using. But it is unclear how exactly to incorporate it, because we
do not have insight in the projectability assumptions implicit to the form of the
computation that we choose. The same problem appears for Hintikka systems,
as there is no room for hypotheses on specific patterns, other than universal hy-
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potheses. In sharp contrast with this, modelling an additional focus on a crash
pattern with Bayesian schemes is straightforward: just add the hypotheses that
pertain to the patterns of interest to the partition. Therefore, the Bayesian
scheme may be more complicated, but in return it offers a better control of the
projectability assumptions which are implicit in the predictions.

In view of the preceding chapter, it is not surprising that the Bayesian scheme
improves the access to and control over the projectability assumptions. The
Bayesian scheme employs an extended observational algebra, or an extended
observation language, and it is only natural that this extended language offers
us more expressive power.

Freedom in choosing projectable patterns. A final remark concerns the freedom
in choosing partitions. Note that the choice of a partition is entirely under
the control of the inductive reasoner. The only possible restriction lies in the
fact that we may decide to employ frequentist hypotheses only, but this is not
mandatory. Bayesian inductive logic itself provides no directions or restrictions
as to what hypotheses to choose. Just as we can choose a partition which
focuses on relative frequencies and crash patterns, we can choose a partition
that expresses the gambler’s fallacy, so that with the piling up of 0’s in the
crash the observation of 1 is predicted with growing confidence. The Bayesian
schemes are in this sense a very general tool: any inductive prediction rule,
as long as it is based on the assumption of some projectable pattern, can be
captured in predictions generated with a Bayesian scheme. This shows that
Bayesianism is not a particular position on inductive predictions, but rather an
impartial tool for modelling predictions.

3.5 Conclusion

Summary. Sections 3.1 and 3.2 introduced inductive predictions and the tradi-
tion of Carnap-Hintikka inductive logic. The examples of section 3.3 illustrated
how partitions determine the resulting predictions. In section 3.4 I argued
that a partition expresses inductive assumptions concerning the projectability
of particular characteristics of the observations. Partitions came out as a useful
tool in defining the predictions. The main conclusion of this chapter is there-
fore that inductive predictions can be determined by choosing a partition in a
Bayesian scheme, and that a partition expresses inductive assumptions on the
projectability of particular characteristics of observations.

Further conclusions were seen to follow from this main one. One specific
conclusion concerned the range of prediction rules covered by Bayesian schemes.
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The example shows that the schemes enable us to model predictions typical for
hasty generalisation. Now if we adopt the view of chapter 2, hypotheses must be
chosen from the frequentist class, and it is not clear that just any prediction rule
can be formulated in a Bayesian scheme. Note, however, that this restriction is
not inherent to Bayesian logic, but rather to the frequentist add-on. Another
specific conclusion was that the Bayesian scheme offers better insight in, and
control over, inductive predictions than the prediction rules from the Carnap-
Hintikka tradition. This tradition has focused primarily on the properties of
prediction rules. It has not fully exploited the use of general hypotheses. The
present chapter argues that in the construction of prediction rules, there are
good reasons for employing these hypotheses after all.

Inductive logic. The general tendency in all this is in line with the main point
of chapter 1. It is to view inductive logic as a proper logic: any prediction must
be based on inductive assumptions, or premisses, and given these assumptions,
the predictions must follow from the observations by probability axioms and
Bayesian updating, which function as inference rules. So the work of induction
is not done by an inference rule that implicitly contains uniformity assumptions,
but by partitioning the space of possible worlds, fixing the likelihoods on the
basis of that, and then choosing prior probabilities. As further discussed in
chapter 7, this view on inductive predictions has consequences for the way we
deal with the central problem of this thesis, the problem of induction. But the
logical picture itself does not suggest any solution to the problem: the choice of
a partition is not informed by the logical scheme.

Let me elaborate this latter point a bit. One of the aims specific for the Car-
napian tradition is to provide a predictive scheme based solely on symmetries in
the prediction rules, such as exchangeability. These symmetries are given inde-
pendent justification in the notion of logical probability: the gap between past
and future observations is bridged with logical means. The schemes considered
here do not aim for such a justification. For the purpose of this thesis, it is
enough to provide a scheme in which inductive assumptions can be expressed
clearly, and in which the arguments from assumptions and observations to prob-
abilistic predictions are valid. Certainly, the quest for plausible assumptions is
an important and interesting task, but I take this task to fall outside of the logi-
cal analysis of inductive inference, and more naturally situated in epistemology.
For some brief considerations on this, I refer to the conclusion of this thesis.

Analogy and independence. While the motivation of certain inductive assump-
tions is not included in the task of inductive logic, it may be considered part of its
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task to provide the translation of specific pre-formal considerations into formal
premises. As an example, if there is reason to make inductive assumptions based
on simplicity, there is still the task of making this simplicity formally precise.
This may be done with a Bayesian or Akaike information criterion, as discussed
in Akaike (1978), Sober (1998), Kieseppä (1997) and Bandyopadhyay and Boik
(1999), or by means of minimal description length, as in Rissanen (1982). It is
to the task of making certain considerations formally precise that I turn in the
second part. It concerns translations of specific extra-logical considerations or
insights into a form suitable for Bayesian inductive logic.

In particular, the second part shows that partitions may be employed to
design prediction rules that incorporate analogy effects and independence as-
sumptions. This also illustrates that the possibilities of the Bayesian scheme
have not been employed fully in defining such predictions. Analogical predic-
tion rules from the Carnap-Hintikka tradition may be combined using a Bayesian
scheme with a partition that differs from B, and interesting variations on these
rules can be constructed by suitable transformations between partitions of hy-
potheses. Chapters 4 and 5 are concerned with these analogical predictions.
Chapter 6 discusses inductive inference for Bayesian networks by means of the
Bayesian scheme. As it turns out, the formal framework for these networks is
exactly the same as the framework for analogy reasoning.

Philosophy of science. The third part concerns the relation between inductive
assumptions in the Bayesian scheme and some main themes in the philosophy of
science. It discusses the use of suppositions of underlying structure in chapters
7 and 9, and the control over changes in the assumptions within the Bayesian
scheme in chapter 8. This latter research follows up on the debate over con-
ceptual enrichment in Niiniluoto and Tuomela (1973), and also Gillies (2001),
who argues that changes in the conceptual framework are a problem for the
Bayesian theory. Recall that choosing a partition fixes the basic concepts that
are used in the update. For example, with the hypotheses on crashes we include
the phenomenon of a crash in the conceptual framework of the marketeer. We
can therefore model a change in the focus on a projectable pattern by changing
the partition.
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4

Analogical Predictions for Explicit Similarity

The above chapters have been concerned with the nature of the Bayesian scheme.
The next three chapters are concerned with applications of it. The advantages of
the Bayesian scheme, which are argued for in chapter 3, can now be illustrated.
Apart from illustrating these advantages, the chapters also elaborate on them. It
is shown that Bayesian schemes not only offer a better access to projectability
assumptions, but that they also provide better control over other inductive
assumptions inherent to the prior probability assignment, namely assumptions
of analogy and independence. The chapters thus provide a new perspective on
a well-known theme in Carnapian logic.

This chapter in particular concerns exchangeable analogical predictions bas-
ed on similarity relations between predicates, and deals with a restricted class
of such relations. To connect to the dominant Carnapian tradition, it first
describes a system of Carnapian λγ rules on underlying predicate families to
model the analogical predictions for this restricted class. But instead of the
usual axiomatic definition of these rules, the system is here characterised with a
Bayesian model that employs certain statistical hypotheses. Finally the paper
argues that the Bayesian model can be generalised to cover cases outside the
restricted class of similarity relations.

The present chapter can be read independently of the preceding ones. To
see how this chapter connects to the main line of this thesis, the reader may
consult the introduction of this thesis and chapter 1, in particular section 1.1.

4.1 Analogy within Carnapian rules

Analogy at the bowling alley. Imagine that the marketing director of a bowling
alley is interested in the demographic composition of the crowds visiting her
alley. Every evening she records the gender of some of the visitors, and whether
they are married or not. Now let us say that on one evening half of the recorded
visitors are male and married, and the other half are female and unmarried.
Then if a newly arrived visitor is a man, the director may consider it more
likely that he will be married than if this visitor were a woman. At least some
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of the similarity between individuals at the bowling alley is thus explicit in
the observation language, namely in their gender, and in making predictions
on their marital status this similarity may be employed. In such a case we
speak of the inductive relevance of explicit similarity relations. Such relations
are possible because individuals are categorised with predicates from multiple
predicate families.

Putting G for gender and M for marital status, the analogical prediction in
the example of explicit similarity may be represented in the following way:

G0
1 ∩ M1

1

G1
2 ∩ M0

2

...
G0

n−1 ∩ M1
n−1

G1
n ∩ M0

n

G0
n+1

probably M1
n+1.

Here Gg
i with g = 0 or g = 1 is the record that individual i is male or female

respectively, and Mm
i with m = 0 or m = 1 that this individual is not married

or married respectively. The similarity between the individuals with odd index
and the further individual n+1 is that all of them satisfy the predicate G0 of the
family G, meaning that they are all male. This similarity is used to derive, from
the fact that the odd indexed individuals satisfy the predicate M1 of the family
M , meaning that they are all married, that probably also the individual n + 1
will be married. So the similarity of gender is made explicit in the observation
language, and employed for predicting the marital status.

Carnapian continuum. Instead of the two predicate families above, we may
imagine that the marketing director categorises the individuals at the bowling
alley according to the division of bachelor, husband, maiden and wife, denoted
with the family of predicates Qq for q = 0, 1, 2, 3 respectively. This family is
linked to the families G and M according to

Q2g+m = Gg ∩Mm. (4.1)

As illustrated in figure 4.1, Q0 = G0 ∩M0 represents bachelors, Q1 = G0 ∩M1

represents husbands, Q2 = G1 ∩M0 maidens, and Q3 = G1 ∩M1 wives. Using
the single predicate family, the director may derive predictions on gender and
marital status from the λγ rules of Stegmüller (1973):

p(Qq
n+1|En) =

nq + λγq

n + λ
. (4.2)
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0  ↑
G

M →

1

0 1

q=0

maiden wife

bachelor husband

q=2 q=3

q=1

Figure 4.1: The relation between the predicate family Q and the underlying families G and

M .

Here the expression En represents the records of Q-predicates for the first n

subjects, and nq is the number of records of category q within En. The parame-
ters γq determine the initial expectations over the family Q, and the parameter
λ determines the speed with which we change these initial expectations into
the recorded relative frequencies of the predicates Qq. With an assumption of
initial symmetry we can fix γq = 1/4 for all q.

With these λγ rules concerning Q-predicates we can also derive predictions
on the underlying predicate families G and M , using the inverse identifications

Gg = Q2g ∪Q2g+1, (4.3)

Mm = Qm ∪Q2+m. (4.4)

With this we can derive the following expressions for predictions on marital
status:

p(M1
n+1|En) =

(n1 + n3) + λ(γ1 + γ3)
n + λ

, (4.5)

p(M1
n+1|En ∩G0

n+1) =
n1 + λγ1

(n0 + n1) + λ(γ0 + γ1)
. (4.6)

The prediction rules thus derived have the same format as the above λγ rules.
Note that the indices of n refer to the Q-predicates.

On the evening of the example, there are, up to a certain moment, an even
number n of visitors at the bowling alley, of which half are husbands and half
are maidens:

En =
n/2⋂
i=1

(Q1
2i−1 ∩Q2

2i). (4.7)
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We therefore have n1 = n2 = n/2 and n0 = n3 = 0. Then visitor n + 1 parks a
car, and upon entering it turns out to be a man. As already suggested in Carnap
and Stegmüller (1959: 242-250), the symmetric λγ rule on family Q predicts a
higher probability for this individual being married after incorporating that the
visitor is a man than if the gender is unknown:

p(M1
n+1|En ∩G0

n+1) =
n/2 + λ/4
n/2 + λ/2

>
n/2 + λ/2

n + λ
= p(M1

n+1|En). (4.8)

The λγ rule thus shows analogy effects of explicit similarity, in the sense that
the similarity of visitor n+1 to the present visitors with respect to the family G,
the gender, affects the predictions with respect to family M , the marital status.

4.2 Analogical predictions

Similarity relations. The above analogy effects are captured in the λγ rules, but
many more such effects cannot be captured. It may be the case that husbands,
Q1, and bachelors, Q0, regularly visit the bowling alley together, and that on a
particular evening the director has only recorded husbands. Then, apart from
the fact that this may make further instances of husbands more probable, we
may find an instance of a bachelor more probable than an instance of a maiden
or a wife, Q2 or Q3, because husbands are more likely to hang out in the bowling
alley with their bachelor friends. That is, we consider the presence of husbands
more relevant to bachelors than to maidens or wives.

It is easily seen that the λγ prediction rules cannot accommodate such dif-
ferences in relevance among the Q-predicates. For any instance of Qq, the ratios
between the predictions of any two other predicates Qv and Qw will not change,
because this ratio is given by

p(Qw
n+1|En)

p(Qv
n+1|En)

=
nw + γwλ

nv + γvλ
, (4.9)

which is independent of nq. Therefore analogy effects that hinge on differences
in inductive relevance between Q-predicates fall outside the scope of λγ rules.

The predictive relevance between Qv and Qw may be expressed in terms
of an inductive relevance function ρ(v, w). A general expression of analogy by
similarity, using the relevance function, is:

ρ(q, w) > ρ(q, v) ⇒
p(Qw

n+1|En−1 ∩Qq
n)

p(Qw
n |En−1)

>
p(Qv

n+1|En−1 ∩Qq
n)

p(Qv
n|En−1)

. (4.10)

It must be stressed that this is certainly not the only expression of analogy by
similarity, and in particular that the focus differs from that of Carnap (1980:
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46-47). The characterisation offered here is qualitatively equivalent to Kuipers’
characterisation in (1984), which is associated with K>G inductive methods
in the categorisation of Festa (1997: 232-235). The focus is therefore not on
Carnap’s and Maher’s kind of similarity, which concerns differences between
ρ(v, q) and ρ(w, q). On the other hand, I assume in this paper that the function
is symmetric:

ρ(v, w) = ρ(w, v). (4.11)

Because of this the above expression of relevance is very much akin to that of
Carnap and Maher. Note finally that some authors employ a distance function
instead of relevances. Strictly speaking this is inadequate, since the relevances
need not comply to triangular inequalities.

Analogy models in the literature. Many models have been proposed in order
to capture analogical predictions based on similarity. The main focus of these
models is on an alternative prediction rule concerning Q-predicates that some-
how incorporates the relevances. Some of these prediction rules are exchange-
able, that is, invariant under permutations of the given Q-predicates, and some
are non-exchangeable. Examples of such models are given in Kuipers (1984,
1988), Skyrms (1993), Di Maio (1995) and Festa (1997). However, to my mind
analogical predictions are more easily associated with similarity in terms of un-
derlying predicates, here called explicit similarity, than with similarity between
predicates directly. Moreover, as it turns out, the use of underlying predicate
families is very useful in defining analogical predictions. For these reasons I
shall, in what follows, employ the underlying predicate families G and M in the
construction of the analogical prediction rules for Q.

The models of Carnap, Maher and Niiniluoto do employ underlying pred-
icates. Specifically, Niiniluoto (1981, 1988) uses the structure of underlying
predicates to explicate the strengths of the similarity between the Q-predicates.
As an example, husbands and bachelors are more similar than husbands and
maidens, because the first two have their gender in common, where the second
two do not share any underlying predicate. To the extent that this explication
of similarity between Q-predicates is adopted in other models, we can say that
these other models employ the underlying predicates as well. However, in all
these models the relation between the similarities and the prediction rules is
rather ad hoc. The predictions of Q are influenced by the similarities, but the
explication of the similarity in terms of underlying predicates is itself not used
in the construction of the prediction rules. The rules are defined by assigning
probabilities to the Q-predicates alone. Probabilities over M and G may be
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derived from that, but no use is made of the possibility to assign probabilities
over the families M and G.

The model of Maher (2000), which is basically an improved version of the
model of Carnap and Stegmüller (1959: 251-252), makes more elaborate use of
underlying predicates. Maher supposes two predicate families, such as G and
M , to underly the Q-predicate over which the predictions are defined. He then
formulates a hypothesis on the statistical independence of predicates G and M ,
and translates this hypothesis into one about Q-predicates. Conditional on this
independence hypothesis, predictions of Q-predicates can be written in terms
of a product of λγ rules for the predicates G and M separately. Conditional on
the dependence hypothesis, on the other hand, the predictions for Q-predicates
are given by a single λγ rule. The eventual prediction rule for the Q-predicates
is a mixture of these two predictions, weighed with the probabilities of the
dependence and independence hypotheses. Analogical considerations are then
captured because these weights are themselves influenced by the observations
of the Q-predicates, which implicitly convey information on the statistical de-
pendence of the predicates G and M .

The model of this chapter. The model of the present chapter takes the use of
underlying predicates a bit further. Maher provides a model in which statistical
relations between underlying families like G and M are used to derive predic-
tions over Q-predicates that capture analogy considerations. But when it comes
to statistical relations between the underlying families, Maher’s model considers
a partition into complete independence and undifferentiated dependence, and
employs a single λγ rule for Q-predicates in the latter case. By contrast, the
present model employs predictions on underlying predicates in the case of sta-
tistical dependence as well. Specifically, the model employs predictions for an
individual concerning the family M , conditional on the fact that this individual
satisfies a particular predicate from the family G. Moreover, and perhaps more
importantly, the present model elucidates the exact relation between inductive
relevances ρ and the statistical dependencies between underlying predicates.
Specifically, the relevance relations ρ, which are assumed at the start of the
update, are related to the parameters of the model. On this point the model
differs from Maher’s (2000) model and the other models discussed in Maher
(2001), which are not related to assumed relevance relations ρ.

The model of this chapter is restricted in a certain way. It provides analogical
predictions that cannot be captured by the single λγ rule, but it considers only
a limited set of relevance relations. As an example, consider the husbands



4.2. ANALOGICAL PREDICTIONS 101

and bachelors who like to go bowling together, and prefer not to have female
company. In terms of relevance functions,

ρ(0, 1) = ρ(1, 0) > ρ(0, 2) = ρ(1, 2) = ρ(0, 3) = ρ(1, 3). (4.12)

That is, the relevances of husbands and bachelors to each other are equal, and
larger than relevances between individuals of different gender. Let us further
say if wives visit the bowling alley, they are likely to bring their husbands, who
then also invite their bachelor friends, where I am for the sake of simplicity
supposing that there are no gay marriages. The wives typically do not invite
their maiden friends. Similarly, if maidens visit the bowling alley, they are likely
to be together with the bachelors, who in turn bring along some husbands, but
the maidens do not usually invite any wives. That is,

ρ(2, 3) = ρ(3, 2) < ρ(2, 0) = ρ(2, 1) = ρ(3, 0) = ρ(3, 1), (4.13)

or in words, the relevances of wives and maidens to each other are equal, and
smaller than relevances between individuals of different gender. Note that due to
the symmetry of the relevance function, the four equal relevances in expressions
(4.12) and (4.13) are the same.

As said, this example is one in a set of similar cases. The common element
is that the relevances between categories with different gender are all equal, and
that the relevances between categories within the genders may vary. Defining

∀m,m′ ∈ {0, 1} : ρḠ = ρ(m, 2 + m′), (4.14)

∀g ∈ {0, 1} : ρGg = ρ(2g, 2g + 1), (4.15)

the similarity relations are in effect characterised by three relevances, ρḠ, ρG0

and ρG1, representing the relevances between individuals of different gender, the
relevance between bachelors and husbands, and the relevance between maidens
and wives respectively. These relevances may have any ordering in size. The sub-
class of cases thus defined, for which the relevance relations between categories
of different gender do not differ, are exactly the cases of analogy by similarity
that can be made explicit in terms of gender. In the following I therefore refer
to them as cases of explicit similarity.

Summing up, the aim of this chapter is to provide a prediction rule for
analogical predictions for explicit similarity, to connect the relevance relations
ρḠ, ρG0 and ρG1 to parameters in this prediction rule, and finally to give a
proper statistical underpinning for it. The next chapter shows how the model
can be used to define exchangeable analogical predictions based on symmetric
relevance relations in general.
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4.3 A model for explicit similarity

This section presents a system of λγ rules that models the intended analogical
predictions. It is shown that the system generalises the analogy effects that are
captured in single λγ rules. The function of the parameters in the system is
explained, and a numerical example is provided.

A system of rules. The system of prediction rules offers separate entries for
instances of the family M for individuals satisfying either of the two predicates
of the family G. This is expressed in the following:

p(Gg
n+1|En) =

nGg + λGγGg

nG + λG
, (4.16)

p(Mm
n+1|En ∩Gg

n+1) =
ng

Mm + λg
Mγg

Mm

ng
M + λg

M

. (4.17)

The indexed numbers n can all be derived from En using the translations (4.3)
and (4.4). In particular, we have the total number of records on gender nG = n,
the number of records of males and females, nGg = n2g + n2g+1 for g = 0, 1,
which is the same as the number of records on marital status given a certain
gender, ng

M = nGg, and finally the number of records for a specific gender and
marital status, ng

Mm = n2g+m for g,m ∈ {0, 1}.
The above system consists of three prediction rules, one that concerns indi-

vidual n + 1 in the family G, and two that concern the family M , conditional
on the individual satisfying G0 and G1 respectively. With these predictions we
can construct a prediction rule for Q-predicates:

p(Qq
n+1|En) = p(Gg

n+1|En) × p(Mm
n+1|En ∩Gg

n+1)

=
nGg + λGγGg

nG + λG
×

ng
Mm + λg

Mγg
Mm

ng
M + λg

M

. (4.18)

As will be seen below, these predictions for Q-predicates can capture explicit
similarity. Note first that the above system is a generalisation of the single
λγ rule for Q-predicates. By writing the numbers n in terms of the nq, by
identifying

λG = λ, (4.19)

γ2g+m = γGgγ
g
Mm, (4.20)

and finally by choosing
λg

M = λGγGg, (4.21)
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the system of rules generates the very same predictions that are generated by
the single λγ rule of equation (4.2). Note also that on the level of Q-predicates
the predictions are exchangeable, whatever the values of the parameters.

Encoding explicit similarity. Analogical predictions for explicit analogy can be
obtained by choosing the values of the parameters λg

M different from those in
equation (4.21). To explain this, let me first reformulate explicit similarity in
terms of probabilities over the underlying predicate families G and M . First,
the higher relevance between husbands and bachelors means that the effect of
updating with the male gender of an individual must be larger than the effect of
updating with the marital status conditional on the individual being male. The
probability for further instances of males then strongly benefits from the instance
of a male, while the marital status of the husband does not make bachelors much
less likely. In similar fashion, the lower relevance between wives and maidens
means that the effect of updating with the female gender of an individual is
smaller than the effect of updating with the marital status conditional on the
individual being female. On finding a maiden, for instance, the profit that the
wives derive from the fact that the maiden is female is then overcompensated
by the loss that stems from the fact that contrary to the wives, the maidens are
not married. A similar change in the probability assignment is effected if we
find a wife.

In the λγ rules of Carnap, the reluctance to adapt probabilities to new ob-
servations is reflected in the size of λ. In the above formulation, it is exactly
differences in the reluctance to adapt probability assignments that leads to anal-
ogy effects. The above paragraph therefore suggests that we can connect the
differences in relevance with specific differences between the values of the pa-
rameters λG and λg

M . As it turns out, we can identify a correspondence between
parameter inequalities and inequalities of relevance functions. Normalising the
size of the relevances for the number of Q-predicates N , so that in this case
N = 4, these correspondences can be translated into rather simple relations:

λG = ρḠN, (4.22)

λg
M = ρGgγGgN. (4.23)

In updating with observations on the family G, we may be more or less prepared
to adapt our expectations concerning gender, which is reflected in a low or high
value for λG respectively. Similarly, conditional on the observation of Gg, we
may be more or less prepared to adapt our expectations on an observation
concerning M , which is reflected in the value of λg

M . With these variations in
the willingness to adapt probabilities, we can model explicit analogy.
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Numerical example. Let me make explicit the relation between the values of the
λs and the relevances between predicates of equal gender for the specific case of
husbands and bachelors. Recall that we have chosen ρḠ < ρG0. In the model
this relevance relation is supposed to be assumed at the start of the update.
Now to encode this relevance relation in the system of prediction rules, we must
according to the above equations choose γG0λG < λ0

M . With these parameter
values, the observation of a male strongly enhances the probability for further
males, while the prediction for marital status conditional on males grows much
slower with the observation of the males having a specific marital status. In the
resulting predictions with respect to the predicates Q, this has the combined
effect that observations of husbands and bachelors are mutually beneficial. This
is because the observation of the common element of these predicates, their gen-
der, affects the expectations much more than the observation that distinguishes
the one from the other, their marital status.

Let us say that one night at the bowling alley the first three visitors are
husbands, after which three maidens enter:

En = Q1
1 ∩Q1

2 ∩Q1
3 ∩Q2

4 ∩Q2
5 ∩Q2

6. (4.24)

For the example of equations (4.12) and (4.13) we have ρG0 > ρḠ > ρG1. We
may choose ρG0 = 4, ρḠ = 1 and ρG1 = 1/2, and accordingly fix the following
values for the parameters in the system of prediction rules:

λG = 4,

λ0
M = 8,

λ1
M = 1,

γG0 =
1
2
,

γ0
M0 = γ1

M0 =
1
2
.

The predictions that can be generated with the above parameter values then
show the analogical effects that can be expected on the basis of the correspond-
ing values of the relevance function:

Number n 0 1 2 3 4 5 6
Observations q - 1 1 1 2 2 2
p(Q0

n+1|En) 0.25 0.27 0.27 0.26 0.23 0.20 0.18
p(Q1

n+1|En) 0.25 0.33 0.40 0.45 0.40 0.35 0.32
p(Q2

n+1|En) 0.25 0.20 0.17 0.14 0.28 0.37 0.44
p(Q3

n+1|En) 0.25 0.20 0.17 0.14 0.09 0.07 0.06
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As can be seen from these predictions, the husbands are positively relevant to
the bachelors, while the maidens are negatively relevant to the wives. As is to
be expected, this effect wears off as the number of records increases, but it only
reaches zero at infinity.

Let me stress once again an important aspect of the model of analogical
predictions defined in this section, namely that inductive relevances serve as
explicit input to the prediction rules. In this sense the model is similar to
the models of Niiniluoto (1981) and Kuipers (1984), while it differs from the
models of Festa (1996) and Maher (2000). In these latter models, there is no
direct access, in terms of input parameters, to the inductive relevances that
may be assumed. However, whether this aspect of the accessibility of inductive
relevances can be considered an advantage depends on the perspective we take
on inductive logic.

4.4 Problematic aspects

This section discusses the fact that the system shows two distinct asymmetries
in dealing with the families G and M , and motivates a difference in methodology
that distinguishes this treatment from the Carnapian tradition.

Exchangeable analogical predictions. First I discuss whether the above system of
rules preselects an order in the underlying predicate families. Note that in the
above system of rules, we can only directly adapt the predictions for the marital
status of individuals if we already know their gender. For example, if we know
that only unmarried people drive sport scars, and we see a visitor arriving at
the bowling alley in such a car before having determined her or his gender, it
is not immediately clear how we must adapt the prediction rules. Accordingly,
we cannot directly use the system to predict the gender of the visitors on the
basis of their being unmarried.

All this is not to say that the system of prediction rules breaks down if the
order of the observations is reversed. The system does assign a probability to
the gender of a visitor conditional on this visitor having a certain marital status,
and it also assigns a probability to the marital status of a visitor unconditionally.
Both can be derived from the prediction rules (4.16) and (4.17). It is just that
the calculations become rather intricate if we update on marital status first,
because adapting the system of rules to records of marital status independently
of gender is a messy operation. Furthermore, as it turns out the numerical
values of the predictions do not change under permutations in the order of the
underlying predicates. That is to say, the system is still exchangeable with
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respect to the underlying predicates. Unfortunately, an argument for that can
only be given in section 4.6. For now the main thing is that the system of rules
does not necessitate a specific order in the observations to obtain numerical
values for the predictions.

Asymmetry in the expressible relevance relations. Leaving the matter of order
and order dependence aside for the moment, it may be noted that there is yet
another way in which the above systems treat the underlying predicates differ-
ently. When it comes to expressing relevance relations, there is an irreducible
asymmetry in the predicates G and M : the systems are perfectly suitable for
determining the relevance relation of some Q-predicate to the other Q-predicate
with the same gender, ρGg, relative to the relevance relation of this Q-predicate
to the two Q-predicates of the opposite gender, ρḠ. But, swapping the predicate
classes of G and M themselves, the system is not at all suitable to determine
the relevance relations ρMm relative to the relations ρM̄ . In short, the system
models explicit similarity of gender, and not of marital status. In setting up the
system, we must choose which of these two complexes of relevance relations will
be allowed implementation. Therefore, while the system of rules is exchangeable
in the sense of invariant under permutations of the order of the observations,
it is certainly not suitable for expressing analogy effects after swapping the
predicates.

Now in some cases, a natural priority is suggested by the underlying predi-
cate families themselves. One of the two is sometimes more directly observable
than the other, or epistemically prior in some other way. For the purpose of
adapting the system, and for modelling explicit similarity, such considerations
may guide our choice. But there remains an inherent asymmetry in the ex-
pressible relevance relations, and in this sense the present model of analogical
predictions is weaker than, for example, the model of Maher (2000). It is hoped
that this disadvantage is compensated by the new perspective that the model
offers, and the new possibilities that may result from that. Chapter 5 shows
how the asymmetry between predicates can eventually be overcome.

A probabilistic underpinning. Let me turn to the second problematic aspect
of the above system, which is that so far, it lacks an axiomatic underpinning.
In Carnapian inductive logic the aim is to derive, from a chosen language or
algebra and the notion of logical probability, a class of probability assignments
over the algebra that describes all rationally permissible predictions. But the
above system of rules has been introduced without any such derivation, and in
this sense seems entirely ad hoc. It is not even clear whether the probability
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assignment over the algebra that is entailed by the above system is internally
consistent. The remainder of this chapter is aimed at solving this problem. To
provide a further underpinning of the system of prediction rules, and to prove its
internal consistency, the next two sections specify a class of probability models
that underlie the proposed systems of rules. These probability models are cast in
the Bayesian schemes developed in chapter 1. In the remainder of this section, I
discuss this Bayesian perspective, and its relation to more traditional Carnapian
methods.

The probability models make use of hypotheses to define the prior prob-
ability assignment over the algebra, and they employ Bayesian updating to
incorporate observations into this assignment. The system of prediction rules is
thus not based on the algebra or language we have chosen, or on further prin-
ciples or predictive properties we may assume. Instead, we define the inductive
prediction rule by partitioning the algebra into a specific set of statistical hy-
potheses, and by stipulating a class of prior probability assignments over them.
At the start we can choose a specific configuration of relevance relations, which
may be encoded in a prior probability assignment. This signals an important
methodological difference between the present chapter and most papers from the
Carnapian tradition. The present chapter maintains that hypotheses and priors
can be chosen freely, and that there are no restrictions implicit in the statistical
framework. Relatedly, in this chapter there is no attempt to provide a rationali-
sation for the choice of hypotheses or the prior probability. The hypotheses and
prior are taken to exhibit the inductive assumptions underlying the analogical
predictions, much like premises in a deductive inference. Attempting to justify
hypotheses and prior falls outside the reconstruction of analogical predictions
as a statistically sound, or logically valid method.

Motivating the Bayesian perspective. Adopting this perspective on analogical
predictions may look like a cheap escape from a challenging problem. Surely it
is much harder to give a set of axioms that have an intuitive appeal or some
independent justification, from which the exact class of all rationally permissible
analogical predictions can be derived. While searching for these axioms and
rationalizations is a worthwhile and venerable task, I side with the criticisms
towards such axiomatic methods for analogical predictions, as can be found in
Spohn (1981) and Niiniluoto (1988): it may be too ambitious to aim for the
definitive class of all rational probability assignments that capture analogical
considerations. It is more in line with an emphasis on local inductive practice,
as recently discussed in Norton (2003), to propose a collection of models only,



108 CHAPTER 4. ANALOGICAL PREDICTIONS FOR EXPLICIT SIMILARITY

and to decide about the exact nature of analogical predictions on a case by
case basis. This perspective resembles that of Bovens and Hartmann (2003),
who advocate a kind of philosophical engineering as opposed to a quest for first
principles.

There are some advantages to providing probability models that underlie the
analogical predictions. First of all, the models connect research in analogical
prediction rules with Bayesian statistical inference. I think it is important to
bring these research traditions closer together. Second, as will be seen below,
extending the models to more predicate families, or to more predicates within
given families, is a straightforward operation in the probability model. It thus
turns out that these models are very easy to generalise. Third, the models clar-
ify that the system of prediction rules is really invariant under permutations of
the order of the underlying observations. In other words, the statistical under-
pinning settles the issue of the exchangeability of the underlying observations.

Finally, and perhaps most importantly, the statistical models suggest a more
general model of analogical predictions, which accommodates analogical predic-
tions based on more general relevance relations than the ones considered above.
We may for example consider bachelors more relevant to maidens than to wives,
and it turns out that statistical models offer a rather natural place for relevance
relations of this kind. Eventually the use of the statistical model leads to a
model of analogical predictions based on a completely general relevance func-
tion. This theoretical development, however, will only be dealt with in the next
chapter.

4.5 Statistical underpinning for λγ rules

This section discusses an observation algebra for Q-predicates, and the statistical
underpinning of the λγ rule for these predicates. It presents the Bayesian scheme
of the preceding chapters in a compressed form, leaving out some of its subtleties.
The treatment prepares for the statistical underpinning of the system of λγ rules
in the next section, which employs the basic partition of this section in threefold.

Observational algebra. Let me first introduce a representation of records of Q-
predicates in terms of a so-called observational algebra. Let K be the set of
possible values for q, and let Kω be the space of all infinite sequences e of such
values:

e = q1q2q3 . . . (4.25)
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The observation algebra, denoted Q, consists of all possible subsets of the space
Kω. If we denote the i-th element in the sequences e and en with e(i) and en(i)
respectively, we can define an observation Qq

i as an element of the algebra Q as
follows,

Qq
i = {e ∈ Kω : e(i) = q}, (4.26)

and a finite sequence of observations Een
n as follows,

Een
n =

n⋂
i=1

Q
en(i)
i . (4.27)

Records of visitors at the bowling alley refer to such subsets. Note that there
is a distinction between the observations, which are elements of the algebra Q,
and the values of the observations, which are natural numbers.

Statistical hypotheses can also be seen as elements of the algebra. If we say
of a statistical hypothesis h that its truth is determined by a function Wh(e)
of an infinitely long sequence of observations e, writing Wh(e) = 1 if h is true
for the sequence e and Wh(e) = 0 otherwise, then we can define hypotheses as
subsets of Kω:

H = {e ∈ Kω : Wh(e) = 1}. (4.28)

A partition is a collection of hypotheses, D = {Hθ}θ∈D, defined by the following
condition for the indicator functions Whθ

:

∀e ∈ Kω ∃!θ : Whθ
(e) = 1. (4.29)

This means that the hypotheses Hθ are mutually exclusive and jointly exhaustive
sets in Kω, parameterized by a vector θ in an as yet unspecified space D.

Bernoulli hypotheses and exchangeable predictions. Probability assignments are
defined for all the elements of the observational algebra Q. The probability
assignment can be adapted to a sequence of observations En by conditioning
the original probability assignment p on these observations:

p(·) → p(·|En). (4.30)

Both the probabilities assigned to observations, and the probabilities assigned
to hypotheses can be adapted to new observations in this way.

The schemes of this chapter employ observational hypotheses for generating
the predictions p(Qq

n+1|En). To calculate the predictions, we may employ a
partition of hypotheses and the law of total probability:

p(Qq
n+1|En) =

∫
D

p(Hθ|En) p(Qq
n+1|Hθ ∩ En) dθ. (4.31)
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The probability function over the hypotheses is a so-called posterior probability,
p(Hθ|En)dθ. This probability is obtained by conditioning a prior probability
p(Hθ)dθ on the observations En. The terms p(Qq

n+1|Hθ ∩ En) are called the
posterior likelihoods of the hypotheses Hθ given the observation Qq

n+1. The
prediction is obtained by weighing these posterior likelihoods with the posterior
density over the hypotheses.

To characterise the partition that renders exchangeable predictions, define
the relative frequency of the observation results q ∈ K in a sequence e:

fq(e) = lim
n→ω

1
n

n∑
i=1

Wq(e(i)), (4.32)

in which Wq(e(i)) = 1 if e(i) = q, and Wq(e(i)) = 0 otherwise. Taking θ to be
a real-valued vector, we can define Whθ

as follows:

Whθ
(e) =

1 if ∀q ∈ K : fq(e) = θq,

0 otherwise.
(4.33)

The hypotheses Hθ form a so-called simplex, associated with a hypersurface
C = {θ ∈ [0, 1]|K||

∑
q θq = 1} in a |K|-dimensional space. For |K| = 4, this

hypersurface is a tetrahedron. We can further define Wh¬θ
(e) = 1 if fq(e) is

undefined for any of the q ∈ K, and Wh¬θ
(e) = 0 otherwise. The collection

of hypotheses B = {H¬θ, {Hθ}θ∈B} is a partition of hypotheses concerning the
relative frequencies of q ∈ K.

We can now provide the likelihoods associated with the partition that renders
exchangeable predictions. First we assume that p(H¬θ) = 0, which states that
the observations have some convergent relative frequency. The likelihoods of
H¬θ may then be left unspecified. The likelihoods of Hθ may be defined by
taking the long run relative frequencies θq as chances on predicates Qq at every
single observation:

∀n ≥ 0 : p(Qq
n+1|Hθ ∩ En) = θq. (4.34)

The hypotheses Hθ may be called Bernoulli hypotheses, as they describe so-
called Bernoulli processes. The likelihoods of Bernoulli hypotheses do not de-
pend on the observations En. The prior probability over the hypotheses Hθ can
be chosen freely. According to De Finetti’s representation theorem, there is a
one-to-one mapping between exchangeable prediction rules and prior probability
densities over partition B with these likelihoods.

Because the single λγ prediction rules are exchangeable, they can also be
characterised by a specific class of densities over B. This turns out to be the
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class of so-called Dirichlet densities:

p(Hθ) ∼
∏
q

θ(λγq−1)
q . (4.35)

On assuming this prior, the resulting predictions are the λγ prediction rules
with the corresponding parameter values. See Festa (1993: 57-71) for further
details. So the λγ rules can be generated if we assume a partition of hypotheses
B and its associated likelihoods p(Qq

n+1|Hθ ∩En) = θq, and a prior probability
density p(Hθ) from the Dirichlet class.

Finding the analogy prior. We can now reformulate the problem of capturing
exchangeable predictions based on analogy by similarity of gender. We are effec-
tively looking for a prior density over partition B that is not from the Dirichlet
class, and that somehow incorporates analogical effects. Intuitively, this is a
prior over the tetrahedron B that has an internal twist, as illustrated in figure
4.2. Within the triangular segments with hypotheses that have relatively high
likelihoods for Q1, we must allocate more prior probability to those hypotheses
that also have relatively high likelihoods for Q0, and therefore less probability
to hypotheses that have high likelihoods for Q2 and Q3. Similarly, within the
triangular segments with hypotheses that have relatively low likelihoods for Q1,
we must allocate less prior probability to those hypotheses that have relatively
high likelihoods for Q0, and therefore more probability to hypotheses that have
high likelihoods for Q2 and Q3. With such a twisted prior density, we effectively
favour the probability of Q0 over those of Q2 and Q3 whenever we update with
Q1.

On the level of Q-predicates, the above system of λγ rules, as defined in
equations (4.16) and (4.17), is exchangeable just as the single λγ rule. It can
therefore be represented as a class of prior densities over B. To find the proba-
bility models underlying the system of rules, we must thus find the exact class
of prior densities over B with which these systems can be represented. However,
this class of priors is very hard to define if we only have recourse to the param-
eter components in the space B. Even if we knew what function satisfies the
features sketched above, it is not easy to formulate this prior in such a way that
we can actually derive the system of rules. For this reason it is worthwhile to
look for an alternative framework. The following proposes a transformation of
the partition B into the partition A. This latter partition comprises exactly the
same hypotheses, but casts these in a different parameter space. Within that
space we can derive the analogical predictions of section 4.3.
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0

1 2 1

0 0

2

Figure 4.2: The twist in the prior is here illustrated for three predicates. To draw the prob-

ability assignment, the simplex is stretched at the side of the hypotheses with high probability

for 0 to form a square. The curves over the three horizontal lines represent the probability

assignment. Within the region of hypotheses with low probability for 0, most probability is

assigned to hypotheses with high probability for 2, and for hypotheses with high probability

for 0, most probability is assigned to hypotheses with high probability for 1. Observing 0

therefore implicitly increases the ratio of the probability of 1 over that of 2.

4.6 Analogy partition

This section proposes a transformation of the algebra Q into one on observations
of predicates from the underlying families G and M . After that the hypotheses
and densities that result in the system of λγ rules can be specified.

4.6.1 Defining the analogy partition

An observation algebra for gender and marital status. First we must define a
space on which the algebra for records concerning G and M can be defined.
Taking L as the set of ordered pairs 〈g,m〉, we can define the space Lω of all
infinitely long ordered sequences u of such observations:

u = g1m1 g2m2 g3m3 . . . (4.36)

The record that the individual i is a husband, qi = 1, can then be written as
two consecutive records in a sequence u, namely gi = 0 and mi = 1, meaning
that the individual i is recorded to be male and married. More generally, we
can identify all infinite strings of observations e ∈ Kω with some infinite string
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u ∈ Lω. Using u(t) as the t-th number in the sequence u, we can construct

e(i) = 2gi + mi,

u(2i− 1) = gi,

u(2i) = mi.

In this way every sequence e is mapped onto a unique sequence u, and every
such u can be traced back to the original e.

We can now define the algebraR for records concerning the predicate families
G and M on the basis of the space Lω. The following elements generate this
algebra:

Gg
i = {u ∈ Lω : u(2i− 1) = g}, (4.37)

Mm
i = {u ∈ Lω : u(2i) = m}. (4.38)

The sets Gg
i ∩Mm

i thus contain all those infinitely long sequences u that have
the number g and m in the positions 2i− 1 and 2i. The relations between the
families Q, G and M are therefore as specified in equation (4.1). For future
reference, sequences of records in R that correspond to a specific en are here
denoted Sen

n .

Hypotheses for gender and marital status. The idea of the hypotheses concerning
the underlying predicate families is essentially the same as for those concerning
Q-predicates. We may again partition the above observational algebra into
hypotheses concerning relative frequencies. However, the relative frequencies in
the family M must in this case be related to the result in the family G. We
may define the following relative frequencies:

fg(u) = lim
n→ω

1
n

n∑
i=1

Wg(u(2i− 1)), (4.39)

fg
m(u) = lim

n→ω

∑n
i=1 Wg(u(2i− 1))Wm(u(2i))∑n

i=1 Wg(u(2i− 1))
. (4.40)

Here Wr(u(t)) = 1 if u(t) = r and Wr(u(t)) = 0 otherwise. The function fg sim-
ply gives the relative frequency of results g within the observations with respect
to G in the sequence u. But the function fg

m(u) is somewhat more complicated.
It returns, for every u, the relative frequency of results m for observations with
respect to the family M , conditional on the observed individual belonging to the
category g within the family G. This is the relative frequency of m conditional
on g within u, or the conditional relative frequency for short.
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We are now in a position to define the analogy partition A for predictions
concerning the predicate families G and M . The hypotheses in this partition
employ the conditional relative frequencies in order to pick up the exact statis-
tical dependency between the two families. Let αg and αgm be the parameters
labelling these hypotheses, and define

Whα
(u) =

1 if fg(u) = αg and fg
m = αgm,

0 otherwise.
(4.41)

and then define the hypotheses Hα = {u ∈ Lω|Whα(u) = 1}. Again define H¬α

as the set of all u for which one of the three relative frequencies in equations
(4.39) or (4.40) does not exist. The analogy partition is then given by A =
{H¬α, {Hα}α∈A}. Here the parameter α = 〈α0, α1, α00, α01, α10, α11〉 lies in the
set A = {α ∈ [0, 1]6 | α0 = 1− α1, α00 = 1− α01, α10 = 1− α11}.

The likelihoods of the hypotheses on the underlying predicates are given by
these relative frequencies and conditional relative frequencies:

p(Gg
i+1|Hα ∩ Se

i ) = αg, (4.42)

p(Mm
i+1|Hα ∩ Se

i ∩Gg
i+1) = αgm. (4.43)

It may be noted that observations in the sequence Se
i do not influence the

likelihoods of Hα, but that Gg determines which of the αgm must be used as
the likelihood for Mm. In this sense, the likelihoods for the family M depend
on earlier observations in the family G. Note also that we can write

p(Q2g+m
i+1 |Hα ∩ Se

i ) = p(Gg
i+1 ∩Mm

i+1|Hα ∩ Se
i )

= αg αgm. (4.44)

The likelihoods for the separate families G and M therefore also imply like-
lihoods for the family Q, and with that also unconditional likelihoods for the
family M .

4.6.2 Transforming partitions

Parameter transformation. It is useful to consider the parameter space A for
the above partition in some more detail, and relate it to the parameter space
B. First recall that pairs of the parameter components of α sum to one. The
parameter space A is therefore built up from a separate simplex BG for the two
parameters αg, and two simplexes BgM for the four parameters αgm. We can
write

A = BG ×B0M ×B1M . (4.45)
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   ↑
α0m
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Figure 4.3: A representation of the transformation from B to A. The space B is a tetrahe-

dron, in which the parameters are not orthogonal, the space A is a cube. Defining probability

distributions over A is much easier.

Like the original simplex B for |K| = 4, the parameter space A therefore has
three independent components. In fact, following the above expression for the
likelihoods, the parameter space B can be obtained from A by a simple trans-
formation:

θ2g+m = αgαgm. (4.46)

When it comes to the statistical hypotheses, the partitions A and B are thus
equivalent. However, they employ different parameter spaces, and therefore
provide access to different classes of prior probability functions. As illustrated
in figure 4.3, the space B is a tetrahedron, which is transformed in the cube A.
This is the transformation intended at the end of section 4.5.

Probability over the transformed space. The prior probability assignment over
A that generates the system of λγ rules can now be made precise. It is notewor-
thy that the partition A consists of three separate and orthogonal dimensions.
However, it is not yet clear whether these three dimensions can be treated inde-
pendently, let alone that they result in such prediction rules. To establish the
independence, it must be determined under what conditions the updates and
predictions over the parts do not affect each other. As it turns out, independence
is guaranteed if we assume that the prior probability density is factorisable:

p(Hα) = pG(αg) p0M (α0m) p1M (α1m). (4.47)

In that case updating in one of the dimensions leaves the functions in the other
two dimensions unchanged. The separate dimensions in A may then be associ-
ated with the separate λγ rules of 4.16 and 4.17.
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In order to derive these λγ rules, we must assume more than factorisabil-
ity. We must assume that the prior densities over the separate dimensions are
members of the Dirichlet class:

p(Hα) ∼
∏
g

α(λγg−1)
g

∏
m

α
(λ0

M γ0
Mm−1)

0m

∏
m

α
(λ1

M γ1
Mm−1)

1m . (4.48)

From here onwards the derivation of the separate λγ prediction rules runs en-
tirely parallel to the derivation of a single rule. Again, the details for this
derivation may be found in Festa (1993: 57-71).

The probability model shows that the predictions resulting from them are
indeed exchangeable, meaning that the predictions are invariant under permu-
tations of the order of observations. Since we can assign a likelihood for an
observation Mm

i before Gg
i on every hypothesis Hα, we can adapt the proba-

bility over A for these unconditional observations of Mm
i in the same way as

that we can adapt the probability upon observing Gg
i . Both updates are simply

multiplications with the likelihood functions. In the Bayesian model, there is
therefore no principled restriction on the order of the observations, and in this
sense the Bayesian model offers a wider framework than the system of λγ rules.
The restriction only shows up as the fact that the integrals for the predictions
based on the Bayesian model cannot be solved analytically, in the form of a
system of prediction rules, if the observations Mm

i occur before Gg
i .

Transformations make a prior accessible. Let me return to the relation between
the parameter spaces B and A. Recall that the class of Dirichlet densities over B

corresponds to a special class of Dirichlet densities over A, which results in the
predictions determined by equation (4.21). This follows from the fact that for
this choice of parameters, the system of rules boils down to a single λγ rule. At
the level of the partitions, however, we may also transform the Dirichlet density
over B by means of the relations (4.46), and multiply the transformed density
with the Jacobian determinant of the transformation matrix. This results in
the very same equivalence. On the other hand, there are many more Dirichlet
densities over A that cannot be captured by the Dirichlet densities over B in
this way. Transforming these densities over A back to B is a less clear-cut
operation, and the resulting densities over B do not fall within any special class
of densities. The transformation of B into A has in this way provided access to
a new class of prior densities.

As suggested, the above perspective opens up the possibility of modelling
many other analogical predictions. We may consider densities over A that are
not Dirichlet, and more specifically, that are not factorisable. However, these
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latter analogical predictions can only be dealt with in the next chapter. The next
section only presents a brief sketch of these possibilities. For present purposes,
the main point is that the system of rules has been connected to a range of
statistical models: the existence of these models ensures the consistency of
the system of rules. Moreover, in view of the methodological perspective that
is adopted in this chapter and in this thesis more generally, the task of an
inductive logician is no more than to supply these models, in order to bring
out the inductive assumptions that drive analogical predictions and provide the
means to manipulate these assumptions.

4.7 Generalizing the analogy partition

This section argues that the above discussion can be generalised to cover ana-
logical predictions based on explicit similarity more generally. It considers the
extension of the foregoing to cases with more than two underlying predicate
families. It further suggests how a problem for the model of Hesse, as noted in
Maher (2001), can be solved. The solution opens up a number of interesting
modelling possibilities.

More elaborate partitions. Until now we have been concerned with explicit sim-
ilarity between predicate families M and G, but nothing precludes the use of
more than two underlying predicates, or of more cells within each partition.
With the same construction we can model predictions based on explicit similar-
ity relations that are much more complex than the ones exemplified above. As
an example, let us say that before recording gender and marital status, we ob-
serve the type of car C in which the individual arrives, and that we distinguish
between family cars, c = 0, vans, c = 1, and sports cars, c = 2. We may then
keep track of a dependency between marital status and gender, which can on
itself be made dependent on the car type. As an example, the parameter space
for that partition may be

A = BC ×
∏
c

BcG ×

(∏
g

BcgM

)
, (4.49)

All simplexes can again be associated with separate prediction rules, leading to
an extended system of prediction rules. Note that the simplex BC is an equilat-
eral triangle, and that the corresponding λγ rule has three possible observation
results. It will be clear that in adding further underlying predicates there are
no restrictions.
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Varying the order of predicate families. As already discussed in section 4.4, the
system of rules is suitable for expressing analogical predictions based on explicit
similarity only, which means that it cannot express all possible configurations
of symmetric relevance relations between the Q-predicates. To characterise the
restriction on expressible relevance relations for the general case, recall first that
the analogy partition always determines a certain order to the underlying predi-
cates, such as first B, then G, and finally M . If we associate these relations with
an increasing ranking number, the restriction to expressible relevance configu-
rations may be characterised as follows: the system of prediction rules can only
distinguish between the relevances of a predicate Qq to the predicates Qv and
Qw if the ranking numbers of the first predicate in the ranking that Qv and Qw

do not have in common with Qq are not the same. In other words, the system
is not able to model a difference between relevances of Qq to predicates Qv and
Qw if the first predicate in the ranking in which the latter two differ from Qq is
the same. We may for example consider husbands more relevant to wives than
to maidens. However, the system of rules cannot model these relations between
the Q-predicates, because both maidens and wives differ from husbands in the
first underlying predicate family in that example, namely in G.

The system of rules thus accommodates explicit similarity specifically of
gender, or of marital status, but never of both. One exception to this may
now be presented by slightly adapting the above example with three underlying
predicates. For simplicity, the family C only concerns family cars, c = 0, and
vans, c = 1. Imagine that we think that driving a van is somehow indicative
of the gender, suggesting male drivers irrespective of their marital status, and
further that we think family cars are indicative of the marital status, suggesting
a married driver irrespective of their gender. In that case it is natural to employ
the following analogy partition:

A = BC ×B0M ×B1G ×B00G ×B01G ×B10M ×B11M . (4.50)

Conditional on the individual driving a family car, we make the marital status
indicative of the marital status of further family car drivers. But conditional
on the individual driving a van, we make the gender indicative of the gender of
further van drivers. In other words, the direction of dependence relations may
vary within one analogy partition, as long as these directions are themselves
conditioned on different predicates from a third family.

Hesse’s problem. In the remainder of this section I illustrate one further general-
isation, which uses the statistical models to capture configurations of relevance
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relations ρ that are not covered by the system of λγ rules. To this aim I dis-
cuss an example from Maher (2001), which reveals a shortcoming in the model
of analogical predictions proposed by Hesse. Contrary to that model, the sta-
tistical models can deal with the example case. It is notable that the model
of Carnap and Kemeny also overcomes the difficulties of Hesse, and that their
model is still more general than the models sketched here when it comes to
expressible relevance relations. However, the statistical models offer a number
of unexplored modelling possibilities, which may eventually solve the problems
with the model of Carnap and Kemeny as well.

The example of Maher concerns the predicates of being a swan X, being
Australian Y , and being white Z. The indices x, y and z are 1 or 0 for the
predicate being satisfied or not. Imagine that until now we have recorded, of all
animals in the world, whether they are a swan and whether they are Australian.
Specifically, we have observed

SXY
ω = X1

1 ∩ Y 0
1 ∩X1

2 ∩ Y 1
2 ∩

(
ω⋂

i=3

Xxi
i ∩ Y yi

i

)
, (4.51)

the sequence of observations of all animals with respect to being a swan and
being Australian, the first animal in the sequence being a non-Australian swan,
the second an Australian swan. The challenge is to define a probability over the
algebra Q or, equivalently, R for which

p(Z1
2 |Z1

1 ∩ SXY
ω ) > p(Z1

2 |SXY
ω ). (4.52)

That is, we want the fact that a non-Australian swan is white to be relevant
to the probability of an Australian swan being white. The fact that we already
know the proportions of Australian and non-Australian swans and non-swans
should have nothing to do with this relevance. But unfortunately the model of
Hesse cannot accommodate such a relevance.

It turns out that the above inequality can be derived by employing a re-
stricted prior over an analogy partition. For simplicity, use the parameter space
A = BXY ×B00Z ×B01Z ×B10Z ×B11Z , which has a single, three-dimensional
simplex BXY for the combined predicates X and Y on being a swan and being
Australian. In this tetrahedron space, conditioning on SXY

ω forces all prob-
ability to be concentrated on one point hypothesis within the simplex BXY ,
associated with the actual relative frequencies αxy of the observations in SXY

ω .
Subsequent observations Zz

i on being white therefore only influence the proba-
bility over the remaining spaces, BxyZ for all values of xy. Now the challenge
is to establish the relevance of observations of being white within the category



120 CHAPTER 4. ANALOGICAL PREDICTIONS FOR EXPLICIT SIMILARITY

xy = 10, concerning non-Australian swans, to the probability of animals being
white in the category xy = 11, concerning Australian swans. In other words,
we must somehow couple the probability assignment over the simplex B11Z to
the assignment over B10Z .

One way of doing this is by restricting the probability assignment to a specific
subspace of the hypotheses space A, defined by α10z = α11z. Effectively, the
marginal probability assignments over the two simplexes B10Z and B11Z are
then identified, so that adapting the probability over B10Z for the observation
Z1

i , given that X1
i ∩Y 0

i , implicitly changes the probability over B11Z as well. In
other words, finding a non-Australian swan to be white is immediately relevant
for the probability of Australian swans being white. The probability over the
remaining space on non-swans, B01Z ×B00Z , can be chosen freely.

Within the hypotheses space on swans, in which all probability is restricted
to α10z = α11z, we may again choose a Dirichlet distribution. For the resulting
predictions, this means that observations of swans, both Australian and non-
Australian, are collected in the same λγ prediction rule on being white, Z:

p(Zz
n+1|SZ

n ∩ SXY
ω ) =

n11
Zz + n10

Zz + λ1
Zγ1

Zz

n11
Z + n10

Z + λ1
Z

. (4.53)

For this prediction to be applicable, we must have that SXY
ω ⊂ X1

n+1, meaning
that animal n + 1 is indeed a swan. Predictions for the case in which SXY

ω ⊂
X0

n+1 are determined by the probability over the space on non-swans, B01Z ×
B00Z . Note that SZ

n denotes the sequence of observations of the first n animals
with respect to Z. As in the foregoing, n11

Z and n10
Z are defined as the numbers

of Australian and non-Australian swans in the sequence SZ
n , and n11

Z1 and n10
Z1

as the numbers of Australian and non-Australian white swans in that sequence.
The above rule further uses the abbreviations λ1

Z = λ11
Z = λ10

Z and γ1
Zz = γ11

Zz =
γ10

Zz. These parameters are the same for the simplexes B11Z and B10Z , because
they are determined by one and the same probability assignment.

It can be checked easily that the inequality (4.52) is indeed satisfied in this
model. It must be conceded that the above model has its own peculiarities.
A much more detailed study of analogical predictions based on non-factorisable
priors over the partition A is necessary in order to make any more general claims
on its relative merits and defects. However, the above example does suggest that
the use of statistical models deserves further attention.
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4.8 Conclusion

This chapter presents a system of λγ rules that models analogical predictions
based on analogy by explicit similarity of gender. After presenting an example
of such similarity, the chapter shows how it translates to a specific subset of
relevance relations between predicates in the aggregated family Q: the relevance
of the predicate Q2g+m for the predicate Q2g+m′

, which has predicate Gg in
common with Q2g+m, differs from its relevance for the two predicates Q2g′+m

and Q2g′+m′
, that do not have Gg in common with Q2g+m.

After presenting a system of rules that indeed models these relevance rela-
tions, I provide the Bayesian model that underlies the system. It is shown that
analogy hypotheses treat observations Mm separately for the earlier observation
Gg with g = 0, 1, by defining separate relative frequencies for them, and associ-
ating these frequencies with separate dimensions in the parameter space A. By
assuming the prior over this space to be a product of Dirichlet marginals, the
system of λγ rules can be derived. The chapter ends with some generalisations
on the proposed system of rules.

The next chapter explores the possibilities of the Bayesian model that un-
derlies the system of rules. It will turn out that this model provides the setting
for a completely general model of analogical predictions based on symmetric in-
ductive relevance relations, by employing non-factorisable probability functions
over A. More generally, on the level of research programmes, I take it to be an
important advantage of the present model that it seeks to integrate the rather
isolated discussion on analogical predictions within Carnapian inductive logic
in a wider framework of Bayesian statistical inference.





5

A General Model for Analogical Predictions

This chapter presents a general model for exchangeable analogical predictions,
based on inductive relevance between four predicates. It extends the model for
analogy by explicit similarity, which was dealt with in the preceding chapter.
It is first shown that the predictions of this model may be captured in a more
general statistical framework for exchangeable predictions. This is then used
to define a model that is able to incorporate all possible symmetric inductive
relevance relations. however, not all aspects of analogical predictions find a
natural formalisation in the model. The chapter therefore only offers a partial
explication of the model alongside some numerical approximations. At the end
the model of this chapter is related to some other models in the literature.

It is not necessary to read chapter 4, or any of the other chapters, before
starting on this one. But it may be noted that chapter 4 provides a different
perspective on very similar inductive schemes. There is considerable overlap in
the technical parts of the chapters. Reading the preceding chapter may therefore
be helpful in coming to a more complete understanding of the schemes discussed
in this chapter.

5.1 Introduction

Analogical predictions deviate from standard Carnapian predictions, as for ex-
ample in Carnap (1952), because analogical predictions incorporate considera-
tions of inductive relevance between predicates. This section discusses a general
scheme for capturing such relevance relations. After that I make explicit the
kind of analogical predictions that this chapter deals with, and contrast them
with the analogical predictions of the preceding chapter.

5.1.1 Inductive relevance

Party centre example. Consider a marketing manager of a party centre who
makes predictions on visitors concerning their gender and marital status. There
are four aggregated predicates: bachelors, husbands, maidens, and wives. Let
us say that the manager does not know the party centre yet, but that she has
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some general knowledge of party centres. Specifically, she knows that men like
to hang out in a party centre together, so that recording a bachelor is positively
relevant to recording a husband and vice versa. She further knows that married
couples often go out together, and also that, while husbands tend to bring their
bachelor friends if they go out with their wives, the wives tend not to invite
their maiden friends. Therefore, while husbands and wives are strongly relevant
to each other, as husbands and bachelors are, maidens and wives bear a much
weaker relevance relation. The challenge of this chapter is to find a model for
inductive predictions that incorporates complex configurations of such relevance
relations.

A vector of relevance relations. Consider the notion of inductive relevance itself.
We can formalise the above predicates as Qq, with the numbers q = 0, 1, 2, 3
associated with the predicates bachelor, husband, maiden and wife respectively.
In terms of these predicates, the example has it that Q1 is more relevant to Q0

than to Q2. This inductive relevance means that the observation that individual
i has predicate Q1, or Q1

i for short, is more favourable to the probability of the
observation Q0

i+1 than to that of Q2
i+1. Note that this may obtain quite inde-

pendently of the purely inductive effect that observation Q1
i makes observation

Q1
i+1 more probable.

The relevance of Qq to Qw may be expressed in a function ρ(q, w), where q

and w denote predicate numbers. With this relevance function, we may specify
in general terms what it means for Qq to be more relevant to Qw than to Qv.
Denoting the probability of observation Qq

i with the function p, we can write

ρ(q, w) > ρ(q, v) ⇒
p(Qw

i+1|Ei−1 ∩Qq
i )

p(Qw
i |Ei−1)

>
p(Qv

i+1|Ei−1 ∩Qq
i )

p(Qv
i |Ei−1)

. (5.1)

It must be noted that the foregoing is not the only possible expression of induc-
tive relevance. For a review of possible relations between inductive methods and
the relevance function, see Festa (1997). The above is qualitatively equivalent
to K>G inductive methods in his terminology.

This chapter deals with complex configurations of relevance relations, like
those exemplified in the party centre example. By means of the above relevance
function ρ(v, w), its aim can be made a bit more specific. First, as in the
preceding chapter, I restrict attention to symmetric relations:

ρ(v, w) = ρ(w, v). (5.2)
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Because the relevance relations are symmetric, the set of possible configurations
of relevance between predicates may be captured in the following space:

ρ = 〈ρ(0, 1), ρ(2, 3), ρ(0, 2), ρ(1, 3), ρ(1, 2), ρ(0, 3)〉. (5.3)

The more specific aim of this chapter is to provide a model of inductive predic-
tions for all the relevance configurations that are represented in this space.

Some disclaimers. It may be remarked immediately that some important as-
pects of inductive relevance are not expressed in the representation ρ. First of
all, expression (5.1) does not yet provide a meaning for the sizes of ρ. Until now
the characterisation is entirely qualitative, only providing an interpretation for
the ordering of the sizes. To a certain extend the numerical values of ρ are given
a further interpretation below. Second, because I am considering exchangeable
predictions, these predictions will converge onto the actual relative frequencies
of the predicates Qq. The analogy effects will therefore diminish with the ac-
cumulation of observations. But the foregoing does not specify exactly how the
effects will diminish, or even the overall rate at which this happens. This as-
pect is simply not captured in the representation ρ. It may be that the rates
are different for the different relevance relations, so that the ordering in these
relations varies with the number and the nature of the observations. However,
as will be argued below, in the present model the analogy effects diminish at
the same rate. The relevance ordering therefore remains intact.

5.1.2 Aim of this chapter

The model for explicit similarity. It is instructive to relate it to the model of
the preceding chapter, which concerned analogical predictions based on explicit
similarity relations. The aggregate predicate family Q on bachelors, husbands,
maidens and wives is built up from separate predicate families on gender, G,
and marital status, M . We can write

Gg = Q2g ∪Q2g+1, (5.4)

Mm = Qm ∪Q2+m, (5.5)

where Gg means male for g = 0 and female for g = 1, while Mm means not
married for m = 0 and married for m = 1. The idea of the model for explicit
similarity is that predictions on predicates Qq may be written down in terms of
predictions for the separate families G and M :

p(Qq
n+1|En) =

nGg + λGγGg

nG + λG
×

ng
Mm + λg

Mγg
Mm

ng
M + λg

M

. (5.6)
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Here nG = n is the total number of individuals in the preceding observations
En, nGg = ng

M the number of individuals with gender g, and ng
Mm the number

of individuals with gender g and marital status m.
Recall that every point in the vector space ρ represents a different configu-

ration of symmetric inductive relevance relations. The models based on explicit
similarity can now be captured by a specific subset of configurations in this
vector space, namely:

ρ = 〈 ρG0, ρG1, ρḠ, ρḠ, ρḠ, ρḠ, ρḠ〉. (5.7)

The relevances ρGg = ρ(2g, 2g + 1), the so-called intra-gender relevances, may
be chosen independently, and the inter-gender relevances ρḠ must all be cho-
sen equal. They are connected to the parameters in the above prediction rule
according to

λg
M = ρGgγGgN, (5.8)

λG = ρḠN. (5.9)

The model of this chapter is a generalisation of the model for explicit similarity:
every component of ρ can in this chapter be determined independently.

Position of the present chapter. The ideas in this chapter are strongly connected
to earlier chapters. As indicated, the present model relies heavily on the model
for explicit similarity, as it is discussed in the preceding chapter. The results of
that chapter are here used uncritically. Furthermore, just as the preceding one,
this chapter employs statistical hypotheses for generating inductive predictions.
That is, the model first incorporates observations on predicates into a proba-
bility assignment over statistical hypotheses, and then employs the assignment
over these hypotheses to derive predictions for new observations. As discussed
in chapter 3, the use of hypotheses offers control over the assumptions under-
lying inductive predictions. The present chapter illustrates this. It shows how
transformations between hypotheses spaces enable us to define priors that are
otherwise hard to find.

The plan of this chapter is as follows. Sections 5.2 and 5.3 introduce ob-
servational algebras for the above Q-predicates and for the predicates such as
G and M that underlie them, and defines the predictions based on hypotheses
concerning these respective predicates. Section 5.4 elaborates on the relation
between Q-predicates and underlying predicates. Specifically, it shows how the
prior probability over hypotheses concerning underlying predicates that encodes
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analogical effects can be translated to a specific prior probability over the hy-
potheses concerning Q-predicates. Section 5.5 presents the general model for
analogical predictions concerning Q-predicates, and discusses some of its lim-
itations. Section 5.6 discusses the idea behind the model, and provides some
numerical simulations. Finally, section 5.7 discusses the general model in light
of some other models of analogical predictions. In the conclusion, the models of
this chapter and the preceding one are considered from a general perspective.

5.2 Hypotheses schemes for Q-predicates

This section discusses the observational algebra for Q-predicates, and contains
a short introduction to Bayesian schemes that employ hypotheses for making
predictions. It also provides the partition for Q-predicates that underlies the
Carnapian λγ prediction rules. The scheme and partition are elaborately dis-
cussed in preceding chapters, and in particular in 4.5. Comparable expositions
can be found in Jeffrey (1984) and Howson and Urbach (1996).

Observational algebra. The expression Qq
i refers to the observation that individ-

ual i has predicate Qq. To characterise inductive predictions, let me represent
these observations in terms of a so-called observational algebra. Let K be the set
of possible values for q, so that in the case of the party centre K = {0, 1, 2, 3}.
The infinite product Kω is the space of all infinite sequences e of such values:

e = q1q2q3 . . . (5.10)

The observational algebra, denoted Q, consists of all possible subsets of the
space Kω. If we denote the i-th element in a series e ∈ Kω with e(i), we can
define an observation Qq

i as an element of the algebra Q as follows:

Qq
i = {e : e(i) = q}. (5.11)

Note that there is a distinction between the observation Qq
i and the result of an

observation q. The values, represented with small letters, are natural numbers.
The observations, denoted with large letters, are elements of the algebra Q.

In the same way we can define an element in the algebra that represents a
finite sequence of observations. If we define the ordered n-tuple en = 〈q1q2 . . . qn〉
and qi as the i-th element therein, we can write

Een
n = {e : ∀i ≤ n (e(i′) = qi)}. (5.12)
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I normally suppress reference to the n-tuple en. The observations and sequences
of observations are related to each other according to

En ∩Qq
n+1 = En+1 (5.13)

where en+1(n + 1) = q. Finally, for any sequence en we can write down, for
all numbers q < 4, the number of times it occurs within the sequence. These
numbers are in the following denoted with nQq. Since the total number of
observations nQ = n =

∑
q nQq, the numbers nQq together define the observed

relative frequencies nQq

nQ
of the results q.

We can now define a probability function p over the algebra Q. The proba-
bilities of observations Qq

n+1 and En can then be interpreted as predictions. An
important matter is how these predictions depend on observations: if the series
en is observed, this must somehow change the predictions over the observations.
I here assume that the predictions upon observing en are expressed by the orig-
inal probability function p conditional on the observations En, denoted p(·|En).
This dependence of predictions on observations is known as Bayesian condition-
ing. In the following, the initial probability is called the prior probability, and
the conditional one the posterior.

Bernoulli hypotheses and exchangeable predictions. The schemes of this chapter
employ partitions of statistical hypotheses to define the probability function
p. A partition is a collection B = {Hθ}θ∈B in which the hypotheses Hθ are
mutually exclusive and jointly exhaustive possibilities. We can associate these
hypotheses with elements of the algebra Q, but for present purposes the less
strict characterisation suffices. We can define predictions p(Qq

n+1|En) with the
law of total probability over the partition:

p(Qq
n+1|En) =

∫
B

p(Hθ|En)p(Qq
n+1|Hθ ∩ En) dθ. (5.14)

The probability over the hypotheses is determined by the probability density
p(Hθ|En). The terms p(Qq

n+1|Hθ∩En) are called the likelihoods on the hypothe-
ses Hθ, which are defined for observations Qq

n+1 . The prediction is obtained by
weighing these likelihoods with the posterior probability over the hypotheses.

Apart from the likelihoods, the dependence of the predictions on observations
are reflected in the probability assignment over the hypotheses. This probability
may be determined by means of Bayesian conditioning,

p(Hθ|Ei+1)dθ =
p(Qq

i+1|Hθ ∩ Ei)
p(Qq

i+1|Ei)
p(Hθ|Ei)dθ, (5.15)



5.3. SCHEMES USING UNDERLYING PREDICATES 129

where ei+1(i + 1) = q. Note that the denominator p(Qq
i+1|Ei) can be rewritten

with equation (5.14). The posterior probability over the hypotheses p(Hθ|En)dθ

can thus be determined recursively by the prior probability assignment p(Hθ)dθ,
and the likelihoods p(Qq

i+1|Hθ∩Ei) for all times 0 ≤ i < n. With the likelihoods
p(Qq

n+1|Hθ ∩ En) we can then determine the predictions.
This chapter employs specific statistical hypotheses Hθ, which have the fol-

lowing likelihoods for the observations Qq
i+1:

p(Qq
i+1|Hθ ∩ Ei) = θq. (5.16)

The domain of the 4-tuple θ is a simplex,
∑

q θq = 1. Note also that the likeli-
hoods are independent of the earlier observations Ei. The posterior likelihoods
are thus identical to the prior likelihoods. Finally, the predictions resulting from
the partition B are exchangeable, and by De Finetti’s representation theorem
every exchangeable prediction rule can be captured by a prior probability over
the hypotheses, p(Hθ)dθ.

Carnapian predictions. One specific prior probability assignment must be given
separate attention. If we assume the prior density function over the simplex to
have a Dirichlet form,

p(Hθ) ∼
∏
q

θ(cq−1)
q , (5.17)

then the resulting predictions are of the form of Carnapian rules pλγ :

p(Qq
n+1|En) =

nQq + λQγQq

nQ + λQ
= prλγ(nQq, nQ). (5.18)

The values of the parameters λQ and γQq are determined by the exponents cq

in the Dirichlet density according to λ =
∑

q cq and γq = cq/λ. In this chapter
I restrict attention to natural numbers cq. Finally, the numbers nQq and nQ are
as defined in the preceding section.

5.3 Schemes using underlying predicates

This section presents the algebra for the underlying predicates G and M . It
further introduces the hypotheses partition A associated with this algebra, and
argues that this partition leads to the system of λγ rules of section 5.1. This
section shows considerable overlap with section 4.6, but it is somewhat more
general.

Algebra for underlying predicates. Let me define an observation algebra for
the underlying predicates G and M , as introduced in section 5.1.1. Recall the
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indices of these predicates, g,m ∈ {0, 1}. With LGM as the set of ordered pairs
〈g,m〉 we can define the space (LGM )ω of all infinitely long ordered sequences
u of such index pairs:

u = g1m1 g2m2 g3m3 . . . (5.19)

We can then identify all infinite strings of observations e ∈ Kω with a unique
infinite string u ∈ (LGM )ω:

e(i) = 2gi + mi, (5.20)

u(t) =

gi if t = 2i− 1,

mi if t = 2i.
(5.21)

So for every odd index t, the number u(t) concerns an observation of predicate
G, and for every even index t the number u(t) concerns M . Thus every sequence
e is mapped onto a unique sequence u, and every such u can be traced back to
a corresponding sequence e.

Two things must be remarked on this translation of Q-predicates to under-
lying predicates. First, note that the order of the underlying predicates G and
M is fixed in the definition of the ordered pairs LGM . However, we may just
as well consider the set LMG, and define a space of infinite sequences u′ on the
basis of that. Moreover, the predicates G and M do not exhaust the possible
pairwise combinations of Q-predicates. We can also employ a third partitioning
of the Q-predicates:

Ww = Q1−w ∪Q2+w. (5.22)

As a slightly contrived interpretation, imagine that it is a custom of the people
featuring in the example that bachelors are given a traditional wedding ring at
their 18th birthday. This ring is a sign that the bachelor has reached the age
at which he is allowed to propose to a maiden, and it serves as a present to the
bride at the wedding ceremony. Therefore, people who are in possession of this
traditional ring are either bachelors or wives, and people who are not are either
maidens or husbands. The important thing here is that translations of sequences
e into sequences in a space based on LWG, or on some other combination with
the family W , may be considered just as well.

We can now define the algebra RGM for observations of predicate families
G and M in the space (LGM )ω, in the same way as we defined the algebra Q:

Gg
i = {u ∈ (LGM )ω : u(2i− 1) = g}, (5.23)

Mm
i = {u ∈ (LGM )ω : u(2i) = m}. (5.24)
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The sets Gg
i ∩Mm

i contain all those infinitely long sequences u ∈ (LGM )ω that
have the number g and m in the positions 2i − 1 and 2i respectively. We can
therefore also translate

Q
(2g+m)
i = Gg

i ∩Mm
i , (5.25)

Een
n = Sen

n =
n⋂

i=1

Ggi

i ∩Mmi
i . (5.26)

In this way there is a complete mapping of the elements Qq
i and En in Q onto

elements of the algebra RGM .

Hypotheses for underlying predicates. We may define inductive predictions con-
cerning Q-predicates by providing a probability function p over the algebra of
underlying observations, RGM . Again we can employ a partition of hypotheses
Hα with the parameter space α ∈ AG, so that AG = {Hα}α∈AG

. The hypothe-
ses Hα concern observations Gg

i and Mm
i , that is, they provide likelihoods for

these observations. We may choose

p(Gg
i+1|Hα ∩ Si) = αGg, (5.27)

p(Mm
i+1|Hα ∩Gg

i+1 ∩ Si) = αGgm. (5.28)

These likelihoods do not depend on observations concerning other individuals:
the parameters α do not depend on Sn. However, every hypothesis does have
separate likelihoods for observations Mm

i+1 conditional on either G0
i+1 or G1

i+1.
We can use the hypotheses Hα to generate predictions over the underlying

predicate families G and M , just as we used hypotheses Hθ for direct predictions
of the family Q. Since the algebra RGM determines that we observe Gg

i+1 before
observing Mm

i+1, all relevant likelihoods are in this way defined. The main
difference with the above discussion is in the parameter space AG. Instead of
a single simplex B with

∑
q θq = 1, we now have a Cartesian product of three

simplexes AG = BG ×B0M ×B1M , with components:∑
g

αGg = 1,
∑
m

αG0m = 1,
∑
m

αG1m = 1. (5.29)

Since in the example we have g,m = 0, 1, we simply have αG1 = 1 − αG0 and
αGg1 = 1− αGg0.

Carnapian rules for underlying predicates. As in the foregoing, the probability
density over the hypotheses space determines the eventual predictions that de-
rive from the hypotheses scheme. And indeed, if we assume a Dirichlet density
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over each separate simplex component of the parameter space AG,

p(Hα) ∼
∏
g

(
α

(aGg−1)
Gg ×

∏
m

α
(aGgm−1)
Ggm

)
, (5.30)

we can derive Carnapian λγ rules for the predicate families G and M separately:

p(Gg
n+1|Sn) =

nGg + λGγGg

nG + λG
, (5.31)

p(Mm
n+1|Sn ∩Gg

n+1) =
ng

Mm + λg
Mγg

Mm

ng
M + λg

M

. (5.32)

The different dimensions in the parameter space are responsible for the indepen-
dent prediction rules over Gg

n+1, and over Mm
n+1 conditional on G0

n+1 and G1
n+1

respectively. Further, the numbers nG, nGg, ng
M and ng

Mm are as indicated in
section 5.1.

To complete the statistical underpinning of the system of λγ rules, recall the
relation between the observations of families G and M on the one hand, and
the observations of family Q on the other. We can write

p(Qq
n+1|En) = p(Gg

n+1|Sn) × p(Mm
n+1|Sn ∩Gg

n+1), (5.33)

and thus arrive at the model for analogical predictions presented in equation
(5.6). As indicated in section 5.1 and in the preceding chapter, this model allows
us to express a specific subset of inductive relevance configurations.

Finally, let me provide the relations between the prior probability assignment
over AG and the parameters in the above prediction rules. As in the case of
the prediction rule over Q-predicates, the exponents in the Dirichlet prior are
directly related to these parameters:

λG =
∑

g

aGg γGg =
aGg

λG
, (5.34)

λg
M =

∑
m

aGgm γg
Mm =

aGgm

λg
M

. (5.35)

In choosing the Dirichlet priors over the simplex components of AG we thus
have separate command over the three Carnapian λγ rules in the system.

5.4 Transformations between partitions

The above presents a partition of statistical hypotheses for exchangeable pre-
dictions on Q-predicates. It also provides a specific partition for statistical
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hypotheses that, with a similar prior, results in exchangeable analogical predic-
tions for explicit similarity. In this section we translate the prior over this latter
partition into a prior over the general partition. This prepares for the general
model of the next section.

5.4.1 Coordinate transformations

Equivalence of B and A. Consider the two partitions B and AG. Recall that
the parameter components of the partition B, denoted θq, are the likelihoods
for the observations Qq, as expressed in (5.16). These likelihoods determine the
nature of the partition: if we provide a prior probability over it, the predictions
are determined. But it can further be noted that the partition AG indirectly
determines likelihoods for the Q-predicates as well:

p(Q(2g+m)
i+1 |Hα ∩ Si) = p(Gg

i+1 ∩Mm
i+1|Hα ∩ Si)

= p(Gg
i+1|Hθ ∩ Si) p(Mm

i+1|Hθ ∩ Si ∩Gg
i+1)

= αGgαGgm. (5.36)

This determines the update operation over AG that corresponds to an update
operation with Q

(2g+m)
i+1 over B.

Every hypotheses Hα may now be identified with a hypothesis Hθ according
to the set of transformation rules determined by the above equivalence:

θ2g+m = αGgαGgm. (5.37)

Note that there are 4 components of θ that have to comply to 1 normalisation
condition, so that B has 3 degrees of freedom. Since there are 6 components of
α that have to comply to 3 normalisation conditions, the number of degrees of
freedom in AG is also 3. The mapping of equation (5.37) is in fact a bijection:
for any hypothesis Hθ there is a unique Hα that has the same likelihoods for
the observations Qq

i+1. The partitions B and AG are therefore essentially the
same. This also means that the results on exchangeability and convergence,
which may be proved for partition B, hold for the partition AG as well.

On the other hand, the structures of the parameter spaces B and AG are
certainly not identical. And as suggested above, this difference can be employed
to access distributions over the hypotheses in B that are very difficult to come
up with, or to investigate properties of, using the parameter space B itself. The
access is provided by first defining the prior probability over the equivalent par-
tition AG, employing the characteristics of the prediction rules defined for that
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partition, and by subsequently transforming this prior into one over the parti-
tion B. The prior over B that is obtained in this way will result in the very same
predictions as those derivable from AG, which, as may be recalled, incorporate
analogical effects of explicit similarity. For the purpose of this chapter it is most
significant that the translation reveals the characteristics of a prior probability
over B that are responsible for the kind of analogical predictions derivable from
AG. Eventually this leads the way to the definition of a class of priors over B
that incorporates all possible inductive relevance relations.

Transformation rules and Jacobian. Before doing that, let me describe the
transformation for the case of the predicate families Q, G and M . As for the
probability function itself, we can employ the following transformation relations
between the components of α and θ, which can be derived from the transforma-
tion equation (5.37):

αG0 = θ0 + θ1 αG1 = θ2 + θ3,

αG00 =
θ0

θ0 + θ1
αG01 =

θ1

θ0 + θ1
, (5.38)

αG10 =
θ2

θ2 + θ3
αG11 =

θ3

θ2 + θ3
.

For any density function p(Hα) over AG, we can simply write all the compo-
nents of α as these fractions of components of θ. However, in order to make
up for the change of the space itself, we must multiply the resulting function of
components of θ with the so-called Jacobian, the determinant of the transfor-
mation matrix. This method is described in any standard textbook on vector
calculus, for instance Marsden (1988).

As it turns out, it is simpler to calculate the Jacobian J−1(α) for the inverse
transformation of B to AG first, and to derive the form of J(θ) from that. It
is further simpler to employ only the three free parameter components for the
space AG:

αG = αG1 = 1− αG0,

α0M = α01 = 1− α00, (5.39)

α1M = α11 = 1− α10.

For the space B we can simply take the θq with q = 1, 2, 3. The simpler trans-
formation rules then are

θ1 = (1− αG)α0M ,

θ2 = αG(1− α1M ), (5.40)

θ3 = αGα1M ,
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These transformations are again essentially the same as the transformation equa-
tion in (5.37).

The Jacobian J−1(α) is now given by the determinant of the transformation
matrix. The q-th row in this matrix consists of the partial derivatives of θq to
the components of α, in the order αG, α0M , and α1M . The Jacobian is thus
given by

J−1(α) = det

 −α0M 1− αG 0
1− α1M 0 −αG

α1M 0 αG

 , (5.41)

Writing out the determinant we find J−1(α) = αG(1−αG). The Jacobian for a
transformation from AG to B is the inverse of this, which in terms of components
of θ comes down to:

J(θ) =
1

(θ0 + θ1)(θ2 + θ3)
. (5.42)

This factor makes up for the change of the infinitesimal volumes dα into dθ

during the transformation.

5.4.2 Transformed probability models

Explicit analogy in terms of Q-predicates. Recall that for the system of λγ rules,
the probability over the space AG is given by the density of equation (5.30). The
density over the space B is determined by the transformation rules of equation
(5.38) and the Jacobian (5.42), and thus given by

p(Hθ) ∼ (θ0 + θ1)r01 × (θ2 + θ3)r23 ×
∏
g,m

θ
(aGgm−1)
2g+m . (5.43)

For the exponents of the cross-terms, r2g,2g+1, we have

r2g,2g+1 = aGg − aGg0 − aGg1. (5.44)

This prior probability over the space B results in exactly the same predictions
over the Q-predicates as can be derived from the corresponding prior over the
space AG, which are expressed in the predictions (5.6).

It can be noted immediately that the prior over B deviates from a Dirichlet
prior because of the cross-terms (θ2g+θ2g+1)r2g,2g+1 . These terms are responsible
for the analogical effects in the predictions. Recall that the exponents in the
above density are related to the system of prediction rules according to λGγGg =
aGg and λg

M = aGg0 + aGg1 with g = 0, 1. We can therefore write

r2g,2g+1 = λGγGg − λg
M (5.45)
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Recall also that the relevance relations in the rules for explicit similarity are
expressed in equations (5.8) and (5.9). The exponents of the cross-terms are
thus proportional to the difference in relevance between predicates of equal
gender and predicates of different gender,

r2g,2g+1 = γGgN(ρḠ − ρGg), (5.46)

where ρGg and ρḠ are as indicated above. So the cross-terms in the prior
probability over B have non-zero exponents precisely if there are differences in
the relevances between Q-predicates of identical and different gender.

It can be seen very easily that certain systems of rules for the underlying
predicate families G and M are equivalent to a single λγ rule for Q-predicates.
We only need to assume aGg = aGg0 + aGg1, or in terms of the parameters in
the system of rules

λGγGg = λg
M . (5.47)

This choice of parameters indeed reduces the system of rules to a single λγ

rule. If we identify the numbers of observations nG = nQ, nGg = ng
M and

ng
Mm = n2g+m, the resulting system of rules is exactly identical to a single λγ

rule with the parameters λ = λG and γ(2g+m) = γGgγ
g
Mm.

The Jacobian and virtual observations. Finally, it is illustrative to connect the
Jacobian determinant to the system of prediction rules for underlying predicates,
in particular to the notion of virtual observations. Consider a uniform prior
probability over the space B, corresponding to the exponents λγq = cq = 1 for
all q. Sometimes these exponents are called the virtual observations of Qq, since
they are added to the number of actual observations nq in the prediction rules.
Now if we translate the uniform prior over B to a prior over A directly, the
resulting exponents aGg and aGgm are all 1, so that we obtain a uniform prior
again. But because of the inverse Jacobian J−1(α), the exponents aGg are raised
with 1, so that aGg = 2 and aGgm = 1, and correspondingly p(Hα) ∼ α0α1.
The fact that the prior over AG that corresponds to the uniform prior over B

is not flat is thus entirely due to the Jacobian deriving from the transformation
between B and AG.

Now if we consider the exponents as resulting from virtual observations
again, the correction factor given by the Jacobian may be given a very natural
interpretation: the exponents must be such that all combinations of predicates
Gg and Mm have exactly one virtual observation. The thing to note is that,
in terms of the underlying predicate family G, virtual observations for all Q-
predicates entail two observations in each predicate Gg, so that indeed we must
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have aGg = 2. More generally, we may think of the Jacobian as a function that
supplements lost virtual observations after transformations of the hypotheses
space. In other words, the number of virtual observations is the aspect of the
prior probability that is supposed to remain intact during the transformation.
This is very helpful in constructing Jacobians for more complicated parameter
transformations than the one above.

5.5 General model

It is not straightforward to construct the general model from the explicit analogy
models. In the first subsection, some considerations will temper the ambition
of finding a general model. The second subsection, however, will develop a
tentative general model, but it will also reveals a problem for this model. The
last subsection speculates on a specific solution with limited parameter freedom.

5.5.1 A more modest aim

Ansatz for the general model. The preceding discussion suggests that the induc-
tive relevance between Qv and Qw may be modelled by multiplying the prior
probability over the partition B with a term (θv + θw)rvw . As indicated, the
exponent rvw expresses the difference between two relevances: the relevance
between Qv and Qw on the one hand, and the relevance between either one of
these on the one hand, and predicates Qq with q 6= v, w on the other. This
suggests the following form for an overall analogy prior:

p(Hθ) ∼
∏
q<4

θ(cq−1)
q

∏
v<w<4

(θv + θw)rvw . (5.48)

The predictions are determined entirely by the exponents cq and rvw. Note that
the prior can easily be generalised to settings with any number of Q-predicates.

In the Carnapian λγ rule we are able to connect the initial probabilities γq for
q < 4 and a learning rate λ with the exponents of the prior probability over B.
Now let us say that we are given a set of initial probabilities γq, a learning rate λ,
and a vector of symmetric relevance relations, ρ. The challenge for the general
model of analogical predictions then is to provide the exponents cq and rvw that
correspond to these initial values. It can be noted immediately that there are
an equal number of free components of γ, λ and ρ, namely 3 + 1 + 6 = 10, as
there are free exponents in the above probability density. This suggests that
there is indeed a unique solution for the representation problem. However, as
will become clear, a complete representation is too much to ask for within the
context of the present chapter.
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Reasons for modesty. This section has a more modest aim: it presents a prior of
the above form that on certain assumptions incorporates a vector of relevance
relations and a learning rate, assuming a kind of initial symmetry between
the Q-predicates. This modesty is motivated by a number of reasons. First,
the procedure for incorporating relevance relations cannot be generalised in
any straightforward way from the model for explicit similarity. We have to
make assumptions to pin down the relations between the relevances and the
prior probability. Second, it is very difficult to derive an analytic expression
for the initial probabilities γq from the analogy prior over B. Therefore we
cannot directly control the initial probabilities implicit in the general model.
Third, the learning rate λ turns out to have a different role in the general
model. And finally, the present model only deals with the relations between
prior and relevance relations for the specific case of the party centre example.
This will suggest some general guidelines for determining the exponents cq and
rvw starting from a general relevance vector ρ, but full generality is not achieved.

5.5.2 Towards a general model

Encoding relevance relations. With this aim in mind, consider the relevance
relations of the example on party centres. With G, M and W referring to
underlying predicate families on gender, marital status and traditional wedding
rings respectively, we can denote the components of the vector of equation (5.3)
in the following way:

ρ = 〈ρG0, ρG1, ρM0, ρM1, ρW0, ρW1〉. (5.49)

Here ρGg refers to the components ρ(2g, 2g + 1), since Q2g and Q2g+1 have the
underlying predicate Gg in common. Other components of ρ in equation (5.3)
may be explicated in similar fashion: ρMm refers to ρ(m, 2 + m) and ρWw to
ρ(1− w, 2 + w).

Recall the basic pattern for relevance relations that derive from the partition
AG. The relevances ρG0 and ρG1 can be determined separately, while the other
relevances, ρMm and ρWw for m,w = 0, 1, may be fixed on some average value.
As before I denote this latter average value with ρḠ, while ρG = (ρG0 + ρG1)/2.
Similar configurations of relevance relations may be derived from the partitions
AM and AW , enabling us to independently determine ρM0 and ρM1, or ρW0

and ρW1, and determine the average values ρM̄ and ρW̄ . Now to incorporate
the combination of these relevance relations into a single prior over B, we must
imagine that the single prior results from the priors over the analogy partitions,
which each incorporate specific aspects of the relevance vector. The exponents



5.5. GENERAL MODEL 139

cq in the prior thus relate to the priors over all three analogy partitions. The
exponents rvw, on the other hand, are related only to the priors over the analogy
partitions associated with the combination of v and w.

Reducing the number of free parameters. It seems natural to combine the three
models for explicit similarity by multiplying the priors over B corresponding to
these models. This means that the exponents aGgm, aMmw and aWwg sum up
to cq. The sum of the relevance vectors for the explicit similarity models may
then serve as the relevance vector associated with the resulting prior. Alterna-
tively, we may consider the product of the relevance vectors. However, all such
straightforward combination procedures result in poor representations: differ-
ent general analogy models are connected to the same analogical prior, and any
analogical prior may be read as the result of a multitude of relevance vectors.
We have too much freedom in choosing the exponents aGgm, aMmw and aWwg

on the basis of the values for cq and rvw.
The following employs a combination procedure in which the exponents cq

are not taken as built up from the exponents aGgm, aMmw and aWwg separately,
but in which these latter exponents are each taken to be equal to the exponents
cq. Every pair from the predicates Gg, Mm and Ww determines a unique
predicate q in the family Q. With some algebra we can obtain the relations

aGgm = c2g+m, aMmw = c2−m−2w+4wm, aWwg = c1−w+g+2wg. (5.50)

So while we were considering 4 independent exponents in all three analogy
partitions, these exponents must all coincide with the same set of 4 exponents
cq. The priors over the analogy partitions that may be taken to underly the
prior over B are thus limited in a specific way: their exponents must conform to
the corresponding values of the cq. The number of free exponents in the models
for explicit similarity is thus reduced, so that the representation problems of the
preceding paragraph are avoided.

Combining the explicit similarity models. Now consider the relation between
the exponents in the analogy priors and the exponents rvw in the prior over B.
It can be noted that the values of aGg, aMm and aWw are implicit to the values
of cq and rvw in an analogical prior over B, according to the relations (5.50) and
the further relations

r2g,2g+1 = aGg − aGg0 − aGg1, (5.51)

rm,2+m = aMm − aMm0 − aMm1, (5.52)

r1−w,2+w = aWw − aWw0 − aWw1. (5.53)
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This means that we may encode the values of aGg, aMm and aWw in a prior
over B relative to a choice for the exponents aGgm, aMmw and aWwg.

The above equations specify how the exponents in the prior over B relate to
the exponents in the priors over the analogy partitions. We can now concentrate
on the function of the exponents in the priors over the analogy partitions in
expressing relevance relations. First consider aGg, aMm and aWw. Their values
are directly related to the average relevances ρḠ, ρM̄ and ρW̄ according to

ρḠ = aG0 + aG1,

ρM̄ = aM0 + aM1, (5.54)

ρW̄ = aW0 + aW1.

Any vector of relevance relations ρ thus determines the values of the sums on the
right side of the equations (5.54). Moreover, by fixing these sums of exponents
we also encode the given relevance vector in the prior up to averages for the
pairs of relevance relations, because we can write

ρG = ρM̄ + ρW̄ − ρḠ,

ρM = ρW̄ + ρḠ − ρM̄ , (5.55)

ρW = ρḠ + ρM̄ − ρW̄ .

Thus the average size of the relevance among predicate pairs is implicit to the
pairwise sums of the exponents aGg, aMm and aWw.

Overspecification. Unfortunately, if we combine the priors of the analogy par-
titions into a single prior over B we run into a problem. As indicated, the size
of ρG is encoded in the sizes of pairwise sums of exponents, to wit aG0 + aG1,
aM0 +aM1 and aW0 +aW1. But if we follow the relations that hold in the model
for explicit similarity, the sizes of ρG0 and ρG1, and thereby of ρG, are also de-
termined by equation (5.8). With equations (5.34) and (5.35) these are in turn
determined by the exponents cq, and the ratios aG0/(aG0+aG1) and aG0/(aG0+aG1).
The thing to note is that these exponents and ratios are independent of the size
of aG0 + aG1, or of any other such pairwise sum. So the size of ρG seems to
be doubly encoded in the combined analogy prior over B: once by the pairwise
sums, and once by the exponents and ratios. The same can be said of the aver-
age relevances ρM and ρW . So the prior cannot encode all the relevances that
we wish, since there are too few free parameters left once they are restricted to
agree on the sizes of the average relevances.

In other words, restriction (5.50) leads us into a problem after all. The
number of free exponents in the separate analogy models matches the number
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of free exponents in the combined model, but somehow the restrictions chosen
do not allow us to straightforwardly generalise the separate analogy models.

5.5.3 Tentative solution

Selective generalisation. The above combination procedure need not be con-
sidered as a complete failure. A more constructive reading is that the general
model is not in all aspects a generalisation of the model for explicit similarity,
and that only specific aspects of the explicit similarity model can be taken over
into the general one. The following exposition runs along this line. It simply
assumes that the pairwise sums of exponents fix the pairwise averages of the
relevances according to equations (5.54) and (5.55). With this kept fixed, the
analogy prior incorporates initial probabilities and learning rates as well as pos-
sible. After that, the remaining parameter freedom is used to pin down the
differences between the pairs ρGg, ρMm, and ρWw.

It must be stressed that this subsection is rather speculative. Within the
limits set by the assumption of equations (5.54) and (5.55), it presents a model
that is constructed by playing with the analogy priors and predictions in the
program Mathematicatm. Specifically, I have looked at the influence of varying
exponents in the prior on the predictions for a number of numerical examples.
The examples of the next section may give some justification for the eventual
model, but I am convinced that a derivation of some general model is possible.
I have unfortunately not been able to find it.

Constructing an analogy prior. As for the values of γq and λ in relation to
the analogical prior over B, I will make two simplifying assumptions. First, we
may assume that the values of the exponents aGg, aMm and aWw are pairwise
identical:

aG0 = aG1, aM0 = aM1, aW0 = aW1. (5.56)

With equation (5.54) and assumption (5.56), the exponents aGg, aMm and aWw

are determined completely. The idea behind the assumption is that we force
the resulting initial predictions to be at least close to symmetric. Specifically,
in all the priors over analogy partitions that may underly the prior over B,
the exponents that concern the leading predicate are equal. At the end of the
next section I return to the approximated initial symmetry resulting from that
assumption.
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The second assumption concerns the learning rate λ. As in the Carnapian
framework, it is given by the total number of virtual observations:∑

q

cq = λ. (5.57)

In the analogy model, the value of λ is related to the rate at which the size
of the analogy effects diminish over time. But it does not straightforwardly
select a specific learning rate. There is a sense in which the learning rate λ is
also an expression of relevance. The larger λ is, the slower the prediction of an
observation of Qw diminishes with the observation of Qv. It therefore seems
natural to choose

λ =
ρG + ρM + ρW

3
. (5.58)

At the end of the next section I shall return to the exact function of λ in the
analogy prior, and consider variations on the value assumed here.

Certain aspects of the relevance relations remain to be captured in the prior
probability assignment, namely the differences between the relevances within
the pairs, such as between ρG0 and ρG1. Further, the only freedom left in
the parameters of the prior is in the division of the total number of virtual
instances λ over the separate cq. Note that we must fix three such differences,
for which we have exactly three free parameters available. The above discussion
makes clear that we cannot simply employ the relation (5.46) to fix the ρGg

separately. However, we may be able to employ this relation to connect the
difference between the relevances ρG0 and ρG1 to the exponents cq. The idea
here is that instead of carrying over the relation (5.46) into the general model,
we may be able to carry over a weaker relation that can be derived from it.

Taking the difference between ρG0 and ρG1 as the example case, and using
the fact that aG0 = aG1, we can write

ρG0 − ρG1 = 2(r23 − r01)

= 2(c2 + c3 − c0 − c1), (5.59)

which exactly meets this desideratum. In the same way we can write for the
other two pairs of relevances

ρM0 − ρM1 = 2(c1 + c3 − c0 − c2), (5.60)

ρW0 − ρW1 = 2(c0 + c3 − c1 − c2). (5.61)

With these three relations, we have completely fixed the values for the exponents
cq. And because of the relations (5.51), (5.52) and (5.53), we thereby also fix
the values for the exponents rvw.
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Overview of the model. We have now completed the construction of the anal-
ogy prior on the basis of a vector of relevance relations, initial symmetry and
a learning rate. Let me summarise the procedure. If we are given a vector of
relevance relations ρ, we first calculate the averages ρG, ρM and ρW . With these
averages, equations (5.55) and (5.54), and assumption (5.56) we can then deter-
mine the exponents aGg, aMm and aWw. The assumption ensures approximate
initial symmetry. With assumption (5.58) and equations (5.59) to (5.61) we can
subsequently determine the values for the exponents cq. Here the assumption
relates to the rate at which the analogy effects diminish. Finally, using equations
(5.50) to (5.53) we may finally fix the exponents rvw.

Before investigating some properties of the proposed model, it is important
to stress again that this model is in many ways incomplete. For one thing, I
have not proposed any relation between relevance relations and analogy priors
for cases in which the aforementioned assumptions are violated. Because of this,
many analogy priors cannot be linked to a relevance vector. However, I must
leave a more complete model to future research.

5.6 Qualitative and numerical characterisations

In this section I describe the general analogy model further. First I discuss the
analogy priors by considering their form on an analogy partition, after which I
can relate the priors to so-called hyper-Carnapian models of analogical reason-
ing. Finally I provide some numerical examples of analogical predictions.

5.6.1 The form of the analogy priors

Nonfactorisable priors. It is instructive to consider the general analogy prior in
its functional form over one of the analogy partitions, for example over AG. Re-
call that this partition falls into three orthogonal subpartitions: one concerning
the predicate family G, associated with the exponents aGg, and two concerning
the predicate family M conditional on G0 and G1, associated with the expo-
nents aG0m and aG1m respectively. Analogy effects between the predicates Q2g

and Q2g+1 may then be captured by Dirichlet priors over the separate subpar-
titions: by choosing aGg0 + aGg1 larger or smaller than aGg we can make the
relevance between Q2g and Q2g+1 larger or smaller than the relevance between
pairs of predicates that do not have the gender in common. These differences
between the Dirichlet priors correspond with the terms (θ2g + θ2g+1)r2g,2g+1 in
the general analogy prior. If the latter are the only analogical terms in the prior
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over B, the prior can be factorised into separate functions over the orthogonal
subpartitions of AG, and thus can be dealt with completely independently.

Now imagine that, starting from a product of Dirichlet priors over AG, we
want to express additional relevance relations between predicates of different
gender. Intuitively, we want the prior probability over AG to be such that, if we
update the probability over the hypotheses concerning the family M conditional
on G0, we implicitly update the probability over the hypotheses concerning
the family M conditional on G1, and vice versa. In other words, we must
relate the independent Dirichlet parts of the prior probability. The thing to
note is that such relations are exactly realized by the additional terms in the
prior over the analogy partition corresponding to the terms (θv + θw)rvw with
v = 0, 1 and w = 2, 3. As an example, consider a relevance relation between
Q0 and Q3. This is associated with the term (θ1 + θ3)r13 in the general analogy
prior. The translated term, (αG0αG01 +αG1αG11)r13 , relates the priors over the
subpartitions in the appropriate way. Note finally that because of such terms,
the resulting prior cannot be factorised into separate functions over orthogonal
subpartitions anymore.

Hyper-Carnapian rules. There is yet another way to illustrate the role of the
analogical terms in the general model, which connects to the hyper-Carnapian
analogical prediction rules of Skyrms (1993) and Festa (1997). Leaving aside
the underlying relevance vector and the initial probabilities for the moment,
consider the role of the analogy term in the following prior:

p(Hθ) ∼ θ0θ1θ2θ3(θ2 + θ3)

= θ0θ1θ
2
2θ3 + θ0θ1θ2θ

2
3. (5.62)

This prior consists of two parts, which can each be associated with a λγ predic-
tion rule prλγ(nQq, nQ) of equation (5.18). Both these rules have λ = 9, but the
initial probabilities γq vary. For the first term we have γ2 = 1/3 while γq = 2/9
for q 6= 2, while the second term entails γ′3 = 1/3 while γ′q = 2/9 for q 6= 3.
The predictions resulting from the above prior are therefore a mixture of two
λγ rules, one using γq and one γ′q.

Such mixtures are called hyper-Carnapian prediction rules. For the predic-
tions generated by the above hyper-Carnapian rule we can write

p(Qq
n+1|En) = p(Hλγ |En)prλγ(nQq, nQ) + p(Hλγ′ |En)prλγ′(nQq, nQ), (5.63)

where the hypotheses Hλγ have likelihoods given by the rules prλγ . It can now
be seen that the hyper-Carnapian rules capture analogical considerations. On
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the observation Q3, the rule is adapted in two ways: first the two λγ rules are
adapted to enhance the probability for future observations of Q3, but the update
over the hypotheses also enhances the probability of the rule for which Q3 has
a higher initial probability. This latter update does not affect the probabilities
for future observations of Q0 or Q1, but it does lower the probability for Q2 to
raise that of Q3. This is exactly the kind of analogy effect that may be expected
from the term (θ2 + θ3) in an analogy prior.

5.6.2 Numerical examples

Predictions deriving from the general analogy prior cannot usually be written
down in any simple analytic form. While positive exponents rvw can still be cap-
tured in terms of extended hyper-Carnapian rules, negative analogy exponents
seem to make analytic expressions impossible. The remainder of this section is
concerned with two examples of general analogical predictions, making use of
the numerical integration module of Mathematicatm. I present the examples to
show that the predictions generated by the general model agree with the pre-
dictions that can be expected on the basis of the relevance relations. For the
sake of easy calculations I focus on examples with natural numbers.

Symmetric relevance. The first of these examples is the simpler one, as it has
some inherent symmetries. Consider the following relevance vector:

ρ = 〈ρG0, ρG1, ρM0, ρM1, ρW0, ρW1〉 = 〈28, 8, 22, 22, 14, 14〉. (5.64)

To calculate the exponents of the analogy partition, note that ρḠ = 18, ρm̄ = 16
and ρW̄ = 20, so that aGg = 9, aMm = 8 and aWw = 10. Furthermore,
note that

∑
q cq = 18, and c0 + c2 − c1 − c3 = c1 + c2 − c0 − c3 = 0, while

c0 + c1 − c2 − c3 = 10. It follows that c0 = c1 = 7 and c2 = c3 = 2, and with
that it follows that r01 = −5, r23 = 5, r02 = r13 = −1 and r12 = r03 = 1. The
analogy prior is thus completely specified. This prior leads to the predictions
given in the table. To illustrate the analogy effects, the table shows the initial
probabilities, and the predictions after 10 observations of the same predicate Qq

for each q. I abbreviate Eq
10 = Qq

1 ∩Qq
2 ∩ . . . ∩Qq

10.
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Predicate q 0 1 2 3
p(Qq

1) 0.250 0.250 0.250 0.250
ρ(0, q) - 28 22 14
p(Qq

11|E0
10) 0.482 0.197 0.175 0.146

ρ(1, q) 28 - 14 22
p(Qq

11|E1
10) 0.197 0.482 0.146 0.175

ρ(2, q) 22 14 - 8
p(Qq

11|E2
10) 0.171 0.151 0.583 0.096

ρ(3, q) 14 22 8 -
p(Qq

11|E3
10) 0.151 0.171 0.096 0.583

A number of things may be remarked on these results. First, the initial prob-
abilities are only approximately symmetric. Rounded off they are the same, but
they differ from each other at the fifth decimal. The analogy terms associated
with G, to wit (θ2g + θ2g+1)r2g,2g+1 , normally cancel the differences between the
exponents c2g + c2g+1 for g = 0, 1. But the analogy terms related to M and W

interfere with these terms and cause minor imbalances. Second, it is notable
that the predictions respect the ordering of the relevance relations. Moreover,
the predicates Q0 and Q1 gain less probability from their own occurrences than
the predicates Q2 and Q3, which is in line with the fact that the latter are on
average less relevant to other predicates than the former. Unfortunately, the
differences between the predictions are not in any way linear in the differences in
relevance. Third, there is perfect symmetry between predicates of equal gender,
Q2g and Q2g+1. This can be seen from the fact that the prior probability is
invariant under permutation of these predicates. It is therefore not surprising
that the predictions of the first and the second two lines are identical up to this
permutation.

No symmetries. The second example breaks with this symmetry. Consider the
following vector of relevance relations:

ρ = 〈28, 8, 20, 24, 16, 12〉. (5.65)

This example also has ρḠ = 18, ρm̄ = 16 and ρW̄ = 20, so that again aGg = 9,
aMm = 8, aWw = 10 and

∑
q cq = 18. But the example further has c1 + c3 −

c0 − c2 = 2, c1 + c2 − c0 − c3 = 2, while again c0 + c1 − c2 − c3 = 10. It follows
that c0 = 6, c1 = 8 and c2 = c3 = 2, and with that it follows that r01 = −5,
r23 = 5, r02 = 0, r13 = −2 and r12 = 2, r03 = 0. This completely specifies the
analogy prior, and we may again consider the predictions after Eq

10.
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Predicate q 0 1 2 3
p(Qq

1) 0.252 0.248 0.250 0.250
ρ(0, q) - 28 20 12
p(Qq

11|E0
10) 0.499 0.193 0.169 0.139

ρ(1, q) 28 - 16 24
p(Qq

11|E1
10) 0.199 0.466 0.154 0.181

ρ(2, q) 20 16 - 8
p(Qq

11|E2
10) 0.168 0.154 0.582 0.096

ρ(3, q) 12 24 8 -
p(Qq

11|E3
10) 0.147 0.172 0.097 0.584

More or less the same remarks can be made on these results. The main
thing is that the predictions still respect the ordering in the relevance relations,
and that the probability that predicates gain from their own occurrence is still
dependent on the average relevances. Note further that the symmetry in the
initial probabilities is more disturbed than in the first example. Finally, note
that the symmetry between predicates of equal gender is broken. With this
relevance vector, Q0 is on average less relevant to the other predicates than
Q1. In line with this, the predicate Q0 gains more probability from its own
occurrence than Q1. This effect is almost absent for Q2 and Q3, but again the
model is not exactly correct.

5.7 Other models of analogical predictions

Let me briefly compare the resulting models for analogical predictions with some
other models in the literature. First I relate the present model to a number of
alternative prediction rules from Carnap-Hintikka inductive logic. After that I
consider the hyper-Carnapian systems by Skyrms and Festa, and finally I turn
to the model of Maher.

Carnap-Hintikka inductive logic. The general aim in Carnap-Hintikka inductive
logic is to derive a class of prediction rules from a number of natural assumptions
or principles. One of these principles then is an expression of analogy by sim-
ilarity, other principles may be regularity, exchangeability, the convergence to
relative frequencies, initial symmetry with respect to predicates, positive prob-
ability for confirmed universal generalisations, and instantial relevance. Combi-
nations of these principles are employed in the derivation of classes of analogical
prediction rules.
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It is instructive to position the present models in terms of these principles.
First, the above model trivially satisfies regularity: none of the finite sequences
of observations are deemed impossible from the onset. Second, the predictions
deriving from the general model are by definition exchangeable, and therefore
show convergence to eventual relative frequencies in the sequence of observa-
tions, if there are any. This can be seen from the fact that the models are defined
by probability assignments over the partition B, and by the standard conver-
gence results derived for this partition. Third, initial symmetry of predicates
can in principle be obtained by choosing the analogy prior over B appropriately.
But as we have seen in the foregoing, encoding both a vector of relevance rela-
tions and initial symmetry in the analogy prior is not straightforward. Finally,
the above model does not give positive probability to universal generalisations.
Hypotheses Hα have infinitesimal probability, since the probability is always
distributed over a continuum of hypotheses A. The infinitesimal probability
is thus also assigned to those Hα in which one or more components of α are
extremal. However, there is a rather natural extension of the above schemes in
which these sets are given strictly positive measure. Universal generalisations
are certainly not excluded by the above models.

The principle of instantial relevance must be given separate attention. It is
noteworthy that instantial relevance need not always be satisfied for predictions
resulting from a prior over B. This principle may be violated exactly because
the prior probability over the hypotheses space A need not be factorisable into
independent marginals. In terms of the example, we may consider the presence
of wives much more probable than that of maidens if there are very few women
in the party centre, while we may consider the presence of maidens much more
probable than that of wives in the case that there are very few men. Now,
observing a wife in the party centre has a combined effect: first of all it makes the
presence of women more probable, and within the group of women it shifts the
probability from maidens to wives. However, it may happen so that the former
effect is much stronger than the second: after a single woman we hardly expect
any further men. But because maidens are considered much more probable than
wives if there are hardly any men, the probability of maidens may eventually
benefit more from observing a wife than the probability of wives itself. It is
not difficult to construct the prior that encodes the above effects numerically.
However, I have not been able to check whether there are such priors in the
class of analogy priors defined above. Moreover, because predictions defined on
B always converge to the correct relative frequencies, the effect sketched above
is necessarily a short term one.
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Finally, consider the relation between the analogy model and Carnap-Hintik-
ka inductive logic more generally. Recall that a special case of the analogy model
is presented by a system of λγ rules that models explicit similarity effects. In
turn, these systems of prediction rules have the single Carnapian λγ rule as
special case. The model may therefore be considered as an extension of Carnap-
Hintikka inductive logic. However, in contrast to the direct prediction rules of
this logic, the predictions of the general analogy model can only be arrived at
by numerical approximation of an integration over statistical hypotheses. Fur-
thermore, while the model consists of a class of analogy priors, there is no claim
that this class is somehow the definitive explication of analogical reasoning. In
these ways the general analogy model falls outside Carnap-Hintikka logic.

Skyrms and Festa. Let me now turn to the models for analogy reasoning by
Skyrms and Festa, which employ hyper-Carnapian prediction rules. The idea
of such rules originates from Skyrms, but Festa explores the rules further to
define a proper class of analogical prediction rules. The standard illustration
involves a wheel of fortune with four equally large segments, labelled with the
four quarters of the compass. At every turn in a direction chosen at random,
the chance of stopping at some segment is unknown but constant. It is further
given that the axis of the wheel is slightly eccentric. Finding the wheel in some
segment will favour this segment in next predictions, but it will on the whole also
favour the two neighbouring segments in comparison to the opposing segment.
The hyper-Carnapian prediction rule proposed for this is a mixture of four λγ

rules. The rules have equal λs, and for each of them the γs of the segments
are chosen as 1

2 for the segment favoured by the bias, 1
5 for the neighbouring

segments, and 1
10 for the opposing one. The rules differ in that each of them

has its own favoured segment. As it turns out, the resulting predictions then
show similarity effects between all pairs of neighbouring segments. That is, if
we find an instance of north, east and west are favoured more than south, and
so on.

The hyper-Carnapian models are similar to, but also different from the
present analogy models. They provide alternative ways for defining analogy
priors over the partition B, and in the specific case in which the analogy terms
have positive exponents, the present analogy model is also a kind of hyper-
Carnapian model. However, this correspondence fails for priors with negative
analogy exponents rvw. Furthermore, I see a difficulty in making sense of the
prior probability proposed by hyper-Carnapian rules, which is related to the
difficulties noted in Maher (2000, 2001). On the partition B, hyper-Carnapian
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rules are defined as mixtures of Dirichlet priors. After an observation we must
update every Dirichlet distribution separately, and apart from that we must
adapt the weights assigned to these different distributions according to the pre-
dictions that the separate distributions generate. But assigning probabilities
to Dirichlet priors seems rather unnatural. Such probabilities cannot be inter-
preted as probabilities over hypotheses, but must really be seen as probabilities
assigned to different priors over the hypotheses, that is, as a kind of second-
order probability. And if we can also define analogy priors by means of a single
probability function over one space of hypotheses, introducing such higher order
probabilities seems a high price to pay.

The model of Maher. Finally, some attention must be given to the model for
analogical predictions proposed by Maher. This model is again similar to the
present model in important respects. It generates predictions on Q-predicates
by defining an analogy prior over the partition B, and moreover, it employs un-
derlying predicates such as G and M in the definition of this prior. A drawback
is that the model of Maher is limited to two underlying predicate families. Ma-
her uses these families for defining a set of hypotheses within the partition B for
which the families are statistically independent. While a Dirichlet distribution
over B assigns zero probability to this set, Maher assigns a positive probabil-
ity to it. He shows that conditional on the independence, the predictions on
Q-predicates can be represented as a product of λγ rules for the underlying
predicates. He further derives a single λγ rule conditional on the dependence of
the underlying predicates. The prediction rule generated by the combined prior
over B is a mixture of this single λγ rule and the product of the two λγ rules
for the underlying predicates.

As said, the model of this chapter has a lot in common with this model.
However, the model of Maher does not employ the possibilities with underlying
predicates completely. It uses predictions concerning such predicates on the
condition that they are independent. By contrast, the model for explicit anal-
ogy also employs hypotheses concerning underlying predicates on the condition
that these predicates are statistically dependent. The present model generalises
this to incorporate dependencies between all three predicate families that may
underlie the four Q-predicates. Moreover, there are no principal problems with
defining analogy priors for predictions on larger numbers of Q-predicates.

Advantages of the present model. Let me emphasise some of the advantages
of the models presented in this chapter, when compared with other models in
the literature. First, the models of this chapter show analogical predictions as
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the result of a Bayesian scheme using hypotheses. As argued in the first part
of this thesis, the Bayesian scheme ensures that the predictions are valid, and
clearly reveals the inductive assumptions underlying these predictions. Second,
and as shown in the preceding chapter, the present models allow for general-
isations to more predicate families. Third, and as elaborated in this chapter,
the models provide access to the inductive relevance vector that is inherent to a
prior probability assignment over the algebra. This latter feature is also present
in Kuipers (1984), but both Festa (1997) and Maher (2000) fail to provide any
such connection between analogical prediction rules and relevances.

5.8 Conclusion

Summary and moral. This chapter presents a Bayesian model for exchangeable
analogical predictions. First relevance relations were characterised, and related
to the models for explicit similarity of the preceding chapter. Then the chap-
ter presented a scheme that employs hypotheses on Q-predicates for generating
predictions. Exchangeable predictions for Q-predicates were represented with a
prior over the partition B. It was shown how the Q-predicates may be trans-
lated in combinations of underlying predicates G, M and W . The partitions of
hypotheses concerning these predicates, denoted AG, AM and AW , were seen
to be equivalent to the original partition B. Dirichlet priors over the separate
parts of these partitions capture the exchangeable analogical predictions for ex-
plicit similarity. Transforming these priors back to the partition B suggested a
form for a general analogy prior over this latter partition. Finally, the chapter
proposed a relation between relevance relations and this prior on the basis of
the relevance relations expressed in the explicit similarity model.

In closing, let me draw a general moral from the above models. It is that
some of the problems in defining analogical predictions within Carnap-Hintikka
inductive logic may be solved by shifting perspective twice. The first shift
concerns the use of statistical hypotheses, and the explicit use of Bayes’ rule
in accommodating observations. That is, we represent prediction rules with a
Bayesian update over hypotheses. In this perspective, exchangeable rules can be
characterised with a prior over the partition B. But the priors that lead to ana-
logical predictions are hard to define in the parameter space associated with B.
In the second shift, this difficulty is solved by transforming the partition B into
the analogical partitions, which have a differently structured parameter space
but are otherwise equivalent. These parameter spaces supply the conceptual
means for defining priors that lead to analogical predictions.
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Bayesian logic and the Carnapian programme. Let me concentrate on the first
perspectival shift. It concerns the logical framework of analogical predictions.
It illustrates that Carnap-Hintikka inductive logic can be viewed as part of a
wider logic of inductive Bayesian inference, as developed in chapters 1 to 3.
In this logic of inductive inference, validity is determined exclusively by the
probability axioms, which here include Bayesian conditioning. Further, the
inductive relevance of observations for each other is not inherent to the choice
of language and the assumption of some further principles. Instead the inductive
relevance is inherent to a partitioning of the observation algebra into statistical
hypotheses and a prior probability assignment over this partition. If we are given
the observational algebra, we have complete freedom in choosing these inductive
assumptions. I believe that both the expression of inductive assumptions in a
partition of hypotheses and the neutral way of incorporating observations into
the inductive methods present valuable conceptual advantages.

While this offers a useful perspective on analogical predictions, I am aware
that it also masks one of the intentions of Carnap-Hintikka inductive logic. This
intention is to present a normative theory of inductive predictions from first
principles. If this intention is applied to the problem of analogical predictions,
it is to provide a class of rules resulting in predictions that conform to a certain
characterisation of analogy, and that are logically valid. By contrast, this chap-
ter only presents some examples of Bayesian models for analogical predictions.
For those who do not share the intentions of Carnap-Hintikka inductive logic,
the examples may already suffice: they are exemplars for models for analogical
predictions. But from the standpoint of Carnap-Hintikka inductive logic itself,
the above examples can perhaps best be taken as providing a framework and
some starting points for a further normative discussion.

Using transformations between partitions. Concentrating on the second shift,
note first that the use of underlying predicates follows quite naturally from the
model for explicit similarity, as given in the preceding chapter. It is perhaps
hard to come up with a transformation of the partition B into, for example, AG

if there is no independent reason for thinking of the partition AG in the first
place. On the other hand, it is strictly speaking inessential what the partition
on underlying predicate families refers to. The transformation procedure from
the predicate Q to underlying predicates can simply be taken as a formal tool
for expressing relations between the Q-predicates. Similarly, we do not need a
natural and independent description of resulting Q-predicates in order to employ
explicit similarity relations in predictions over underlying predicates.
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Another aspect of the second perspectival shift is more important for the
general line of this thesis. In chapter 3 I have argued that the Bayesian scheme
offers a better control over the inductive assumptions inherent to inductive
predictions, by linking these assumptions to the choice of a partition. But this
chapter and the preceding one reveal another advantage of the Bayesian scheme.
It is that the scheme, once the partition has been chosen, allows us to express
further inductive assumptions in a specific prior probability function over the
partition. And for this we are free to transform the partition in such a way
that the function becomes more easily accessible. Thus, not only the choice of a
partition is a tool for making inductive assumptions, the partition itself is also a
tool in defining a prior over the partition, which may express further inductive
assumptions. I refer to chapter 9 for a further discussion of this idea.





6

Inductive Inference for Bayesian Networks

This chapter provides a scheme for inductive inferences concerning exchangeable
observations of variables in a given Bayesian network. It presents the tools
for determining the probabilities and conditional probabilities associated with
the nodes and edges of a given network on the basis of these observations. It
further offers simple expressions for predictions over the variables, relative to
some assumptions on the observations and the dependency structure laid down
in the network. Finally, the chapter signals a specific problem with representing
dependencies in a Bayesian network. This leads to a distinction between so-
called causal and inductive independence.

This chapter can be read independently of all preceding chapters. However,
there is an intimate connection between this chapter and the two chapters on
analogical predictions. Next to a model for predictions on Bayesian networks,
this chapter provides a general treatment of the mathematics underlying the
use of hypotheses in making analogical predictions. The resulting models for
Bayesian networks are structurally similar to the models for analogical pre-
dictions. The difference is that here the observation algebra using underlying
predicates is generalised, and the hypotheses are defined in terms of the selection
functions of chapter 2. This chapter thus provides a deeper and more general
underpinning for the models of analogical predictions.

6.1 Induction and Bayesian networks

Bayesian networks. A Bayesian network is a convenient tool in representing
a multivariate probability distribution. Consider a range of variables Rk with
k = 1, 2, . . . , n, and a probability distribution p(R1, R2, . . . , Rn). Each vari-
able Rk may be assigned values rk, and for simplicity these values are binary
numbers, rk = 0, 1. A complete representation of the probability distribution
over the variables is then given by a number of 2n probabilities p(r1, r2, . . . , rn),
under the restriction that these probabilities sum to 1. Marginal probabili-
ties like p(Rk) and marginal conditional probabilities such as p(Rk|Rk′) can all
be derived from this complete representation. However, as the number of in-
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dependent probabilities grows exponentially with the number of variables, the
representation of the probability distribution is rather cumbersome.

It may happen that we know of specific independencies between variables.
For example, we may know that

p(R1|R2, . . . , Rn) = p(R1|R2) (6.1)

This means that if we know r2, we do not learn anything more on r1 by also
learning rk for any k > 2. Note that this is not to say that p(R1|Rk) = p(R1)
for 2 < k ≤ n, that is, R1 is not necessarily independent of all other Rk. It may
be that Rk contains information on R2, and thus implicit information on R1.
However, if we also know that

p(Rk|R1, . . . , Rk−1, Rk+1, . . . Rn) = p(Rk), (6.2)

for all k > 2, such additional dependencies are absent. In that case, all Rk with
k > 2 are completely independent of each other.

Independencies such as those exemplified above may be used to simplify the
representation of the probability distribution over the variables Rk. Causal net-
works provide a systematic way of doing so. The reader may consult Lauritzen
and Spiegelhalter (1988) for a clear discussion, or Pearl (2000) for references to
a more detailed discussion on Bayesian networks. This chapter assumes famil-
iarity with Bayesian networks as introduced there.

Medical example. The specific dependency structure sketched above serves as
the leading example of this chapter. To illustrate this structure, let me provide
a Bayesian network associated with it, and an interpretation of the variables
R1, R2 and Rk for k > 2. As for the latter, we may imagine a medical doctor
who is screening individuals for a symptom R1. This variable is assigned 1 if
the symptom obtains and 0 otherwise. The doctor also tests the individuals for
a disease that is causally related to the symptom. The test result R2 is fully
reliable, and comes out 1 if the disease obtains and 0 otherwise. In her log
the doctor further categorises each of the individuals by means of a number of
binary conditions, denoted Rk with k > 2, all of which are known to be causally
irrelevant to, and thus independent of, the symptom R1 and the disease R2.
The probability distribution expressing her beliefs concerning the variables Rk

then exactly matches the independence relations (6.1) and (6.2).
The dependency structure given in these relations may be associated with

a Bayesian network as depicted in 6.1. Relative to this network, the probabil-
ity distribution can be determined by independent distributions p(Rk) for all
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R1 

R2 

R3 Rn. . . .

Figure 6.1: The Bayesian network for the variables Rk of the example. All variables are

independent, except for R1 whose values probabilistically depend on R2.

k > 1, and by the conditional probabilities p(R1|R2). It may be noted that the
direction of the arrow between R1 and R2 is not determined by the dependency
structure, as laid down in the probability distribution p. Rather it is determined
by the order in the variables Rk that is chosen for constructing the network, as
discussed in Pearl (1989: 125-126). As suggested in the foregoing, the directed
arrows in the network may be interpreted as pertaining to causal relations be-
tween the variables. Depending on the interpretation of these variables, some
orders in the variables may therefore be considered more natural than others.

Aim of this chapter. This chapter is concerned with repeated and exchangeable
observations of complete valuations of all node variables Rk. In terms of the
example, it is concerned with screening and categorising individuals. Its primary
aim is to present a scheme for inductive inferences on observations of nodes,
conditional on a dependency structure as expressed in a Bayesian network, but
in the absence of probabilities associated with the nodes and edges. That is,
when given the network and some observations, the scheme is supposed to fill
in the most likely probabilities of the nodes and the conditional probabilities
of the edges. A further aim is to derive predictions on observations of nodes,
both unconditional and conditional on the observations of other nodes. But this
can only be done sensibly after the probabilities for nodes and edges have been
estimated.

It cannot be emphasised enough that the aim of this chapter differs from
the aim of most other studies that concern Bayesian networks. The following
does not have the object, more common in artificial intelligence, to derive the
most probable network structure on the basis of observations. See Bacchus and



158 CHAPTER 6. INDUCTIVE INFERENCE FOR BAYESIAN NETWORKS

Lam (1994), Tong and Koller (2001), and their references for a more elaborate
discussion. Also, the following does not primarily aim at predictions, for a single
individual, of a node variable on the basis of valuations for other nodes, and
given probabilities for nodes and edges. In the following, such probabilities are
not yet given.

It seems that inductive inference on the basis of a fixed network structure
but without fixed probabilities in the network has received little direct attention.
On the other hand, much of more general mathematical statistics can readily
be applied to this problem, and perhaps mathematical statisticians have con-
sidered the application to be too obvious to merit separate consideration. From
the side of Bayesian inductive logic, however, things look a bit different. One
interesting aspect is that Bayesian networks may be connected to Carnapian
prediction rules. This may be interesting from a computational point of view,
also outside the tradition of inductive logic. Furthermore, the Bayesian scheme
of this chapter allows us to describe a specific type of inductive dependence
between nodes and edges, which cannot be captured in terms of the edges in
Bayesian networks. This reveals that caution is required when using a causal
picture to fix screening-off relations. And finally, the present treatment signals
an intimate connection between the discussion on analogy and the discussion
on probabilistic causality.

Connection to Carnapian predictions. To elaborate on the aims of this chapter,
let me briefly discuss Bayesian networks from the perspective of Carnapian
inductive logic. Note that the nodes R1 to Rn in a network determine a single
variable Q. The possible values q thereof are associated with a binary expansion
that encodes the variables Rk = rk(q) corresponding to it:

q =
∑

k

rk(q)2k−1. (6.3)

Depending on the number lx of conditional probabilities over edges that are
restricted to extremal values, or in Pearl’s words, restricted conceptually, we
have a number of 2n − lx possible values q. We can then define a probability
assignment over repeated observations of these variables that captures inductive
predictions, as for example in Carnap (1952). The problem addressed in this
chapter, if formulated in terms of such inductive predictions, is to incorporate
the specific dependencies and independencies of the network into the probability
assignment over repeated observations.

There are some problems with a Carnapian picture of inductive inferences
on Bayesian networks. First, predictions defined in terms of the variable Q
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cannot easily cope with observations concerning single nodes, or strict subsets of
nodes. Recall that a Q-predicate determines all nodes at once. In networks that
represent experimental variables, a number of the nodes in the causal picture
will typically be unobservable, so that observations only specify subsets of values
for Q. Formulated more positively, the Carnapian picture needs some additional
conceptual tools to include these disjunctions. Second, and more importantly
for present purposes, it has proved very difficult to model the dependencies, as
they are expressed in Bayesian networks, with the tools of Carnapian inductive
logic. The dependencies are in this logic associated with analogical predictions,
as will be explained below, and the problem of capturing such predictions has
been the subject of heavy debate for a long time already.

Connection to analogical predictions. I now elaborate the connection between
Bayesian networks and analogical predictions. First of all, if an observation q

has a varying impact on other observations q′, the variations may be associated
with differing relevance relations between the observations q and q′. And these
relevance relations are traditionally associated with analogy. Now to link net-
works and analogy, note that dependencies between the variables Rk will show
up in the inductive predictions over Q as differences between the impact that
an observation q has on other observations q′. For example, if the underlying
variables R1 and R2 are connected in the given network, the fact that the val-
ues r1 and r2, which are encoded in some q, often occur together is taken to
indicate something on the dependence between these two values. The repeated
observation of q then reflects positively on further observations of q, but also on
those observations q′ that encode the same specific values r1 and r2, alongside
values rk for k > 2 that differ from those associated with q. By contrast, if the
variables R1 and R2 are not connected in the network, the fact that the values
r1 and r2 repeatedly occur together is deemed a mere chance occurrence, as the
network already asserts that R1 and R2 are independent. The observation of
q then entails no additional positive impact for the other observations q′ that
encode the co-occurrence of r1 and r2.

The above considerations invite the construction of a scheme that can deal
with separate observations of variables Rk, and within which dependence rela-
tions can be expressed more easily. We can in this context draw lessons from
the debate on analogical predictions. Accordingly, the formal scheme of this
chapter allows for observations of separate observations Rk, and is based on
the model for analogical predictions developed in the preceding two chapters.
The central idea is again to model inductive inferences and predictions with
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a Bayesian update over statistical hypotheses, and to capture the dependency
relations between families Rk in terms of such hypotheses. In the following the
scheme is made precise with the specific aim of deriving Carnapian predictions
for Bayesian networks. The further aim is to show the limitations of Bayesian
networks in expressing the dependency structure. For this latter aim, the follow-
ing contains an elaborate discussion of observations and hypotheses concerning
the variables Rk.

Plan of this chapter. The plan of this chapter is as follows. Section 6.2 discusses
the inductive scheme in general. Section 6.3 defines specific hypotheses for
exchangeable predictions on independent nodes. Then section 6.4 presents some
tools for managing complicated hypotheses partitions. Section 6.5 defines a
specific partition that captures a link between nodes, and shows that the tools
can be employed for deriving Carnapian predictions. Section 6.6 discusses some
possibilities with the scheme that reveal a shortcoming in the representation of
dependencies in a Bayesian network. Finally, section 6.7 discusses how we can
apply all this to Bayesian networks more generally.

6.2 Bayesian scheme

This section introduces an observational algebra for repeated observations of the
variables Rk, and defines a general scheme for making predictions. The algebra
and the scheme are a generalisation of the notions used in the preceding two
chapters. In comparison to the schemes above, the one presented here may look
unnecessarily complicated. The preceding chapters have employed a number
of restrictions to simplify both notation and discussion. But I think that it is
important to show that none of these restrictions is essential to the schemes
themselves. In particular, the restriction on the order of the observations, as
discussed in section 4.4, is here seen to be inessential.

6.2.1 Observational algebra

Observations of R-predicates. Let me first settle some notational issues. First,
I refer to observations of Rk having value r with the term Rr

k. These valuations
concern a specific individual or experimental system, indexed i. I will refer to
the individuals by adding this index to the valuation, Rr

ki. Now we need not
assume that these observations are collected in the order of the individuals and
nodes, according to the indices i or k. For example, we may record the variable
R2 for a number of different individuals first, and record the variable R1 only
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after that. To accommodate this, I add another index t which refers to the time
of the observation. The expression Rr

kit thus refers to the observation, at time
t, that variable Rk of individual i has value r. It must be stressed that the time
index is not intended to keep track of the time evolutions in an individual. Each
variable Rk of individual i is only observed once.

Let me introduce set theoretical representations for these observations in
terms of an algebra of cylinder sets. Define the set of all possible triples (rki)
as M , and consider the space Mω of all infinite, ordered sequences u of such
observations:

u = (rki)1(rki)2(rki)3 . . . (6.4)

The elements of the infinite sequences (rki) denote the serial number i of the
individual, the number k of the variable Rk with respect to which the individual
is observed, and the value r of the variable. Every such triple determines an
observation at time t. Note that if we assume that there is no independent way
of labelling the individuals i, permuting the individual indices in a sequence
does not produce a different sequence. But in the following this redundancy is
not harmful.

An algebra for the R-predicates. The observational algebra for variables Rk is
given by all possible subsets of the space Mω. This algebra is denoted with R.
Observations Rr

kit can be expressed as elements of this algebra. If we denote
the t-th triple (rki)t in a series u ∈ Mω with u(t), we can write:

Rr
kit = {u : u(t) = (rki)t}. (6.5)

From now on observations Rr
kit refer to such subsets. Note that there is a formal

distinction between the observations Rr
kit and the values of observations (rki).

The values, represented with small letters, are triples of natural numbers. The
observations, denoted with large letters and indexed with small ones, are subsets
of Mω, and therefore elements of the algebra R.

In the same way we can represent sequences of observations St as elements
of the algebra R. These elements are determined by the ordered sequences
st = 〈(rki)1, (rki)2, . . . , (rki)t〉. Analogous to expression (6.5) we can write

Ss
t = {u : ∀t′ ≤ t (u(t′) = st(t′))}, (6.6)

in which st(t′) = (rki)t′ . Observations of R-predicates and sequences of such
observations are related to each other as follows:

Rr
kit ∩ Ss

t−1 = S
〈s,(rki)〉
t . (6.7)
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We can therefore build up the sets Ss
t by intersecting the subsequent observation

sets Rr
kit′ up until t.

Relation to Q-predicates. To map observations q of a variable Q for individual
i onto elements in the algebra R, we can employ the binary expansion of q.
Writing Qq

it for the observation, from time t onwards, that individual i has
values according to q, we can write

Qq
i = {u ∈ Mω : ∀k ≤ N : u(t + k) = 〈rk(q), k, i〉}

= {u ∈ Mω : u(t + 1) = 〈r1(q), 1, i〉} ∩

. . . ∩ {u ∈ Mω : u(t + n) = 〈rn(q), n, i〉}

=
⋂
k

R
rk(q)
ki(t+k), (6.8)

As already suggested by the construction of sequences u, every complete ob-
servation Qq

it of individual i at time t can be written down as the intersection
of such observations, of object i with respect to all separate predicate families
Rk. The observations Qq

it can thus be integrated in the algebra for observations
Rr

kit.
For later purposes, let me construct the following special sequences of ob-

servations in R:

sk = 〈r1, r2, . . . , rk〉, (6.9)

Ssk
t = Rr1

1i(t−k+1) ∩Rr2
2i(t−k+2) . . . ∩Rrk

kit. (6.10)

The vectors sk consist of k components, namely rk′ for all k′ ≤ k. They deter-
mine sequence of k observations of R-predicates. I usually omit reference to k

in the superscript, so that the string becomes Ss
ki. By sk(q) I mean the first k

components rk′(q).
One further convention will prove very useful in this chapter. Given a se-

quence of observation results st = 〈(rki)1, (rki)2, . . . , (rki)t〉, we can write down,
for all combinations of r and k, the number of times within the sequence that
an object is observed in predicate r within predicate Rk. We can denote these
numbers trk. The sum over the index r of these numbers, tk =

∑
r trk, gives

the number of times an observation concerned the predicate Rk. The ratios trk

tk

are the observed relative frequencies of the triples.

6.2.2 Hypotheses and predictions

The following contains a brief introduction to Bayesian schemes that use hy-
potheses for making predictions. It deals with belief states, hypotheses, con-
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ditioning, and predictions based on hypotheses. Comparable expositions can
again be found in Jeffrey (1984) and Howson and Urbach (1996). This sec-
tion and the following specifically focus on R-predicates, but the scheme works
exactly similarly for the Q-predicates.

Predictions from hypotheses. As indicated, beliefs are represented by probabil-
ity functions p. These functions are defined over the observational algebra R,
and thus take observations Rr

kit and sequences of observations St as arguments.
We can express full belief in the observations St in terms of the probability as-
signment p: on observing the sequence St we fix p(St) = 1. As a result of fixing
this probability, we also have to adapt the probabilities of other elements in the
observational algebra. In all of the following I assume that the probability func-
tion representing beliefs upon observing St can be constructed by conditioning
the original probability function p on the observations St:

p(·) → p(·|St). (6.11)

Both the probabilities assigned to observations, and the probabilities assigned
to hypotheses can be adapted to new observations in this way. In the following,
the probability before updating is called the prior probability, and the one after
updating the posterior probability.

The following employs conditioning over observational hypotheses to gener-
ate predictions of the form p(Rr

kit|St−1). Observational hypotheses can be seen
as elements of the observational algebra. If we assume of some hypothesis h

that its truth can be determined as a function of an infinitely long sequence of
observations u, then we can define hypotheses as subsets of Mω in the following
way:

H = {u ∈ Mω : Wh(u) = 1}, (6.12)

where Wh = 1 if and only if h is true of u. The function Wh is called the
indicator function of h. The predictions are based on so-called partitions of such
hypotheses. A partition is a collection of hypotheses D = {Hθ}θ∈D, defined by
the following condition for the indicator functions Whθ

:

∀u ∈ Mω ∃!θ : Whθ
(u) = 1. (6.13)

This means that the hypotheses Hθ are mutually exclusive and jointly exhaustive
sets in Mω. Note that the above expression refers to a hypotheses space D, while
it does not specify the dimensions or even structure of D yet. In particular it
must be noted that it is also possible to work only with a countable or finite
number of hypotheses.
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Because we are in this chapter dealing with a continuum of hypotheses,
the probability function must be a probability density p(Hθ|St−1). Using this
density and the partition, we can define predictions by means of the law of total
probability:

p(Rr
kit|St−1) =

∫
D

p(Hθ|St−1) p(Rr
kit|Hθ ∩ St−1) dθ. (6.14)

The terms p(Rr
kit|Hθ ∩ St−1) are called the posterior likelihoods of Rr

kit on the
hypotheses Hθ. The prediction is obtained by weighing these likelihoods with
the posterior probability over the hypotheses, p(Hθ|St−1)dθ.

Updating over hypotheses. The above expresses predictions in terms of the
posterior probability and the posterior likelihoods, denoted p(Hθ|St−1)dθ and
p(Rr

kit|Hθ∩St−1) respectively. Both these terms can be obtained by conditioning
on the prior probability assignments p(Hθ)dθ and p(Rr

kit|Hθ). In many cases
the likelihoods do not change upon conditioning:

p(Rr
kit|Hθ ∩ St−1) = p(Rr

kit|Hθ). (6.15)

Whenever this is so, I do not mention the term St−1 in the expression for the
likelihoods. But the invariance cannot always be taken for granted.

The dependence of the predictions on observations are further reflected in the
posterior probability over the hypotheses. This probability can be determined
by means of conditioning:

p(Hθ|St′)dθ =
p(Rr

kit′ |Hθ ∩ St′−1)
p(Rr

kit′ |St′−1)
p(Hθ|St′−1)dθ, (6.16)

Note that the denominator p(Rr
kit′ |St′−1) is equivalent to equation (6.14) with

t′ in place of t, so that this denominator can be rewritten as a function of
p(Rr

kit′ |Hθ ∩ St′−1) and p(Hθ|St′−1). The posterior probability over the hy-
potheses given St−1 can thus be determined recursively by the prior probability
function p(Hθ)dθ, and the likelihoods p(Rr

kit′ |Hθ ∩ St′−1) for all times t′ < t.
In sum, the predictions p(Rr

kit|St−1) can be generated if we assume some
partition of hypotheses D, the likelihoods p(Rr

kit|Hθ ∩ St−1) for all Hθ ∈ D
and at all times t′ ≤ t, and a prior probability distribution p(Hθ)dθ. First the
prior and the likelihoods with t′ < t can be used to determine the posterior
probability over the partition. The likelihoods are subsequently used with this
posterior probability over the partition for generating the prediction itself.
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6.3 Hypotheses on nodes

This section defines the specific partition of hypotheses that underpins exchange-
able predictions for a single variable R0, and the partition of hypotheses that
concerns multiple independent variables.

6.3.1 Relative frequencies

To illustrate the above scheme, and to prepare for later sections, I here define a
partition of hypotheses that results in Carnapian prediction rules. The scheme
is a generalisation of the schemes used in the preceding two chapters. In the
following the prediction rules are first derived for a single variable R0. At every
time t we observe Rr

0 for a different individual i, so that i = t, and every
observation is thus fully characterised with a single index r.

Bernoulli hypotheses. To characterise the hypotheses that result in exchangeable
predictions, first define the notion of the relative frequency of observations R1

0

in a sequence u,

f0(u) = lim
t→ω

1
t

t∑
t′=1

u(t′), (6.17)

assuming that this limit exists. For any infinitely long sequence of observations
u, the function f0(u) gives the relative frequency of the observations R1

0it. Note
that for a given u, the frequency f0(u) need not be defined. Note further that
the relative frequency for R0

0 is defined exactly when f0 is, and equals 1− θ.
The hypotheses Hθ can be defined by the indicator function Whθ

and equa-
tion (6.12):

Whθ
(u) =

1 if f0(u) = θ,

0 otherwise.
(6.18)

The parameter space for these hypotheses is simply θ ∈ B0 = [0, 1]. Further,
we may define Wh¬θ

= 1 if f0(u) is undefined, and Wh¬θ
= 0 otherwise. The

collection of hypotheses B0 = {H¬θ, {Hθ}θ∈B0} then is a partition of hypotheses
concerning the relative frequencies of the observations r of variable R0.

We can now provide likelihoods and a prior probability for this partition.
First we assume that p(H¬θ) = 0, which states that u has some convergent
relative frequency. The prior probability over the hypotheses Hθ can otherwise
be chosen freely. As for the likelihoods of Hθ, they may then be obtained by
taking the long run relative frequency θ as chances on the observation R1

0 at
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every single observation:

p(Rr
0it|Hθ) = θr(1− θ)1−r. (6.19)

Since r = 0 or r = 1, either of the factors on the right is 1. The relation
between hypotheses Hθ and their likelihoods is perhaps not indisputable. I
refer to section 2.4.2 for a detailed discussion. Note that the likelihoods do
not depend on the observations St−1. For this reason the predictions that result
from the partition B0 are exchangeable, that is, they are the same independently
of the order in the observations St−1.

Carnapian rules from Dirichlet distributions. The predictions rendered by the
partition B0, if supplied with a so-called Dirichlet density as prior,

p(Hθ) ∼ θ(a1−1)(1− θ)(a0−1), (6.20)

can be written down in the form of the Carnapian λγ prediction rules. Using
the numbers trk and tk defined in subsection 6.2.1, it reads

p(Rr
ki(t+1)|St) =

tr0 + γr0λ0

t0 + λ0
. (6.21)

The term t0 represents the number of observations with respect to R0 within
the sequence St, so in this case t0 = t. Further, the Dirichlet prior determines
the values λ0 =

∑
r ar and γr0 = ar/λ0. If we choose it to be the uniform

distribution, the values are γr0 = 1
2 , and λ0 = 2.

The above rule is involved in all of the following. With its introduction, it
almost seems that the use of hypotheses and conditioning is unnecessarily com-
plicated. However, in line with the general import of this thesis, the hypotheses
turn out to be a useful tool in laying down and controlling the dependence
assumptions as expressed in Bayesian networks.

6.3.2 Unconnected nodes

The following deals with hypotheses schemes concerning a number n of statis-
tically independent predicate families Rk. This scheme presents the point of
departure for constructing hypotheses schemes associated with Bayesian net-
works.

Subsequences on separate nodes. We first need to define relative frequencies
of R-predicates in the case that more than one such predicate occurs within a
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given infinite sequence u. With that aim, define, for any sequence u, a function
indicating whether at time t the observation concerns the predicate Rk:

Wk(u, t) =

1 if ∃r, i : u(t) = rki,

0 otherwise.
(6.22)

Note that, since at any time the observation necessarily concerns exactly one
such variable Rk, we have that

∑
k Wk(u, t) = 1 for any u and t.

We can now collect all those positions t at which the observation concerned
the predicate Rk in exactly the same way as in section 2.3.1:

g(u, t) = Wk(u, t)
t∑

t′=1

Wk(u, t′), (6.23)

uk(g(u, t)) = u(t). (6.24)

In words, the function g(u, t) assigns a zero to all positions t at which the
observation u(t) does not concern the predicate Rk, and at other positions t it
assigns the total number of times that observations concerned Rk up until t. The
subsequence uk is thus defined to contain only those triples in u that concern Rk,
in numerical order and starting at t = 1. The position uk(0) remains undefined.

Bernoulli hypotheses for separate nodes. Exchangeable predictions for a sin-
gle predicate can be modelled by means of hypotheses on relative frequencies.
One possible extension to more predicate families is to define hypotheses Hθ

that concern the relative frequencies of the cells in every Rk separately. The
subsequences concerning the predicates Rk can be used for this purpose. Define

fk(u) = lim
t→ω

1
t

t∑
t′=1

uk(t′), (6.25)

where uk is the subsequence of u with respect to Rk. The fk thus give the
relative frequency of the observations R1

k within the sequence uk. Again, the
relative frequency of the observations R0

k is 1− fk.
The hypotheses that generate predictions on independent predicate families

can then be defined by means of these relative frequencies:

Whθ
(u) =

1 if ∀k ≤ n : fk(u) = θk,

0 otherwise,
(6.26)

where θ is a vector in a space I of which the components θk ∈ Ik = [0, 1], so
that I = [0, 1]n. Using equation (6.12) we can define the hypotheses Hθ over
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the algebra R concerning multiple variables Rk. As in the foregoing, we can
then define H¬θ, and also the partition I = {H¬θ, {Hθ}θ∈I}.

The schemes developed in section 6.2 can employ this partition unproblem-
atically. To obtain predictions from it, we need the likelihoods of the predicates
in the separate families, and further a prior probability over the hypotheses.
The prior over the hypotheses space I is not restricted to any specific form, as
long as we assume that p(H¬θ) = 0. As for the likelihoods, they can be chosen
analogous to those for the single variable R0:

p(Rr
kit|Hθ) = θr

k(1− θk)1−r. (6.27)

For an observation in the family Rk, the relevant component of θ is θk. Note
also that the likelihoods are independent of the observations St. The resulting
predictions for any Rr

kit are therefore exchangeable.

Remarks on the partition I. It is notable that the likelihoods over the values
sum to one for all variables Rk separately. That is,∑

r

p(Rr
kit|Hθ) = 1. (6.28)

The idea behind this is that the hypotheses are not concerned with the is-
sue which variable is observed next. That is, hypotheses only determine the
probabilities of values r within a given family Rk, assuming that prior to the
observation the variable is fixed by external circumstances. It is of course possi-
ble to include this choice of variable into the likelihoods of the hypotheses, and
to predict this aspect for the observations as well. But the present chapter does
not deal with that refinement.

Note also that the parameter space I for the partition concerning multiple
independent predicate families is a product of unit intervals, [0, 1]n. For the
case of n = 3, it is simply the unit cube. Updating on some Rr

kit means that
the probability function p(Hθ)dθ over this cube must be adapted according to
expression (6.16). The predictions for Rr

kit can be calculated from the proba-
bility function over this cube according to expression (6.14). Now the natural
question is whether there is a representation of these predictions in terms of
the λγ rules, like those applicable to the simplex for a single R-predicate. This
question, however, can only be answered in the next section, when we have dealt
with marginal and conditional distributions.
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6.4 Tools for Bayesian networks

This section introduces some tools that are helpful in understanding and man-
aging the predictions for Bayesian networks. It deals with marginal and condi-
tional densities over the partition I, and derives λγ prediction rules for these
partitions based on a certain class of priors. While the partition I is the lead-
ing example, the same tools developed here can be applied to the partition for
Bayesian networks given in the next section.

6.4.1 Marginal and conditional densities

Marginal and conditional partitions. Before presenting the mathematics, let me
describe marginal and conditional densities informally. Recall that the param-
eter space I is composed of a product of spaces Ik. A marginal probability
density with respect to k is basically a projection of the probability density over
I onto one such space Ik. The probability density of the hypotheses that have
a certain value for θk are summed, and assigned to an aggregated or so-called
marginal hypothesis, which is characterised by θk alone. A conditional density,
on the other hand, is a density over all hypotheses that are included in a spe-
cific marginal hypothesis. It is a separate probability function, associated with
specific values for θk. Thus a marginal density and the continuum of associated
conditional densities together determine the density over the whole of I.

First consider the marginal partitions Ik. Let me fix the component θk of θ

to some specific value η:
θk = η. (6.29)

The parameter η runs over the same domain as θk, so η ∈ Ik = [0, 1]. We may
now define the hypotheses Hk

η in the marginal partition Ik as

Hk
η =

⋃
θk=η

Hθ. (6.30)

All hypotheses Hθ in I with the values θk = η are collected in the hypothesis
Hk

η . So whereas the hypotheses Hθ are points in the space [0, 1]n, the hypotheses
Hk

η ∈ Ik are sets of dimension n− 1 in this space.
Now consider conditional partitions Ik

η . Let ζ be the vector of those com-
ponents of θ that are not associated with the space Ik within I:

ζ = 〈θ1, . . . , θk−1, θk+1 . . . θn〉. (6.31)

So ζ is an n − 1 dimensional vector in the parameter space I1 × . . . × Ik−1 ×
Ik+1 × . . .× In. Now the hypotheses Hk

ηζ within a conditional partition Ik
η are



170 CHAPTER 6. INDUCTIVE INFERENCE FOR BAYESIAN NETWORKS

the same as the hypotheses Hθ, with the difference that the components of θk

are fixed to η. The ζ are the remaining free parameters:

Hk
ηζ = H〈θ1,...,θk−1,η,θk+1,...,θn〉. (6.32)

The partition Ik
η is thus a specific subpartition: each of them covers exactly one

marginal hypothesis Hk
η . The hypotheses Hk

ηζ provide separate command over
the vector ζ within the subspace of hypotheses Hk

η .

Probability over the marginal and conditional partitions. On the basis of a
density p(Hθ) over the partition I, we can determine the probability over the
marginal partition Ik for any k:

p(Hk
η )dη =

∫
Ik

η

p(Hθ)dθ. (6.33)

The density p(Hk
η ) is called the marginal density over Ik. Note that marginal

densities are normalised, because the density p(Hθ) is normalised. Note further
that the density p(Hθ) uniquely determines the marginal densities for all k, while
the converse does not hold: the marginal densities for the Ik do not completely
specify the underlying density p(Hθ) over the partition.

Conditional densities can also be defined over the conditional partitions
Ik

η . Such densities are defined within the conditional partitions only, and thus
present separate probability functions, here denoted pk

η. Since Hk
ηζ is just an

elaborate way of denoting Hθ conditional on Hk
η , we can write

pk
η(Hk

ηζ)dζ =
p(Hθ ∩Hk

η )dθ

p(Hk
η )dη

. (6.34)

The conditional densities pk
η(Hk

ηζ) are thus identical to the original density over
Hθ, but they are normalised within every partition Ik

η separately. For sake of
brevity, I usually suppress the indices k and η of the hypotheses if they function
as argument in pk

η.
A complete representation of the probability assignment over I can be ob-

tained by using one marginal probability over Ik, together with the associated
collection of conditional probability assignments over Ik

η :

p(Hθ)dθ = p(Hk
η )
[
pk

η(Hζ)dζ
]
dη. (6.35)

In the following it turns out to be very useful that the density over I can be
written out in these terms.
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Let me illustrate the marginal and conditional densities for I in the case
n = 3, the example of the unit cube. First, the hypotheses H1

η can be repre-
sented by squares in this cube that have θ1 = η. Further, every square θ1 = η

covers exactly one conditional partition I1
η . The points within these squares

are parameterized by 〈θ2, θ3〉 = 〈ζ1, ζ2〉. Integrating the probability over such
a square yields the probability assigned to the marginal hypotheses, p(H1

η )dη.
The probability densities within these squares, p1

η(Hζ), are the conditional den-
sities. Finally, the vector θ in the space I can indeed be reparametrized by η

and ζ, and the stipulation that η is associated with B1.
It may seem elliptical to introduce a separate notion of conditional partitions

and densities. As a terse motivation, it is useful to deal with the densities
pk

η(Hk
ηζ) as separately normalised functions. We can then operate and calculate

with these functions independently, as we do with the marginal densities.

6.4.2 Predicting and updating

The following shows that the decomposition of a density into a marginal den-
sity and a collection of conditional densities greatly simplifies predictions and
update operations over I: predictions can be derived completely from marginal
distributions, and an update operations only affects one marginal at a time.

Criterion for simplification. While the partition I is the leading example of
this section, the simplifications to be presented apply to a more general class
of partitions. The criterion is that the likelihoods of the observations have the
following form:

p(Rr
kit|Hθ ∩ Ss

t−1) = θj(s), (6.36)

where θj(s) ∈ [0, 1]. So the likelihood of observing, at some time t and for some
individual i, that the variable Rk has the value r may involve only a single
parameter component θj(s) in the parameter space. Partition I conforms to
this criterion, as it simply has j = k. But as will be illustrated in section 6.6,
meeting this criterion does not entail that the likelihoods are independent of
Ss

t−1. The index j may depend on k and on the observations Ss
t−1.

Simple predictions. The prediction of Rr
kit can be simplified using the decom-

position of partition I in terms of a marginal density over Ik and a continuum
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of conditional densities over Ik
η :

p(Rr
kit|Ss

t−1) =
∫

I

p(Rr
kit|Hθ ∩ Ss

t−1)p(Hθ|Ss
t−1) dθ

=
∫

I

θk p(Hθ|Ss
t−1) dθ

=
∫

Ik

η p(Hk
η |Ss

t−1)×

[∫
Ik

η

pk
η(Hζ |Ss

t−1) dζ

]
dη

=
∫

Ik

η p(Hk
η |Ss

t−1) dη. (6.37)

That is, the prediction of observation Rr
kit is completely determined by the

marginal density p(Hk
η |Ss

t−1).
Let me briefly explain this simplification in words. Note that for all the

hypotheses within the conditional partition Ik
η , the likelihood of Rr

kit is η. The
hypotheses within the conditional partitions therefore contribute to the predic-
tion in the same way, and consequently the conditional densities do not affect
the predictions. They can therefore be integrated out. The hypotheses from
the marginal partition, on the other hand, do have different likelihoods η for
the observation Rr

kit, so the density over this latter partition does affect the
prediction.

Simple updates. Updating the density with an observation Rr
kit can be simplified

for the same reasons. We can write, using Bayes’ rule in the first line and Bayes’
theorem in the second ,

p(Hθ|St)dθ = p(Hθ|St−1 ∩Rr
kit)dθ

=
p(Rr

kit|Hθ ∩ St−1)∫
I
p(Rr

kit|Hθ ∩ St−1)p(Hθ|St−1)dθ
p(Hθ|St−1)dθ (6.38)

=
θk∫

I
θkp(Hθ|St−1)dθ

p(Hθ|St−1)dθ

= pk
η(Hζ |St−1)dζ

× η∫
Ik

ηp(Hk
η |St−1)dη

p(Hk
η |St−1)dη. (6.39)

This shows that the update with Rr
kit only involves changes in the marginal

density over Ik. The conditional probability assignments pk
η(Hζ)dζ all remain

unchanged. The only thing that changes for them is the normalisation factor,
which becomes p(Hk

η |St)dη, but clearly this does not alter the density functions
themselves.
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It seems that the marginal densities p(Hk
η |St) over Ik function exactly as

does the density over the partition B0 described above. Both updating and
predicting follow the same formulas. However, this is not yet the same as
saying that the predictions for any variable Rk can be captured with the λγ

rule that can be derived for B0. It may still be the case that updating with
some observation Rr′

k′i′t within the family k′ 6= k, adapting the marginal over
Ik′ , implicitly alters the marginal over Ik. The reason for this is that the
densities pk′

η′ may vary along an axis belonging to Ik. Updating the marginal
density over the partition Ik′ then changes the weights given to these conditional
distributions, thus changing the marginal density over Ik implicitly. The next
subsection spells out the assumption that ensures the full independence of the
marginals.

6.4.3 A system of λγ rules

To derive λγ rules for the families Rk, we must assume that updates on ob-
servations concerning other predicate families Rk′ do not change the marginal
densities over Ik. This independence can be effected by assuming that the den-
sity over I can be decomposed into a product of marginal distributions. This
subsection spells out this assumption mathematically, after which a derivation
of λγ rules is given.

Decomposition into marginals. Let me first give the assumption on the decom-
position, or factorisability, of the prior density into marginals:

p(Hθ) ∼
∏
k

p(Hk
η ). (6.40)

This means that the functional dependence of the density p(Hθ|St−1) on the
vectors θk is determined entirely by the marginal density p(Hk

η |St−1). The con-
ditional densities associated with each of these marginal partitions, pk

η(Hζ |St−1),
are thus equal for all values of η.

This assumption ensures that the density over the marginal partition Ik,
for some specific value k, is affected only by the updates involving observations
Rr

kit. That is, an observation Rr′

k′it does not change the marginal probability
over Ik. To see that this is so, first note that

pk′

η′(Hζ |St−1)dζ =
∏

k 6=k′

p(Hk
η |St−1)dη. (6.41)

But because of this, the marginal density p(Hk
η ) is completely determined by the

conditional density pk′

η′(Hζ |St−1). We can reconstruct any marginal distribution
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p(Hk
η |St−1)dη by integrating out all the other factors:

p(Hk
η |St−1)dη =

∫
Ikk′

ηη′

pk′

η′(Hζ′ |St−1)dζ ′. (6.42)

Here I have abbreviated Ikk′

ηη′ = B1× . . .×Bk−1× η×Bk+1× . . .×Bk′−1× η′×
Bk′+1 × . . .×BN . Since the conditional densities remain unchanged during an
update with Rr′

k′it, the above expression states that the marginal density p(Hk
η )

remains unchanged during any such update.
Note that requirement (6.40) need only be assumed for the prior distribution.

Since update operations only affect one marginal at the time, the requirement
makes sure that at any later time the density over I can still be written as a
product of marginal densities over Ik.

Deriving prediction rules. The above assumption makes sure that the indepen-
dence of marginals for any values of k and k′, so that any marginal probability
p(Hk

η )dη can be updated independently. Effectively, the marginals over Ik can
be treated as entirely separate updates within the separate partitions Ik. More-
over, the predictions are determined entirely by the densities over these marginal
partitions. We can therefore derive the same prediction rules for Ik as can be
derived for the single predicate partition B0, the so-called λγ rules. This deriva-
tion hinges on two requirements: the assumption that the likelihoods for the
observations involve only single parameter components, equation (6.36), and
the further assumption that the prior density over I can be factorised into its
marginal distributions, equation (6.40).

Let me finally give the resulting system of λγ rules itself. First, we have to
assume a prior over I from the class of Dirichlet distributions:

p(Hθ) ∼
∏
k

θi1k−1
k (1− θk)i0k−1. (6.43)

This choice entails that assumption (6.40) holds for all predicate families. We
can then derive:

p(Rr
ki(t+1)|St) =

trk + γrkλk

tk + λk
, (6.44)

where the numbers trk and tk are defined as in section 6.2.1. Specifically, if we
assume that the prior probability assignment over I is uniform, the marginals
for the separate Ik are also uniform, so that the parameters become λk = 2
and γrk = 1

2 . These latter rule, known as the straight rule is in the following
abbreviated by pr∗(trk, tk).
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6.5 Capturing the links

This section presents a partition of hypotheses that can express dependency re-
lations between variables Rk. The partition is given for the dependence between
variables R1 and R2, and shown to lead to a system of λγ rules. The use of this
partition is then illustrated with some numerical results.

6.5.1 Hypotheses schemes

Intuitive idea. Let me first give a general idea of the hypotheses needed for
capturing links in a Bayesian network. These hypotheses must be such that the
observation of a value for one variable changes the probabilities for observing
values for another variable. In other words, the hypotheses that we are looking
for must allow for relations of statistical dependence between two variables. In
the example, after observing that individuals for which R2 = 1 usually also
have R1 = 1, while for R2 = 0 there seems to be no preference between R1 = 0
and R1 = 1, observing or setting R2 = 1 for a new individual must enhance
the probability for observing R1 = 1. More generally, the hypotheses involve
relative frequencies of observations R1 = r′ for exactly those individuals that
have R2 = r′′.

Conditional relative frequency. To capture this idea, I here elaborate the notion
of conditional relative frequency. First define a function that returns for all
sequences u the index of the individual i that is observed at time t,

Vi(u, t) = (001) · u(t) = (001) · (rki) = i. (6.45)

Further define for individuals i and observation sequences u a function indicating
whether individual i satisfies Rk = r somewhere in u:

Wrk(u, i) =

1 if ∃t : u(t) = rki,

0 otherwise.
(6.46)

This function determines for every u whether or not we observe Rk = r for
individual i. If the individual i is not observed with respect to Rk within u, the
function Wrk(u, i) returns 0.

The index function Vi(u, k, i) and the indicator Wrk can be used to define
an indicator that only selects those observations concerning the variable R1 for
which the observed individual i also satisfies a specific value r of the variable
R2.

W1|r2(u, t) = W1(u, t)Wr2(u, Vi(u, t)). (6.47)
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Here W1(u, t) is defined by (6.22) with k = 1. We can now define the sequence
u1|r2 of those observations concerning R1 for which the individual i under con-
sideration also satisfies R2 = r:

g(u, t) = W1|r2(u, t)
t∑

t′=1

W1|r2(u, t′),

u1|r2(g(u, t)) = u(t). (6.48)

This definition is the same as definition (6.23), with the indicator Wk(u, t)
changed for the indicator W1|r2(u, t). The function g(u, t) is again a counter,
which only selects those positions t in u that concern R1, and that further
concern an individual i for which R2 = r.

With this we can define the following relative frequencies in the ordinary
manner of definition (6.25), using the above definitions of subsequences:

f1|r2(u) = lim
t→ω

1
t

t∑
t′=1

W1(u1|r2(t′)). (6.49)

The relative frequencies for Rk having k > 1 are here denoted with fk. The
above defines the relative frequency for R1 conditional on the individuals having
R2 = r. Such a relative frequency can be called conditional.

Hypotheses for dependency relations. Note that the relative frequencies f1|r2

concern only those observations with respect to R1 for which the individuals
i are also observed in terms of R2 somewhere in the sequence u. However,
there are many possible sequences in which individuals are observed in terms of
R1 somewhere down the line, but never in terms of R2. In these sequences the
overall relative frequency of results R1 = 1 can differ from the relative frequency
of results R1 = 1 for those individuals for which R2 is also observed. To avoid
such problems, define the indicator function

WRk
(u) =

1 if ∀i : W0k(u, i) + W1k(u, i) = 1,

0 otherwise,
(6.50)

and the hypotheses Hk = {u : WRk
(u) = 1}. By fixing the prior to p(HR2) = 1,

we rule out the problematic sequences alluded to above, since effectively we
assume that every individual is observed with respect to R2. Another, more
elegant solution is to assume that there is at least a countable infinity of indi-
viduals that do get observed with respect to R2, and to assume further that the
relative frequencies for latter individuals are indicative for those individuals that
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are not observed with respect to R2. However, for the purpose of this chapter
the straightforward solution works out fine.

We are now in the position to define a partition for the Bayesian network
with a single link. Imagine that we are observing a collection of variables Rk in
individuals i, and that we want to find the exact statistical dependence of the
family R1 on the family R2. We can then use the hypotheses Hθ = {u ∈ Mω :
Whθ

(u)WhR2
(u) = 1} with

Whθ
(u) =

1 if ∀k > 1 : fk = θk and f1|r2 = θ1|r2,

0 otherwise.
(6.51)

The parameter θ has components θk for k > 1, and further components θ1|02

and θ1|12. The total number of components in θ is therefore n + 1.
These hypotheses form the partition B for a Bayesian network with n nodes

and a single link. Note that the components θk with k > 1 are similar to those
in the partition I. They range over spaces Bk = [0, 1]. The components θ1|r2

also range over such spaces, and may be denoted by B1|r2 = [0, 1]. So again we
have a parameter space consisting of a product of subspaces:

B = B1|02 ×B1|02 ×B2 × . . .×Bn. (6.52)

That is, we may define the marginal partitions Bk for observations concerning
Rk with k > 1, and similarly the marginal partitions B1|r2 with r = 0, 1 for the
observations concerning R1 conditional on R2.

6.5.2 Prediction rules

The above suggests that we may treat the conditional observations of R1 given
Rr

2 for r = 0 and r = 1 as if they concerned separate variables, and thus allow
for separate predictions. This subsection shows that the partition B indeed
leads to a representation similar to the one elaborated in section 6.4, under the
assumption that the observation sequences are restricted in a certain way, and
under the further assumption that the prior density over B is Dirichlet.

Likelihoods. The relative frequencies defined above may be taken as the likeli-
hoods for the observations. The components θk for k > 1 are the unconditional
likelihoods of the predicate families Rk for any time t:

∀k > 1 : p(Rr
kit|Hθ) = θk. (6.53)
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But the likelihoods for Rr
1it depend on earlier observations. Specifically, the

components θ1|r2 are the likelihoods of the variable R1 conditional on the ob-
servation of R2 = r:

St−1 ⊆ Rr′

2it′ ⇒ p(Rr
1it|Hθ ∩ St−1) = θ1|r′2. (6.54)

For the likelihoods for observations concerning R1, we cannot leave aside condi-
tioning on the observations: the likelihood of observation Rr

1it depends crucially
on the observation Rr′

2it′ , for t′ < t. For this reason the network partition B
differs from the partition I.

Some attention must now be given to the likelihoods for observations con-
cerning R1 if the individual involved is not yet observed with respect to variable
R2. There is no single parameter in the space B that corresponds to this likeli-
hood. Instead we can write

St−1 6⊂ Rr′

2it′ ⇒ p(Rr
1it|Hθ ∩ St−1) = θ2θ1|12 + (1− θ2)θ1|12. (6.55)

This is a mixture of the parameters θ1|r′2 for r′ = 0 and r′ = 1, weighed
with 1 − θ2 and θ2 respectively. Note that updating with this likelihood is a
more complicated operation than updating with any of the other likelihoods: it
involves updates over the spaces B2, B1|02 and B1|12, and it therefore fails to
meet requirement (6.36).

Conditions for deriving λγ rules. As a result, we cannot directly derive predic-
tion rules for B in the manner of section 6.4. In order to derive these rules we
must assume that objects are always observed in terms of R2 before they are
observed with respect to R1. This latter assumption is a strengthened version
of assumption (6.50). We must define the specific hypothesis HR1�R2 :

WR1�R2(u) =


1 if ∀i : u(t) = r2i, u(t′) = r′1i and t < t′ for

some r, t and r′, t′,
0 otherwise.

(6.56)

In any sequence u for which WR1�R2(u) = 1, all individuals i are observed with
respect to R2 at some t, and with respect to R1 at some t′ > t. And again, by
fixing p(HR1�R2) = 1, we consider only the observational algebra defined over
the set of these sequences. We thus rule out all sequences u in which for some
individual i the variable R2 is observed only after the variable R1, or in which
for some individual i either R1 or R2 is not observed at all.

With this assumption in place, we only need to ensure that the prior over
B conforms to requirement (6.40). As suggested, one way of doing so is by
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assuming the prior density to be a member of the Dirichlet class. The partition
B then falls within the class of partitions for which the marginal partitions can
be treated independently. Moreover, since the marginal densities are in that case
Dirichlet as well, we can derive separate λγ rules for all the marginal partitions
associated with the marginal partitions Bk for k > 1 and B1|r2.

Carnapian rules for Bayesian networks. Let me concentrate on the case in
which the partition is uniform over B, and therefore uniform over all marginal
distributions, so that all the prediction rules are of the form pr∗. For the
variables Rk with k > 1 this simply results in

p(Rr
ki(t+1)|St) =

trk + 1
tk + 2

= pr∗(trk, tk), (6.57)

which is the same as in the partition I. For the predicate family R1, however,
we have separate predictions rules for objects belonging to separate cells r′ of
R2. But these rules are also of the form pr∗:

p(Rr
1i(t+1)|St) =

tr1|r′2 + 1
t1|r′2 + 2

= pr∗(tr1|r2, t1|r2), (6.58)

where again St ⊂ Rr′

2it′ and t′ < t. The numbers tr1|r′2 and t1|r′2 are defined
analogously to trk and tk, counting respectively the number of observations Rr

1it

and the total number of observations concerning variable R1, both conditional
on the earlier occurrence of Rr′

2it′ .
Finally, it is useful to determine the prediction Rr

1i(t+1) conditional on the
observations St−1, but before the observation Rr′

2it. To compute this prediction,
we can virtually add the observation Rr′

2it for all possible values of r′, and then
calculate the prediction for Rr

1i(t+1) by the law of total probability, weighing
the predictions concerning R1 of (6.58) with the probabilities for Rr′

2 as given
in (6.57):

p(Rr
1i(t+1)|St−1) =

∑
r′

pr∗(tr′2, t2) pr∗(tr1|r′2, t1|r′2). (6.59)

This expression enables us to compare the predictions of Rr
1i(t+1) before and

after the occurrence of Rr′

2it.

6.5.3 Illustration

Medical example. The above prediction rules are now illustrated for the example
of the doctor with n = 3. It shows that the partition B indeed manages to
capture the dependency structure between variables Rk. In particular it shows
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that while correlations of R1 and R2 are detected, correlations between R3 and
any other node are ignored.

Let me first specify the observations of the variables numerically. The first
t−1 observations concern an even number i−1 of individuals, each observed for
R3, R2 and R1 respectively, and finally the individual i observed for R3 only:

st−1 = 〈(131), (121), (111), (032), (022), (012), . . .

(13(i− 2)), (12(i− 2)), (11(i− 2)),

(03(i− 1)), (02(i− 1)), (01(i− 1)), (13i)〉. (6.60)

Recall that the triples have the interpretation (rki). Note that the results
R1 = R2 = R3 = 1 and R1 = R2 = R3 = 0 occur equally often in the
observations until t−2. The last observation in the example is R1

3i(t−1), so that
t = 3i− 1. Note that the individuals are observed in terms of R2 before R1, so
that requirement (6.56) is met.

Assuming a uniform prior over B we can derive the prediction rule pr∗ for the
variables R2 and R3, and two conditional prediction rules pr∗ for the variable
R1. Depending on the number of individuals i, we can express the predictions
for the i-th individual to satisfy R1 = 1 conditional on the observations St−1 of
expression (6.60), and conditional on the observations St−1 ∩R2

1it) respectively.
The table shows these predictions.

Number of objects i 1 3 7 15
p(R1

1i(t+1)|St−1) 0.500 0.500 0.500 0.500
p(R1

1i(t+1)|St−1 ∩R1
2it) 0.667 0.800 0.889 0.941

The effects of the correlation between R2 and R1 can be read off from the table:
observing R2

1it has a positive effect on the predictions of R1
1i(t+1). It can further

be noted that the observation of variable R3, which in the above data appears
to be correlated with variable R1 just as much as R2, has no influence. This is
because the independence structure of the Bayesian network, which deems R1

and R3 independent, is incorporated in the inductive predictions.

6.6 Inductive dependence

The above scheme captures the dependency structure of Bayesian networks.
This section shows that the scheme also suggests specific dependencies that are
not captured in such a network. These dependencies, as is explained below, may
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be called inductive dependencies. I do not intend to criticise the use of Bayesian
networks for this failure to capture dependencies. Rather I aim to show some
additional possibilities with the scheme developed in this chapter, which are not
naturally captured in Bayesian networks.

6.6.1 General idea

Simplifying the partition. Let me present the case in its simplest possible form.
Consider the above Bayesian network for the case of n = 2, consisting of R1,
R2 and their connection. This network is associated with a partition B =
B2 × B1|02 × B1|12, a unit cube just as I for n = 3. We may now imagine
that each individual is subject to the conceptual restriction that if R2 = 0 then
automatically R1 = 0. That is, if the disease is not found in an individual,
R2 = 0, we are sure that the individual does not have the symptom either,
R1 = 0. In terms of the probability over B, we can express this by fixing the
marginal probability p(H1|02

η )dη = 0 for η > 0, and by assigning all probability
to the extreme case of η = 0. Effectively, we are then left with a reduced
partition B′ = B2 ×B1|12, which reflects the fact that the medical doctor of the
example is uncertain only of the probability for the occurrence of the disease R2,
and of the probability for the symptom R1 given the occurrence of the disease,
R2 = 1.

Example of inductive dependence. Inductive dependence can now be illustrated
in this simplified partition. Imagine that the doctor expects yet another de-
pendence between the variables R1 and R2. We may imagine that there are
in fact a number of subpopulations of individuals, perhaps geographically sep-
arated, and further that the doctor is sure to be sampling only from one of
these, for example, because she is investigating individuals living in the same
place. Imagine further that the subpopulations can be told apart in two ways.
First, the incidence rate of the disease in the subpopulations differs, and second,
the probability of the symptom conditional on the occurrence of the disease is
proportional to this incidence rate. So she expects that the eventual relative
frequency of R1 = 1 conditional on R2 = 1 is somewhere close to the relative
frequency of R2 = 1 itself. As an explanation for this, we may imagine that the
same physiological mechanism that determines the chance to contract the dis-
ease for each individual is also responsible for the development of the symptom
once the disease is contracted.

Such a dependence cannot be expressed in terms of an arrow of some kind,
if only for the simple fact that it is a dependence that obtains between a node
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  ↑
θ2

θ1|12 → p(θ2)

Figure 6.2: Updating the marginal probability p(θ2) for an observation of R0
2 also effects

a shift in the marginal probability over θ1|12 towards lower values of θ1|12. This is because

the conditional probability densities for lower values of θ2 have most probability mass on

lower values of θ1|12, while conditional probability densities for higher values of θ2 have most

probability mass on higher values of θ1|12.

and an arrow springing from this node. But more in general, the point is that
the above dependence cannot be portrayed as a direct influence running from
R2 to R1 in each individual. As illustrated in figure 6.2, finding an individual
to be perfectly healthy, R2 = 0, has the effect that the probability of developing
the symptom becomes 0 for that individual. But quite apart from that effect,
finding a healthy individual lowers the probability that the doctor is sampling
from a subpopulation in which the incidence rate is high. And this also means
that the probability to develop the symptom for those individuals that do have
the disease is lower. Thus, finding healthy individuals lowers the probability
of finding the symptom in two ways, both by lowering the expected incidence
rate of the disease, and by lowering the probability of developing the symptom
if the disease is contracted after all. This latter effect is not based on a causal
dependence between disease and symptom in each individual separately, but
rather on an inductive dependence at the level of subpopulations.

6.6.2 Varying conditional distributions

As noted, such a correlation cannot be expressed with the pictorial means offered
in Bayesian networks. However, the scheme of this chapter does allow us to
capture the dependence in terms of a prior probability density over B′. This
subsection provides the class of priors associated with the inductive dependence.
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This class violates (6.40), and therefore we cannot derive a system of λγ rules
for it. The predictions can only be illustrated with a discrete approximation.

Using marginal and conditional densities. The definition of the class of priors
makes crucial use of the notions of marginal and conditional density. Before
defining the prior itself, let me briefly specify these notions for the present case.
The space B may be parameterized with θ2 and θ1|12. These parameters lie
in the separate spaces B2 and B1|12. The parameter space is therefore a unit
square. If we identify η = θ2 and ζ = θ1|12, we can write the density over this
unit square as

p(Hθ|St−1) = p(H2
η |St−1)p2

η(Hζ |St−1). (6.61)

Recall further that the update with Rr′′

2it consists in an update operation of the
marginal probability p(H2

η )dη over B2. The conditional probability assignments
p2

η(Hζ)dζ remain unchanged during this update. But we may still change the
marginal density p(H1|02

η ) implicitly by updating over p(H2
η )dη.

The point to note is that we can establish the dependence between these
marginal densities by choosing varying conditional densities p2

η. Specifically, we
can choose the conditional density with higher values of η, signalling a higher
relative frequency for R2 = 1, to have more probability allocated at higher values
of ζ, signalling a higher relative frequency for R1 = 1. Similarly, conditional
densities with lower values of η must have more probability allocated at lower
values of ζ. An update with R1

2it, which changes the density over B2, then
also changes the weights for the differing conditional distributions. Because the
predictions for R1

1i(t+1) are given by a weighted average of the predictions within
these conditional distributions, they are thereby altered as well.

Defining a class of twisted priors. With this idea in mind I can make the class
of priors precise. For simplicity, assume that all conditional densities have a
Dirichlet form dependent on η,

p2
η(Hζ) ∼ (1− ζ)a0(η)ζa1(η). (6.62)

This means that every marginal hypothesis H2
η is associated with a conditional

density that results in predictions according to a λγ rule. As in the foregoing,
the parameters λ and γ are determined by the relations λ1|12(η) = a0(η)+a1(η),
and γr1|12 = ar(η)/(a0(η) + a1(η)). There are no restrictions on the marginal
density p(H1

η ) itself, or on the functions ar(η).
For this class of priors we can directly express how the predictions for R1

1i(t+1)

depend on the marginal probability p(H2
η |St)dη for the case that St = R1

2it ∩
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St−1:

p(R1
1i(t+1)|St) =

∫
B′

p(R1
1i(t+1)|Hθ ∩ St) p(Hθ|St)dθ

=
∫

B′
ζ p(H2

η |St) p2
η(Hζ |St) dζdη

=
∫

B2

p(H2
η |St)

[∫
B1|12

ζ p2
η(Hζ |St)dζ

]
dη

=
∫

B2

p(H2
η |St)

[
t11|12 + λ1|12(η)γ11|12(η)

t1|12 + λ1|12(η)

]
dη. (6.63)

Note that instead of the two parameters λ1|12 and γ11|12, we now have a con-
tinuum of λ1|12(η) and γ11|12(η), each associated with a conditional density p2

η.
The predictions for R1

1i(t+1) are thus an average over a continuum of λγ rules,
weighted with the marginal density over B2.

6.6.3 Approximated predictions

I cannot give analytic expressions for the predictions that derive from the above
class of priors. In particular, I cannot express the updates and predictions as
simple combinations of λγ rules. To illustrate these predictions, this section
works with a discrete approximation of the marginal density and its integrals.

Discrete approximation. Instead of a continuum of marginal hypotheses H2
η ,

we may consider a finite number of marginal hypotheses H2
j , with 0 < j ≤ N .

These marginal hypotheses may be associated with the following likelihoods:

p(R1
2it|H2

j ∩ St−1) =
2j − 1
2N

. (6.64)

Further take each of these marginal hypotheses H2
j to be linked to a continuous

conditional density over B1|12 from the Dirichlet class. These densities all result
in a specific prediction rules for the predicate family R1, which are separately
characterised by λ1|12(j) and γr1|12(j). Note that these λγ rules may all be
different. The resulting system then is a complete discrete approximation of the
continuous scheme sketched above. Where the above equations show integra-
tions over B2, the discrete approximation has summations over all values of j.
By choosing larger values for N we can make the discrete approximation more
accurate.

With this we have implicitly defined a hyper-Carnapian prediction rule for
the predicate family R1: the predictions for this family are a mixture of the
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different λγ rules. Furthermore, updating with Rr
1it involves adapting the pre-

diction rules themselves, but also multiplying the weights assigned to these
different rules with the respective predictions that these rules gave, after which
the new weights must be normalised. The difference with an ordinary hyper-
Carnapian prediction rule is that the weights over the different λγ rules for R1

are not only determined by these observations with respect to R1, but also by
the observations with respect to R2. Specifically, updating with Rr′

2it′ involves
multiplying the weights with the likelihoods of equation (6.64). The present
scheme is therefore slightly more complicated than the hyper-Carnapian rules.

Results. Let me present some numerical results using the approximation. In
the following I take the prior over the hypotheses H2

j to conform to the density
p(H2

η ) = η, associated with λ2 = 3 and γ12 = 2/3. For N = 20 this entails
p(Hj) = (2j − 1)/400. Further I have chosen λ1|12(j) = 5 constant. Finally, I
have chosen varying γ1|12(j) = 1/6 + (2j − 1)/80. This linear function encodes
the expectation that a larger relative frequency for R2 = 1 is associated with
a larger relative frequency for R1 = 1. At the same time it ensures that the
predictions are the same for all combinations of values for R1 and R2.

The table shows the predictions of p(R0
2it|Ss

t−1) and p(R1
1i(t+1)|S

s
t−1 ∩ R1

2it)
for the case in which earlier observations st−1 consists of i− 1 individuals that
all showed R2 = 0:

Number of individuals i 1 2 4 8 16
p(R0

2it|Ss
t−1) 0.33 0.50 0.67 0.80 0.89

p(R0
1i(t+1)|S

s
t−1 ∩R1

2it) 0.50 0.58 0.67 0.73 0.78

The predictions show the effects discussed in the preceding subsection. Finding
R2 = 0 in a number of individuals increases the probability of R2 = 0 in further
individuals, and also increases the probability of R1 = 0 in individuals for which
we do find R2 = 1.

It may be clear from the above construction that many more variations on
the same theme are possible. However, I cannot provide a systematic treatment
of these possibilities in this chapter. Note that there are no restrictions on the
number of Q-predicates, or on the combinations of R-predicates that are sup-
posed to underly them. Moreover, there are no restrictions on the observations
that serve as input to the hypotheses schemes defined above. Any resulting pre-
diction rule is exchangeable, as will be more elaborately discussed below, and
any prediction rule eventually converges on the relative frequencies exhibited in
the observations.
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6.7 Generalising to multiple links

The following summarises the above scheme. It further argues that the scheme
can be generalised to cover predictions based on any Bayesian network. Fur-
thermore the assumption on the order of observations, expressed in equation
(6.56) is reconsidered.

Summary of the schemes. In the scheme presented, a prediction for an individual
i concerning the values r of a variable R1 may depend on the value r′ of the
variable R2. Such a dependence reflects the connection between the nodes R1

and R2 in a Bayesian network that is supposed to underlie the observations.
The foregoing suggests how we can construct hypotheses that keep track of
such dependence in a systematic way: the partition B treats observations Rr

1it

separately for all possible earlier observations Rr′

2it′ , by defining separate relative
frequencies for them, and associating these frequencies with separate dimensions
in the parameter space B.

Under the assumption of a certain class of priors, we can treat updates over
the separate marginal densities as orthogonal. That is, an update over one
marginal density leaves the marginal density in any other direction unchanged.
This opens up the possibility to write down the updates as separate prediction
rules, and by choosing the priors to be Dirichlet, to turn the hypotheses schemes
into simple systems of λγ rules. It must be noted, however, that we are not
forced to assume the priors leading to these latter rules. The scheme allows
for other priors leading to predictions for the variables that fall outside the λγ

continuum. As has been illustrated in the preceding section, this allows us to
model other kinds of dependence that are not captured by Bayesian networks.

Some generalisations. The following considers generalisations of the number of
connections in the Bayesian network, and further generalisations on the nature
of the observations.

First, nothing precludes the use of more than one link in the network. The
scheme can model predictions based on Bayesian networks that are much more
complex than the ones discussed above, also ones that involve more than one
link arriving at or departing from the separate nodes. In the case of three binary
variables, for example, we can keep track of a dependence of the first variable
on the third and the second, while the second is itself again dependent on the
results with respect to the third. The parameter space for that partition is

B = B3 ×B2|03 ×B2|13 ×B1|02,03 ×B1|12,03 ×B1|02,13 ×B1|12,13, (6.65)
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and all these subspaces can again be associated with separate prediction rules.
Any causal structure can be captured by a network partition in this way. The
only restriction is that the likelihoods of a hypothesis given some variable cannot
be made dependent on the observation of this variable. In terms of Bayesian
networks, this restriction comes down to the network being acyclic.

Another direction of generalisation concerns not the partitions, but the ob-
servations. It must be stressed that the hypotheses scheme picks up on the
correlations in the examples not just because of the rather straightforward way
in which these are present in the observations. We may define st−1 to be a
completely messy sequence, in which observations of Rk follow on each other
irregularly. The scheme will always detect the conditional dependencies that
are fixed in the Bayesian network. The point here is that the data need not
reveal the relations between the predicate families as clearly as in the examples.

Ordered variables. One assumption on the observations asks for special atten-
tion. The representation of the hypotheses scheme in terms of a system of λγ

rules is based on assumption (6.56). This assumption takes care that those
observations for which we have defined conditional relative frequencies in the
partition must occur after the observations that serve as conditions. On the
basis of that we can derive independent prediction rules. The first thing to
note is that hypotheses schemes using partitions such as B are in themselves
not restricted to observations with a specific order. The assumption on order
is here made for computational simplicity: it makes possible the derivation of
separate prediction rules. The predictions resulting from network partitions are
in themselves exchangeable. This can be seen from the fact that the update
operations over the partition B are multiplicative, and therefore commute with
each other.

Nevertheless, the above prediction rules do not apply if for some set of in-
dividuals we have already observed R1, while we have not yet observed R2.
This lack of computational tractability is a drawback. Moreover, it is unfortu-
nate that we can only illustrate that predictions based on B capture Bayesian
networks once we have made assumption (6.56). One possible resolution of
these drawbacks is suggested by section 6.3.2, where it is noted that the order
in which the variables Rk are observed is not itself subject to the hypotheses.
We may suppose that the observer is free in choosing the order in which she
makes the observations. If this is so, the observer is simply helping herself to an
easy predictive task by collecting the observations in a convenient order. Even
stronger, by encoding a set of conditional dependencies in a specific Bayesian
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network, the observer may decide on the direction of the dependencies largely
by herself. And these directions can be made to accord with the order in which
the variables are observed. The order restriction thus ties in neatly with the
interpretation of the networks as causal.

Analogy and inductive dependence. One general remark on the relation between
this chapter and the two preceding chapters concludes the second part of this
thesis. It may be noted that there is a close link between analogical predic-
tions for explicit similarity and predictions for Bayesian networks that employ
a factorisable prior, and also between more complicated analogical predictions
and nonfactorisable priors. Specifically, the more complicated models of analog-
ical predictions discussed in chapter 5 employ priors that cannot be controlled
in terms of the simple analogy partitions A. This chapter shows that, when
starting with a fixed algebra R of underlying predicates, these more compli-
cated analogical predictions indeed have a different nature: they are based on
a different kind of dependence, namely inductive dependence.



III

Philosophy of Science





7

Induction in the Bayesian Scheme

This chapter discusses the problem of induction in view of the Bayesian scheme
developed above. Three levels of the problem are disentangled: the levels of
single observations, of general patterns in the observations, and of structure
behind the observations. In line with the logical view developed in chapters 1
to 3, the use of hypotheses in the Bayesian scheme does not suggest anything
towards solving the problem of induction. However, we can solve the problem at
the level of predictions if we make specific assumptions at the level of patterns.
A similar solution can be advanced for the patterns on the basis of assumptions
at the level of structure. Moreover, the conclusions about the patterns may
be transferred back to refine these assumptions further. An example on the
categorisation of substances by means of observations completes the chapter.

The philosophical discussion in chapter 3 is essential for understanding the
main line of this chapter. The technical details of that chapter are less impor-
tant. Some knowledge of chapter 1 and, to a lesser extent, chapter 2 may also
be useful.

7.1 The problem of induction

The problem of induction is one of the most pervasive in philosophy since Hume
posed it in 1739. It concerns the impossibility to attain knowledge of future
observations on the basis of past observations. The following introduces the
problem, and connects it to the Bayesian scheme of chapter 1.

Three levels of induction. The problem of induction in fact concerns problems
on three different levels. As an example, take q = 0, 1, 2, 3 as observations of wet,
cold, warm and dry respectively, and consider these observations as sensations
recorded by the feet of a duck. We may imagine that the duck is confronted
with the following observations,

001110123332301001032221100.

We can focus on three different levels of the apparent connection between the
pairs {0, 1} and {2, 3} in these observations:
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observation the last observation of 0 is probably followed by a 0
or a 1;

pattern most observations of 0 are followed by a 0 or a 1;
structure some structure behind the observations makes 0 and

1 occur in contiguity.

Similar considerations apply to the pair {2, 3}, and possibly also to the transi-
tions between the pairs.

In terms of words characterising the observations, the levels concern the
statements that the last observation of wet is probably followed by an obser-
vation of cold or wet, that wet is generally followed by cold or wet, and that
some structure in the world connects cold and wet in this way. The first level
is completely observational. The second level is observational in the sense elab-
orated in chapter 2. It concerns patterns in the observations that can only be
checked at infinity. The last level is entirely theoretical, as it concerns structure
that will always remain hidden behind the observations. It seems that claims
on the theoretical level are most difficult to defend on the basis of observations.
However, a structure behind the observations is usually the main reason for
expecting some pattern or single observations. In the absence of an argument
for some structure on that level, it may therefore be argued, on the level of pat-
terns, that nothing can support the apparent conjunction of 0 and 1. Even at
the level of observations, we may argue that after the last 0 we have no reason
to expect the occurrence of 1 or 0 more than the other two results.

Focus on the observational levels. The problem of induction eventually concerns
all three levels, but the focus of this chapter is on the two observational ones,
and on the theoretical one in a derived sense only. More in particular, this
chapter considers the relation between the problem of induction, as trisected
above, and the Bayesian scheme of the preceding chapters. It is easily seen
that these schemes only concern the two observational levels. They employ
partitions of hypotheses to make predictions. The predictions connect naturally
to the level of single observations, and the hypotheses connect to the level of
patterns. But at first glance there is no obvious relation between the Bayesian
scheme and the theoretical level.

At the two observational levels, this chapter argues for two claims. The first
is that the Bayesian scheme itself does not provide the means for solving the
problem of induction. Rather it provides a framework within which it becomes
clear what means are actually required. In a metaphor, the Bayesian scheme
presents a toolkit, but it does not also provide the architectural plans or the
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raw material for building inductive knowledge. In terms of this metaphor, the
second claim concerns the relation between architectural plans and material.
In the Bayesian scheme, specific roles are assigned to the observations, here
presented by sequences of natural numbers, and the partitions of hypotheses.
The second claim is that these partitions are comparable to the architectural
plans, and that relative to these plans, the raw material of observations present
definite restrictions to the building. The form of the building is thus not entirely
determined by the observers, in the role of the architects. Once they have
provided the plans, the raw material of observations completely determines the
building. Note that inductive knowledge is thus not completely subjective, as
perhaps suggested by the first claim, but rather a co-production of the observer
and the observed.

Induction on the theoretical level. A further aim of this chapter is to determine
whether the Bayesian scheme can also be connected to the problem of induction
at the theoretical level. For this I explore the relation between assumptions
concerning patterns and the structure of underlying systems. I first show that
supposing some structure may justify an inductive assumption, and therefore
the use of a particular partition: if we assume that a system with a specific
structure generates the observations, we may expect the observations to show
a pattern that is related to the structure. With this assumption on structure,
and using the aforementioned function of observations, I argue that conclusions
concerning patterns may be transferred back to the theoretical level, to narrow
down the assumed structure to a more specific one. This is illustrated by the
example: if we assume that the world consists of separate substances, we can
motivate a partition that picks up on the connection between wet and cold
and between warm and dry. This leads to the more specific structure of two
substances, more specifically, water and air.

There is a more ambitious perspective on the claims defended in this chapter.
I will not assume this general perspective in the chapter, but since it has played
some role in its development, it may be of interest to mention it. According to
this perspective, the inductive inferences of a Bayesian scheme can be employed
in a specific tactic for building up inductive knowledge. This tactic consists
in a repeated application of inductive inferences on the theoretical level. In
brief, the idea is to start with a minimal assumption concerning the structure
of the system under investigation, for example with the assumption that on a
certain time scale the states of the system show an auto-correlation, and to
narrow down this supposed structure by inductive inference. The structure
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of the system arrived at may then be refined with additional and tailor-made
assumptions, from which further refinements can be derived, and so on. This
allows us to build up inductive knowledge of the system at the cost of minimal
assumptions. The details of such a tactic, however, fall outside the scope of this
thesis.

Disclaimers. Let me also mention two other topics that are left aside. First, the
literature provides numerous attempts to deal with the problem of induction. To
give a short list, the reader may consult Popper (1959), Armstrong (1973), Pa-
pineau (1987), Howson (2000), and Norton (2004). The present chapter differs
from most of these attempts because it does not provide a method of justi-
fied inductive inference together with a method of finding the correct input for
the inferences. Apart from that, the present chapter focuses specifically on the
Bayesian scheme presented in section 1.3. It does not relate this scheme to
the conceptual schemes employed in other solutions. Consequently, the chapter
does not argue that the Bayesian scheme captures the problem better than these
other schemes. Mostly, the chapter clarifies the relation between the problem
of induction and the Bayesian scheme in order to complete the logical picture
begun in chapter 1.

Second, it must be noted that some of the idealising assumptions of the
framework, which were discussed in 1.5, may here become disturbing. For one
thing, the chapter talks of the raw material of observations, but such raw ma-
terial does not exist. If we consider the observations of scientific experiment,
it becomes apparent that a lot of effort goes into the construction of reports of
observations. In this thesis such reports are simply denoted with et, falsely sug-
gesting that they fall ripe from the trees. The chapter also talks of assumptions
on structure which are to some extend uncertain. But this uncertainty may
not be adequately expressed in a probability assignment over an observational
algebra. However, I cannot deal with the problems that may arise from these
two idealisations in the context of this chapter.

7.2 Hypotheses as tools

The following discusses whether the Bayesian scheme on itself suggests anything
towards solving the problem of induction. I argue that it does not, and that
instead it reveals the need for inductive assumptions.
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7.2.1 Indispensable assumptions

Projectability assumptions. It is tempting to consider the Bayesian scheme as a
solution of the problem of induction on the level of observations. It may seem
that choosing a partition does not import any substantial assumptions, because
the partition covers the whole space Kω, and is therefore equal to a tautology.
Moreover, because of the convergence results of Gaifman and Snir (1982) it may
be argued that the prior over this partition does not present an assumption ei-
ther. A Bayesian scheme that uses open-minded probability assignments can
thus be seen as a fruitful cooperation of observations with a completely inno-
cent partition of hypotheses. However, as I have argued in chapter 3, predictions
based on a partition are always made at the cost of specific inductive assump-
tions. Whereas for deductive purposes the partitions can perhaps be deemed
innocent, for inductive purposes they introduce projectability assumptions. The
partitions reveal, within the inductive scheme, the assumptions needed to get
to inductive predictions.

Finding weak assumptions. The present chapter elaborates in the claims of
chapter 3. Note that the specific projectability assumptions alluded to in the
foregoing are stronger than the unqualified assumption of the uniformity of na-
ture. Assuming the general uniformity of nature leaves unspecified the kind of
pattern with respect to which nature is uniform. But for inductive predictions,
what is needed is a uniformity assumption with respect to a specific set of pat-
terns, as revealed in statistical hypotheses. It may be noted that the Humean
problem of induction is in this sense the protoversion of the so-called new rid-
dle of induction proposed by Goodman (1955: 59-81): a general uniformity
assumption may solve the problem as Hume conceived of it, but eventually such
a general uniformity will not do.

On this point it may be objected that some projectability assumptions are
more specific than others, and that for this reason the Bayesian scheme may
solve part of the epistemological problem of induction after all. In particular,
we may try to weaken the projectability assumptions as far as possible with
the tools offered in the Bayesian scheme, to arrive at a formal expression of the
general uniformity assumption. The first option is to use an entirely impartial
partition, which does not preselect any kind of pattern in advance. If such a
partition is possible, it can be argued that the predictions based on this partition
assume just the overall uniformity of nature, or perhaps no uniformity at all.
The second option is to consider all projectable patterns simultaneously. These
options will now be investigated.
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7.2.2 General uniformity

Using no projectable predicates. To assess the first option, consider the Bernoulli
partition B of chapter 3, with the likelihoods p[et](Q

q
t+1|Hθ) = θq. The suffi-

cient statistics for this partition are the numbers of times that q occurs in the
sequences et, denoted tq. The predictions based on the partition B therefore fo-
cus on a particular pattern in the observations, namely the relative frequencies
of the results q, and the use of B comes down to assuming the projectability
of this pattern. Now we may generalise this way of identifying projectability
assumptions: as long as the sufficient statistics of a partition do not at all times
coincide with the complete sequence of observations et, the partition focuses
on some pattern in the observations, and therefore must employ some kind of
projectability assumption.

With this way of identifying projectability assumptions, it is fairly easy to
construct a partition that contains no such assumptions. There is only one
partition for which the sufficient statistics always coincide with the complete
sequence of observations. In this partition, here denoted with E , the hypotheses
He are the singletons {e}. The likelihoods of these hypotheses for observations
Qq

t are defined by p[et](Q
q
t+1|He) = 1 if e(t + 1) = q and p[et](Q

q
t+1|He) = 0

otherwise. With this partition I deal in detail below. The conclusion for now is
that, apart from the limiting case E , there is no partition that does not carry
specific projectability assumptions.

Using all projectable predicates. The other option for weakening the strong
uniformity assumption is to generalise it, by simultaneously using all conceivable
partitions. An ambitious Bayesian may argue that a partition must encompass
all hypotheses that can be formulated in the current language, in this case
presented by the observational algebra. The idea is that, as long as nothing is
known about the observations, none of the possible patterns can be excluded.
The partition must therefore focus on all possible patterns, corresponding to the
general uniformity assumption that there is some, as yet unspecified, pattern
in the observations. However, given the observational algebra, we can always
find some observation Qq

t that tells apart any two infinite sequences e and e′.
Therefore, it seems that the partition that encompasses all hypotheses that can
be formulated in the given language is again the limiting case mentioned in the
preceding paragraph, the singleton partition E . I will now concentrate on this
limiting case.
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The uninformative singleton partition. Note first that the predictions resulting
from E are determined entirely by the prior over the partition, p[e0](He). More-
over, the likelihoods of the separate singleton hypotheses are all extremal. With
every new observation Qq

t , conditioning over E simply means that all singleton
hypotheses He′ for which e′(t) 6= q are discarded, and that all those single-
ton hypotheses He for which e(t) = q stay in. Because of this, conditioning
over the hypotheses in E does not in itself give any comprehensive information
on oncoming observations, so that the singleton partition does not carry any
projectability assumption. In this sense the partition E meets the requirements.

On the down side, it must be noted that the task of determining the prior
over the singleton partition becomes a rather laborious and obscure one: every
single e must be given a probability separately, and it is not immediately clear
what repercussions the assignments have for the predictions resulting from the
partition. Moreover, the task of determining this assignment is very similar to
the choice of the prior in a Carnapian scheme, as the singleton partition also
requires us to specify the prior directly and as a assignment over the whole of
the algebra Q. It seems that we are back where we started: the Carnapian
scheme employs projectability assumptions just as well as hypotheses schemes
do. For the partition E the assumptions simply remain completely implicit in
the probability over E . In other words, the attempt to find a partition that
expresses an impartial or generalised projectability assumption has pushed this
assumption out of sight.

7.2.3 Logical solution

No formally motivated projectability. Thus far the discussion suggests that the
tools provided in the Bayesian scheme do not offer any help in solving the prob-
lem of induction. The scheme expresses the need for assumptions underlying the
predictions, but it does not suggest any natural or minimal assumption. How-
ever, in any experimental setting there may be independent reasons for specific
inductive assumptions. For a realist, the projectability may be based on some
suppositions on underlying structure, such as natural kinds, or on a process
or mechanism that generates the observations. For an empiricist, on the other
hand, the inductive assumption implicit in the use of some partition is perhaps
nothing more than the empirical generalisations that they express. The thing to
note is that these reasons are not supported or motivated by the tools that are
offered by the Bayesian scheme. In sum, conditioning over partitions provides
useful insight into the problem of induction, but we cannot solve the problem
with an appeal to the formal aspects of partitions.
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Projectability as premise. The above conclusions are in line with what I like to
call the logical solution to the problem of induction. This solution has recently
been proposed by Howson (2000), but it has its roots in Ramsey and De Finetti.
The same solution is in fact implicit in many chapters arguing for local as
opposed to global induction in Bogdan (1976), in the contextual approach of
Festa (1993), and in a sense in Norton (2003).

The negative part of this solution is that, taken on itself, the problem of in-
duction cannot be solved. Predictions must be based on inductive assumptions,
and there is no way of deciding over these assumptions by formal or other a
priori means. In the above metaphor, we cannot build a house just by buying
nice tools, because we also need a building plan, and apart from that bricks,
planks and mortar. The positive part of the logical solution is that once the
inductive assumptions, the building plans, are made, a Bayesian logician can tell
how to deal with the observations, that is, the bricks and planks. Bayesian up-
dating functions as a consistency constraint, and generates predictions from the
assumptions and observations together. It is inherent to this view that there is
nothing inductive about Bayesian conditioning itself. It merely links inductive
assumptions with observations to render the inductive predictions consistent
with these assumptions.

This thesis can be seen as a further elaboration of the logical solution to
the problem of induction. It shows how partitions provide access to inductive
assumptions in a Bayesian scheme. Moreover, from this perspective this thesis
is a starting point for dealing with a host of other philosophical problems. For
example, ordinary life and science show that humans and other animals can
be quite skilful in making inductive predictions. Peirce’s suggestion that we
guess efficiently, is deeply unsatisfactory as an explanation of this skill. The
present discussion suggests that in a logical picture of these skills, the essential
component is the selection of interesting aspects of the observations, as laid
down in the choice of a partition. However, as illustrated by Chihara (1987),
the complexity of actual inductive practice leaves us with little hope for a unified
theory of choosing partitions.

7.3 Induction as co-production

In this section I sketch how, in combination with the Bayesian scheme, the
foregoing leads to a view of inductive knowledge as partly determined by the
observer, and partly by the observed. First I briefly discuss the division of
labour in a Bayesian scheme between observations and inductive assumptions.
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After that I discuss how inductive assumptions relate to suppositions at the level
of structure. Finally, I use the conclusions of these two discussions to elucidate
the respective roles of the observer and the observed in building up inductive
knowledge.

7.3.1 The role of observations

Observations and inductive assumptions. To characterise the respective roles of
observations and assumptions, let me first draw together some insights from the
first part of this thesis.

In choosing a partition of statistical hypotheses, we select a collection of
likelihood functions, which were seen to be connected to probability models for
the observations. The fact that we limit attention to those probability models
makes for an inductive assumption. However, with the frequentist interpreta-
tion each model also corresponds to a specific collection of infinite sequences.
In light of this, the inductive assumption is simply that the eventual sequence
of observations, denoted e∗, is included in the sequences of observations covered
by the partition. If we employ some partition, the general characteristic in the
probability models associated with that partition is assumed to be a character-
istic of the actual sequence of observations. For example, hypotheses from the
Bernoulli partition B contain sequences e in which observations have constant
chances. Using the partition B thus amounts to assuming that this character-
istic is true for the actual observations e∗. That is, the sequence e∗ is assumed
to have limiting relative frequencies.

I now come to the role of the observations in relation to the inductive as-
sumptions as determined by the partition. This partition itself is chosen by the
observer. Because there are no further guidelines for choosing this partition,
the predictions resulting from it may be considered subjective. But once the
partition is chosen, it is left to the observations to select the best fitting model
from the collection of models associated with the partition.

Soundness and completeness. With the idea of partitions as premises in mind,
I can briefly elaborate on the soundness and completeness of inferences in the
Bayesian scheme, which is also alluded to in chapter 1.

Note first that the convergence result of Gaifman and Snir (1982) guarantees
that if we assume the correct partition, that is, if the sequence of actual, real
world observations e∗ indeed has the appropriate limiting relative frequencies,
then the observations are going to take care that the probability assignment will
converge onto the correct hypothesis within this partition. In other words, on
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the assumption that the chosen partition contains the true hypothesis, condi-
tioning leads to this hypothesis and to its associated predictions, or in brief, the
inferences in a Bayesian scheme are such that true assumptions lead to true con-
clusions. This reformulation suggests that we are here dealing with an informal
soundness result for conditioning in inductive Bayesian logic. Note that this
soundness differs from the soundness proved in Howson (2000), which concerns
Bayesian logic more generally, and which involves a subjectivist interpretation
of probability. The soundness suggested here specifically concerns the inductive
Bayesian logic in which the probability assignments are in part interpreted in a
frequentist manner.

As for the completeness of this inductive Bayesian logic, note that any prob-
abilistic pattern can be incorporated as a hypothesis in a Bayesian scheme. And
because any such hypothesis can therefore be learned, the Bayesian scheme may
be called complete. Now apart from the fact that both soundness and complete-
ness are here treated only very sketchy, two remarks are called for. First, it is
worth noticing the negative results of Putnam (1963), who showed that relative
to a given learning algorithm, specific patterns in the observations can never
be learned. In terms of the Bayesian scheme, the point is again that there is
no single inductive assumption that covers all projectable patterns. Second,
recall that the class of frequentist hypotheses covers any probabilistic pattern
that corresponds to a real world structure by frequentist standards. With the
frequentist restriction, the Bayesian logic may not be complete anymore.

7.3.2 The theoretical level

From structure to partition. The foregoing specifies the role of observations at
the first two levels of the problem of induction. This subsection concerns the
theoretical level, and more in particular the relation between inductive assump-
tions on the one hand, and supposition on underlying structure on the other.
But let me stress first that the discussion takes for granted that there is some
system, or on a larger scale, a world, from which observations originate. That
is, radical forms of empiricism, as in Mach (1906), are left aside here. I simply
assume that it makes sense to speak of a world that produces the observations.

Consider structures at the theoretical level in relation to patterns in the
observations. The general idea in the following is that assumptions on the
observational level may reflect such underlying structure. If, for example, we
know that the state of the underlying system is independent of preceding states,
the corresponding inductive assumption consists in a collection of models in
which the observations have constant chances, which comes down to using the
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partition B. If, alternatively, the state of the underlying system depends on the
state of the system directly preceding it, the corresponding assumption consists
in a collection of Markov models, that is, models in which the probability of
observations depends on the observation directly preceding it. In each of these
examples, the underlying structure is associated with some shared characteristic
of the probability models that make up the inductive assumption. Suppositions
on the structure of the underlying system can thus motivate a limitation of
the set of probability models, or in other words, suppositions on structure can
motivate the choice of a partition.

From partition back to structure. It must be noted that the above relation
between patterns and structure is in many ways incomplete and idealised. At
bottom it concerns the relation between observational generalisations on the
one hand, and mechanisms and causal workings in nature on the other, as
discussed by Cartwright (1999), Kuipers (2000), and Van Fraassen (1989) among
many others. One of the key points in this discussion is that there is no clear
translation that brings us from a supposition on structure to the associated
observational generalisation or pattern, and that in a similar way suppositions
on structure are underdetermined by generalisations. The step from a collection
of observational models to a mechanism always involves additional assumptions
or criteria, as provided by unification or explanatory force. Similarly, once we
have imagined some structure underlying the observations, there is generally
not a unique way in which this translates to a collection of possible patterns,
and thus to a partition.

Nevertheless I want to suggest how inductive inferences can be employed at
the theoretical level. The idea is that in taking some structure to underlie a
partition, we effectively decide that the observations have a specific meaning on
the theoretical level as well. Conditioning on the observations narrows down a
partition to a single hypothesis, and to its corresponding probability model. The
claim is that this single hypotheses can be transferred back to the theoretical
level to specify the structure of the underlying system further. That is, if we
have based the inductive assumptions on a supposition concerning underlying
structure, we are allowed to narrow down this structure further according to
the conclusions of the inductive scheme. In short, the observations are made
relevant to the theoretical level. It is notable that a similar idea has recently been
developed in Douven (2005), who considers realist descriptions of experimental
observations besides strictly empiricist ones. The import of observations is then
determined by the way in which we choose to describe these observations.
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7.3.3 Externalism

Locating the suppositions. It is instructive to compare the above perspective on
the problem of induction with the perspective of Hume. Hume notes that induc-
tive inference always involves the ascription to the world of necessary or causal
connections, and then claims that the ascription of such connections is based
on unjustifiable habit. A first difference is that the Humean perspective focuses
on necessary connections, whereas the present perspective concerns structures
in general, including causal connections but also including substances, mecha-
nisms and the like. But a more important difference concerns the location of
the supposition on structure. The Humean perspective locates the supposition
of structure primarily in the cognitive faculties: the causal connections are as-
sumed to be projected onto the observations by the observer. In the perspective
of this thesis, by contrast, the suppositions pertain to the structure of the out-
side world. Therefore, in this thesis inductive knowledge rests not on a sheepish
habit in cognition, but rather on the assumed presence of a structure in the
world.

Reliability and truth. This may look like a rather strange perspective. After all,
getting to know the world is supposed to be the primary aim of inductive infer-
ence, and in the perspective of this thesis we seem to presuppose knowledge of
this world. However, we do not exactly presuppose justified knowledge in order
to set the inference machinery in motion. First of all, the inductive schemes are
aimed at characterising valid inductive inference, and that the validity of the
inferences can be secured independently of a justification of the suppositions
on structure. The inferences can therefore be used in an externalist view on
inductive knowledge. In this view, knowledge of the observations ultimately
hinges on the reliability of the observation methods, which is a contingent fact
whose truth depends on the world. And similarly, knowledge of the projectable
patterns hinges on the truth of specific suppositions concerning structure. So in
order to have inductive knowledge, we do not need to justify the suppositions
on structure. They just need to be true.

7.4 Suppositions on substance

In this section I illustrate the above considerations with an example, using the
observations of the duck presented in section 7.1. I first discuss the general
suppositions about structure, by which I motivate a partition of hypotheses.
I then use the observations to update the probability over the partition, and
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thus arrive at specific predictions. The updated probability is used to fill in
the supposition about structure a bit further. But before that, let me stress
that this example is not at all intended as an accurate description of real world
inductive learning.

Motivating a Markov partition. Recall the observations of section 7.1, q =
0, 1, 2, 3, meaning wet, cold, warm, and dry respectively, all referring to the
sensations recorded in the feet of a duck. Certainly, these kinds of stimuli
never arrive as such clear-cut packages, and a complete conceptual framework is
already presupposed if we take the stimuli to be captured in that way. On these
presuppositions, then, it can be imagined that one fine morning the duck’s feet
record the series of numbers given in section 7.1. Now we may imagine that
the duck is interested in the structure of the world that presents her with these
sensations. In principle the duck may choose to scan her sensations for any kind
of pattern, and base her expectations for further sensations on the pattern. As
suggested, when it comes to the validity of the inductive inference there are
no preferred patterns. In this specific case the duck supposes that the world
consists of substances that are responsible for the sensations, in such a way that
each substance may be associated with a cluster of sensations. Note that this
supposition is still fairly general. The duck does not already preselect a specific
number of substances, or the number of sensations associated with each of them.

The above suppositions on the structure of the world may now be translated
into a partition on possible patterns in the sensations or observations. As in-
dicated, it is not always a straightforward matter to connect the suppositions
about structure with a general characteristic of the probability models in the
partition. In this specific case, the supposed substances are associated with
clusters of observations. The existence of certain substances therefore entails
that after one observation, certain observations are more likely to occur than
others. It is this latter kind of clustering in the observations that the partition
of this example focuses on. More in particular, I employ a partition of hypothe-
ses associated with so-called Markov processes. Before making these processes
precise, it must be remarked that the inductive assumption presented by these
processes is not directly derivable from the suppositions about structure, which
just concern the existence of substances. As suggested in the foregoing, it is
more that these suppositions are made precise in the form of the partition.

Predictions from a Markov partition. In a Markov process, the chance on an
observation depends on the observation immediately preceding it. That is, the
probability p[hwθ](Q

q
t+1|Et) of a Markov hypothesis hwθ is a function of et(t)
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only. If we have that q ∈ {0, 1, . . . , N , we can simply write

w(et) = et(t) + 1, (7.1)

thus associating each Markov state with a separate value of the selection function
w(et). As discussed in chapter 2, the selection function determines which vector
of likelihoods θm are prescribed by the hypothesis for the observation Qq

t+1

Since e0(0) is undefined, we may take w(e0) = 0. With the selection function
in place we can define a partition of statistical hypotheses for all components of
the vector θ. Denoting the probability that observation q is followed by q′ with
θqq′ , we can define the Markov hypotheses as

p[hwθ](Q
q′

t+1|Et−1 ∩Qq
t ) = θqq′ (7.2)

Note that θqq′ has 4 × 4 components, corresponding to the fact that there are
4 transition probabilities to q′ after each of the N = 4 possible observations q.
For e0 we may define a separate vector θ0 of which each component is 1

4 .
The partition of hypotheses on Markov processes can now be used to pro-

vide predictions on the observations. Furthermore, the given observations may
be used to derive a posterior probability over the hypotheses. But I will not
reiterate the use of the Bayesian scheme for deriving the predictions and general
conclusions here. These results, in any case, are not new. Comparable rules have
been developed in Kuipers (1988) and Skyrms (1991). Instead I only present
the results of the scheme. It may be noted that the hypotheses on Markov
processes are a generalisation of the hypotheses on constant chances employed
in chapter 3. We may therefore derive Carnapian prediction rules that apply
to the separate states w(et). On the assumption of a uniform prior probability
over the Markov hypotheses, the resulting predictions are

p(Qq′

t+1|Et−1 ∩Qq
t ) =

tqq′ + 1
tq + 4

, (7.3)

where tqq′ denote the number of times that q′ follows q in et−1, and tq =
1 +

∑
q′ tqq′ is the total number of times that q occurs in et.

Deriving substances from data. With this uniform prior we can easily derive the
predictions for the case of the duck’s feet. Taking et as indicated in section 7.1,
the predictions p(Qq

t+1|Et) are given by the vector 〈 1
3 , 5

12 , 1
12 , 1

6 〉. Moreover, if
we assume a uniform prior over the hypotheses Hwθ at the start, we can also
find the hypothesis Hwθ for which the probability is largest after et very easily.
It is simply the hypothesis for which the chances match the relative frequencies
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tqq′

tq
in the observations. The hypothesis that fits the observations best may be

summarised in the following matrix:

θqq′ =


1
3

5
12

5
12

1
3

1
9

2
9

2
9

1
9

1
12

1
6

1
6

1
12

1
3

1
3

1
3

1
3

 (7.4)

where q labels the columns and q′ the rows. It will be clear that I have deliber-
ately chosen these observations for their relative frequencies.

If we take a closer look at the hypothesis that performs best on the observa-
tions, we notice that there is a clustering of the pairs of observations {0, 1} and
{2, 3}. Within the columns of the first pair there is a probability of 3/4 that the
observation Qq′

t+1 is from the same pair as Qq
t , and within the columns of the

second pair this probability is 2/3. On the level of observations, this may be just
an interesting fact on the emerging pattern. On the level of structures, however,
this fact can now be given further meaning. The best fitting hypothesis may
be interpreted as telling us something on the kind of substances that may fill
in the initial supposition. In particular, the hypothesis tells us that it is most
likely that there are two substances, which are associated with the pair of cold
and wet and the pair of dry and warm.

By way of introducing shorthand forms the duck may decide to collect the
pairs into the substances water and air. Note that in the example, staying in the
water is thus slightly more likely than staying in the air. The key point is that
these two substances are not inherent to the observations. The starting point is
just that there is an unknown number of substances, associated with unknown
clusters of sensations. The Bayesian scheme and the observations then allow
the duck to make this initial supposition about structure more precise.

7.5 Summary and conclusion

This chapter is the first of the chapters on inductive Bayesian logic in relation
to themes in the philosophy of science. It has dealt specifically with the relation
of this logic to the problem of induction.

First the three levels of the problem of induction were disentangled. In the
section following up on that, I argued that the Bayesian scheme does not offer
any directions for solving the problem of induction at the two observational
levels. We are entirely free in choosing the inductive assumptions, and no such
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assumption is naturally suggested by the Bayesian scheme itself. After that I
argued for a specific role, within the Bayesian scheme, for suppositions at the
level of structure. Their task is to motivate the choice of specific inductive as-
sumptions at the observational level. Furthermore, if the choice of assumptions
is motivated in that way, the results of an inductive inference can in turn be
used to draw further conclusions at the theoretical level. Finally, this was illus-
trated with an example showing the formation of the substances water and air
on the basis of the weaker supposition that there are substances in the world.

The moral of the story is that in order to derive knowledge from observations,
we must make assumptions from which the observations derive their meaning
and impact. This is in line with the logical perspective taken in this thesis. It
is notable that this perspective reflects the Kantian position that no empirical
knowledge can be obtained without a theoretical scheme to organise the empir-
ical data. In short, inductive knowledge is a co-production of the observer and
the observed.



8

Bayesian Theory Change

This chapter addresses the problem that Bayesian inference cannot accommo-
date theory change, and proposes a framework for dealing with such changes.
It first presents a Bayesian scheme for inferring predictions from observations
by means of statistical hypotheses. An example shows how the hypotheses
represent the theoretical structure underlying the scheme. This is followed by
an example of a change of hypotheses. The chapter then presents a general
framework for changing hypotheses, and proposes minimisation of the distance
between hypotheses as a rationality criterion. Finally the chapter discusses the
import of this for Bayesian statistical inference.

The present chapter can be read independently of the preceding chapters.
There is considerable overlap with other chapters on the technical introduction
of Bayesian schemes, but there is particular stress on some details that have not
been given attention in the foregoing. Apart from that, chapter 1 will be helpful
for situating this chapter within the general plan of this thesis. Chapter 2 may
help to clarify the notion of a hypothesis employed in this chapter, in particular
when it comes to the idea that changing the hypotheses amounts to a change of
language. Finally, chapter 3 elaborates on the idea that partitions of hypothe-
ses can be viewed as an expression of the theoretical structure underlying the
inductive predictions.

8.1 Introduction

Fixed theoretical structure. In what follows I am concerned with Bayesian statis-
tical inferences. These inferences are here considered in a scheme that generates
predictions by means of hypotheses: Bayesian updating is used to adapt a prob-
ability over hypotheses to known observations, and this adapted probability is
further used to generate predictions over unknown observations. The hypotheses
in the scheme represent the theoretical structure that underlies the predictions.
However, after we have chosen these hypotheses and a prior probability over
them, updating fully determines the probabilities over the hypotheses at any
later stage, and thus also the predictions resulting from that. There is no room
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for any further amendments to the hypotheses or to the prior probability assign-
ment over them after they have been chosen. In Bayesian statistical inference,
the theoretical structure is therefore fixed.

The fixity of the theoretical structure in the above schemes is a specific
form of a more general problem for Bayesianism. Within the philosophy of
science it has been formulated, among others by Earman (1992: 195–198), as
the problem that Bayesianism fails to accommodate theory change. But the
fact that Bayesian inference is in this sense dogmatic is at the origin of many
other criticisms, including the criticism of Dawid (1982) that Bayesian infer-
ence is by definition calibrated. Furthermore, as hypotheses can be considered
as specific terms in the observation language, changing the hypotheses in the
scheme amounts to changing the language with which the predictions are made.
The same problem can therefore be seen in light of the fact that Bayesianism
fails to accommodate language change, as noted by Gillies (2000) and discussed
elaborately by Williamson (2003).

This chapter addresses the above problems with Bayesianism. More in par-
ticular, it proposes a way of dealing with theory change within Bayesian statis-
tical inference. The plan of the chapter is to introduce the Bayesian scheme for
generating predictions from hypotheses, to present an example of such a scheme,
then to show in the context of the example how hypotheses can be changed, and
finally to give a general framework for such changes.

8.2 Hypotheses, conditioning and predictions

This section describes the Bayesian scheme for making predictions, as it has been
presented in several of the preceding chapters. Observations and observational
hypotheses are defined in terms of an observational algebra, and degrees of belief
are represented by probability assignments over this algebra. The set-theoretical
underpinning may seem unnecessary in the context of a short chapter. However,
as will become apparent in sections 8.5 and 8.6, the underpinning is essential
for a correct understanding of hypotheses change.

Observations and hypotheses. The predictions range over possible observations
K, a set of consecutive natural numbers, say {0, 1}. At every time t we observe
one number qt ∈ K. We can represent these observations in an observational
algebra. Let Kω be the space of all infinite observation sequences e:

e = q1q2q3 . . . (8.1)
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The observational algebra Q, a so-called cylindrical σ-algebra, consists of all
possible subsets of the space Kω. If we denote the t-th element in a series e

with e(t), we can define an observation Qq
t as an element of the algebra Q as

follows:
Qq

t = {e ∈ Kω : e(t) = q}. (8.2)

Note that there is a distinction between the observations Qq
t and the values of

observations q. The values, represented with small letters, are natural numbers.
The observations, denoted with large letters, are elements of the algebra Q.

In the same way we can define an element in the algebra that refers to a finite
sequence of observations. If we define the ordered sequence et = 〈q1q2 . . . qt〉,
we can write

Eet
t = {e ∈ Kω : ∀t′ ≤ t : e(t′) = qt′}, (8.3)

Again, it must be noted that the small letters et refer to a sequence of natural
numbers, while the large letters Et denote elements of the algebra, and carry a
sequence of natural numbers as argument. The argument is sometimes omitted
for sake of brevity. The observations and sequences of observations are related
to each other in the natural way:

Qq
t+1 ∩ Et = Et+1. (8.4)

As in this equation, I normally refer to sequences of observations with the ex-
pression Et, suppressing the reference to the sequence et.

Observational hypotheses can also be seen as elements of the observational
algebra. If we say of an observational hypothesis h that its truth can be de-
termined relative to an infinitely long sequence of observations e, then we can
define hypotheses as subsets of Kω in the following way:

H = {e ∈ Kω : Wh(e) = 1}. (8.5)

Here Wh(e) = 1 if and only if the proposition h is true of e, and Wh(e) = 0
otherwise. The hypotheses can thus be arguments of the same probability func-
tions over the observational algebra. A partition of hypotheses is a collection
H = {H0,H1, . . . HN} defined by the following condition for the indicator func-
tions Whn

:
∀e ∈ Kω :

∑
n

Whn(e) = 1. (8.6)

This means that the hypotheses Hn are mutually exclusive and jointly exhaus-
tive sets in Kω.
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The Bayesian scheme. Belief states are represented by probability functions over
Q. They take observations Qq

t , sequences Et, and hypotheses Hn as arguments.
The functions are defined relative to a partition H and a sequence of known
observations et: the function p[H,et] represents the belief state upon observing
Et under the assumption of a partition H. It can be constructed by conditioning
a prior probability function p[H,e0] on the observations Et:

p[H,et]( · ) = p[H,e0]( · |Et). (8.7)

Because of this, we have p[H,et](Et) = 1. Updating the probability by simple
conditioning is known as Bayes’ rule. Both the probabilities assigned to obser-
vations and those assigned to hypotheses can be updated for new observations
in this way. The probability before updating is called the prior probability, and
the one after updating the posterior.

To calculate the predictions, we can employ a partition of hypotheses, and
apply the law of total probability:

p[H,et](Q
q
t+1) =

∑
n

p[H,et](Hn) p[H,et](Q
q
t+1|Hn). (8.8)

The terms p[H,et](Q
q
t+1|Hn) are called the posterior likelihoods of the hypotheses

Hn for Qq
t+1. The prediction is obtained by weighing these posterior likelihoods

with the posterior probability over the hypotheses, p[H,et](Hn).
Both posterior probabilities of equation (8.8) can be obtained from a Bayes-

ian update of the prior probability p[H,e0] according to expression (8.7). In this
chapter the likelihoods do not change upon conditioning. Such likelihoods are
sometimes called non-inductive.

p[H,et](Q
q
t+1|Hn) = p[H,e0](Q

q
t+1|Hn). (8.9)

That is, the observations influence the predictions only via the probability over
the hypotheses. Part of the input probabilities for generating the predictions
p[H,et](Q

q
t+1) are therefore the likelihoods p[H,e0](Q

q
t+1|Hn).

The predictions are further determined by the probability assignment over
the hypotheses, p[H,et](Hn). This probability can be determined by means of
the relation

p[H,ei](Hn) = p[H,ei−1](Hn)
p[H,ei−1](Q

q
i |Hn)

p[H,ei−1](Q
q
i )

, (8.10)

where q equals the last number in the sequence ei. Note that the denomina-
tor p[H,ei−1](Q

q
i ) can be rewritten with equation (8.8), substituting t = i − 1.

Recall further that the likelihoods p[H,ei−1](Q
q
i |Hn) are in this chapter equal
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for all sequences ei−1, as expressed in equation (8.9). The posterior probabil-
ity p[H,et](Hn) can therefore be determined recursively by the prior probability
p[H,e0](Hn) for all n, and the likelihoods p[H,e0](Q

q
i |Hn) for all n and i ≤ t.

These are the other input probabilities for generating the predictions.
In sum, predictions can be generated if we assume hypotheses, their likeli-

hoods, and a prior probability assignment over them. The prior and the likeli-
hoods are first used to determine the posterior probability assignment over the
partition. The likelihoods are then used together with this probability over the
partition for generating the prediction itself. The whole construction that uses
hypotheses to generate predictions is called the Bayesian scheme.

8.3 Contaminated cows

This section gives an example of a Bayesian scheme. The reader must be warned
that the case presented falls short of actual scientific cases in many respects.
The focus here is on the conceptual issues rather than on actual applications.

The example case. Consider a veterinary surgeon investigating a herd of cows
during an epidemic, classifying them into contaminated and uncontaminated.
The farmer claims that the herd has been treated with a drug that reduces the
risk of contamination. It is an accepted fact about the epidemic that the average
incidence rate among untreated cows is 0.4, as more than half of the cows show
a natural resistance against contamination from other cows. The incidence rate
among treated cows is 0.2 on average, because the drug is not always effective.
The aim of the investigation is to decide whether the cows have been treated
with the drug, and further to predict the incidence rate of the contamination
in the herd. To enhance the dramatic impact, it may be imagined that the
effect of the epidemic only shows in a slightly diminished milk quality, but that
the fate of the cows depends on the incidence rate being lower than 0.3. For
higher incidence rates the milk production fails to meet the quality criteria.
Furthermore, the farmer is liable to legal prosecution if he has not treated the
cows.

Setting up the inductive inference. The observations of the veterinary surgeon
consist in test results concerning a number of cows. The result of testing cow t

can be that it is contaminated, qt = 1, or that it is not, qt = 0. The test results
can then be framed in the observational algebra. The vet may set up a scheme
using a partition D of two hypotheses, which are associated with suppositions on
treatment with the drug. The hypothesis D1 is associated with the supposition
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that the cows are in fact treated, while D0 means that they are not. It must be
noted that the suppositions are thus not linked to observations directly, since
the observations only concern contamination while the suppositions concern
treatment. The relation that treatment bears to the observations is given by
the incidence rates for treated and untreated cows, and this relation is laid down
in the statistical hypotheses D0 and D1. For the observational content of the
hypothesis on treatment D1 we may take

Wd1(e) =

1 if f(e) = 0.2,

0 otherwise,
(8.11)

where f(e) is the relative frequency of results qt = 1 in the infinite sequence e.
The hypothesis D0 may be defined in a similar way using f(e) = 0.4. A more
precise definition is that the hypotheses comprise all so-called Von Mises Kollek-
tivs for the given incidence rates, but for present purposes the loose definition
suffices.

Being sets in the observational algebra, the hypotheses can also appear as
arguments in the probability functions p[D,et]. The fact that the veterinary
surgeon is undecided on whether the farmer has treated his cows can be reflected
in

p[D,e0](D0) = p[D,e0](D1) = 0.5. (8.12)

Hypotheses on other relative frequencies, which are strictly speaking part of the
partition, are thus given a zero probability. The likelihoods, for cow t being
contaminated, of the hypotheses that it has or has not been treated are

p[D,e0](Q
1
t |D1) = 0.2, (8.13)

p[D,e0](Q
1
t |D0) = 0.4. (8.14)

I further assume that the estimated incidence rates are not affected by the
running investigations, so that equation (8.9) holds.

Conclusions from observations and theory. With these values in place, the
veterinary surgeon can start to predict the incidence rate in the herd, and decide
over the treatment efforts by the farmer. Imagine that the first five test results
are positive,

e5 = 11111. (8.15)

Subsequent updating on these test results yields the following probabilities and
predictions:
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Number of tests t 0 1 2 3 4 5
p[D,e5](D1) 0.50 0.33 0.20 0.11 0.06 0.03
p[D,e5](Q

1
t+1) 0.30 0.33 0.36 0.38 0.39 0.39

The probability that the farmer has treated his cows diminishes, and the prob-
ability that the next test result is positive tends to 0.4.

The conclusions expressed in the above values are that the farmer very prob-
ably did not treat his cows, and that a random cow from the herd has a prob-
ability close to 0.4 of being contaminated. It must be stressed, however, that
these conclusions follow from the test results only if they are combined with
the Bayesian scheme using D. The scheme offers two possible hypotheses, and
the observations are used to divide the probability between them. It is only
relative to the partition D that most of the probability settles on D0 after e5, so
that the predictions are equal to the likelihoods that D0 prescribes for the test
results. If, for example, we had also considered a hypothesis D2 that prescribes
likelihoods of 0.9 for positive test results, then this hypothesis D2 would have
been preferred over D0, and the predictions would have followed the likelihoods
of D2. This example thus illustrates that the hypotheses in the scheme deter-
mine a range of probabilistic patterns, from which the observations may select
the best fitting one. The partition of hypotheses functions as an assumption on
what patterns can be picked up in the observations. The partition may therefore
be called an inductive assumption.

Finally, it can be noted that the partition of hypotheses is associated with
the theory underlying the scheme. In this case it concerns a classification of
a state of the cows into treated and not treated. Both these concepts come
with specific observational contents, which define the relevant patterns in the
observations. There is no conceptual space within the Bayesian scheme, at least
not as it is set up in the above discussion, to conclude anything other than that
the cows are treated or not treated. In order to create this conceptual space,
we must add hypotheses to the scheme.

8.4 Careless vaccination

This section shows how the hypotheses employed in the above scheme can be
changed. I describe this change, and illustrate that it allows us to derive different
conclusions and predictions.

Extending the example. Imagine that the veterinary surgeon becomes suspicious
of the test results. After all, more than half of the cows are normally immune.
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The sequence of test results must therefore be a rather unusual stochastic fluc-
tuation on the average relative frequency of 0.4. The vet therefore decides to
reconsider the inductive assumptions that underly the scheme, and to run a
number of additional tests with an adapted scheme. In particular, she inves-
tigates the drug that the farmer claims to have used, and finds that it is a
vaccinate with rather strict instructions for application. In most cases it works
very well, even reducing the risk of contamination to 0.025, but careless use
turns the vaccinate into a substance that causes a portion of 0.9 cows to be, or
at least to appear, contaminated after treatment. The hypotheses that the vet
wants to add to the scheme are that the drug has been used either carefully or
carelessly.

Refined partition. The additional hypotheses may be collected in a separate
partition C, with C1 associated with careful, and C0 with careless treatment.
Both hypotheses only apply to the case in which the cows have actually been
treated, D1. The combined partition is B = {B0, B10, B11} in which B0 = D0,
B10 = D1 · C0, and B11 = D1 · C1. Hypothesis B0 is again defined with the
relative frequency of 0.4, and the new hypotheses B10 and B11 can be defined
with 0.9 and 0.025 respectively. These three relative frequencies define the new
partition.

It is notable that the hypotheses B10 and B11 cannot be viewed as intersec-
tions D1∩C0 and D1∩C1: judged from the definition using relative frequencies,
the original set D1 and both sets B10 and B11 are disjoint. The relation be-
tween the old and the new hypotheses is a rather different one. We must imagine
that within every infinite sequence e ∈ D1, that is, within every possible world
in which all cows are treated, we make a further selection of the observations
qt into those concerning cows that have been vaccinated with care, and those
concerning cows that have been vaccinated carelessly. So B10 and B11 can be
distilled from the old one by breaking up every e ∈ D1, for which f(e) = 0.2,
into two subrows e0 and e1 by means of a place selection, taking care that the
relative frequencies of the two subrows are 0.9 and 0.025 respectively, and by
grouping these subrows into B10 and B11. Because 0.025 < 0.2 < 0.9, such
place selections can always be constructed.

The likelihoods of the hypotheses may again be equated to the relative fre-
quencies that define the hypotheses:

p[B,e0](Q
1
t |B10) = 0.9, (8.16)

p[B,e0](Q
1
t |B11) = 0.025. (8.17)
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In order to arrive at the overall incidence rate of 0.2 for treated cows, the
veterinary surgeon may further assume that a portion of 0.2 of all farmers do not
treat the vaccinate with the necessary care, as 0.2×0.9+(1−0.2)×0.025 = 0.2. I
come back to this choice in section 8.6. Finally, using the probability assignment
after five tests, the combined probability of treatment with the drug and the
lack of care is

p[B,e5](B10) = 0.03× 0.2 = 0.006 (8.18)

It must be noted that with the employment of B, the probability over the
observational algebra really undergoes an external shock: instead of allocating
0.030 probability on the set D1, we now allocate 0.006 on B10 and 0.024 on B11.

Different conclusions. With these new hypotheses and the associated inductive
assumptions, the veterinary surgeon can run a number of additional tests. Let
us say that the next ten test results are all positive too,

e15 = 111111111111111. (8.19)

Subsequent updating on these test results yields the following probabilities and
predictions:

Number of tests t 5 7 9 11 13 15
p[B,e15](B10) 0.01 0.03 0.14 0.49 0.80 0.95
p[B,e15](Q

1
t+1) 0.39 0.42 0.47 0.62 0.80 0.88

Now the probability for B10 approaches 1, while the predictions for a cow in
the herd to be contaminated tend to 0.9. Clearly these values differ from those
that were to be expected on the basis of D.

The conclusions expressed in these values are that the farmer did treat his
cows with the drug, but that he did not apply it with the necessary care. The
further conclusion is that the incidence rate of the epidemic in his herd is 0.9.
Again, these conclusions are drawn from the test results in combination with
the inductive assumptions of partition B. It is only when compared to the other
members of the partition that the hypothesis B10, which prescribes an incidence
rate of 0.9, fits the test results best. For present purposes, however, it is most
notable that these conclusions differ dramatically from those derivable from D.

Note that this is again different if we further introduce the partition I on
whether the test material is itself infected, and stipulate that in the combined
partition A = {I0 ·D0, I0 ·D1 ·C0, I0 ·D1 ·C1, I1} we have p[A,et](Q

1
t+1|I1) = 1,
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while slightly adapting the values for the other likelihoods. Relative to the
partition A, the priors for I and some further observations, the conclusion may
then be that the test material is infected. However, for the partition B and its
associated inductive assumption, the conclusions must be as indicated above.

8.5 A framework for changing partitions

The above illustrates how we can change a partition of hypotheses during an
update procedure. This section gives a general framework for such changes, and
draws attention to the need for new criteria of rationality to guide them.

Capturing hypotheses change. On the change of partition itself, as illustrated
in figure 8.1, I can be relatively brief. Let us say that the old partition H =
{H0,H1, . . . ,HN} consists of hypotheses Hn with likelihoods

p[H,et](Q
q
t+1|Hn) = θq

n. (8.20)

The addition of a partition G = {F0, F1, . . . , FM} to this partition generates a
combined partition G = H × G, which consists of N × M hypotheses Gnm =
Hn · Fm. Each of these hypotheses may be associated with a relative frequency
of the observation q, denoted γq

nm, so that

p[G,et](Q
q
t+1|Gnm) = γq

nm. (8.21)

The details of the partition change may be such that for some of the Hn we
have that γq

nm = θq
n for all q and m. We can then collect the hypotheses Gnm

under the single index number n, as for example B0 above. More in general,
if two hypotheses Gnm and Gn′m′ are such that γq

nm = γq
n′m′ for all q, we can

merge them into a single hypothesis. In the extreme case in which for all q the
γq

nm vary only with m, the change of partition comes down to a replacement of
H by G.

An external shock to the probability assignment. With the introduction of new
hypotheses, the probability over the observational algebra undergoes an external
shock. First, the probability over the hypotheses themselves changes. But since
the new hypotheses have different likelihoods, the probability over most other
elements of the algebra changes as well. It is in this chapter assumed that at the
time of change τ , the new probability assignment over the hypotheses observes
the following restriction:

p[G,eτ ](∪mGnm) =
∑
m

p[G,eτ ](Gnm) = p[H,eτ ](Hn). (8.22)
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Hn

Hn’

Gn1 Gn2

E0 E0

Gn’1 Gn’2

Figure 8.1: Graphical representation of a partition change. The hypotheses Gnm are sepa-

rate patches within the hypotheses Hn. Strictly speaking, the change is therefore effected by

a refinement. The dotted lines between Gn1 and Gn2 and between Gn′1 and Gn′2 indicate

that the priors of the Gnm within each Hn may be chosen freely.

That is, the probability assignment arrived at by updating over H is taken over
into the new partition G. This restriction serves to link every collection ∪mGnm

to the original hypotheses Hn, but it can be dropped if further details of the
partition change permit it. Finally, within the limits set by this restriction, the
probabilities of the hypotheses Gnm can vary freely.

It can be noted that the change in probability due to partition change is not
one that can be represented as Bayesian conditioning. Conditioning determines
how to adapt probability assignments if for some observation Qq

t or Et the
probability is externally fixed to 1. It is quite different to set the probability
of a number of hypotheses Hn to zero, and to redistribute this probability
over new hypotheses Gnm. A partition change is therefore an external shock
to the probability assignment to which we cannot apply Bayesian updating.
Now there are many arguments to the effect that Bayesian updating is the
only rational way to adapt a probability assignment to new information, but
these arguments do not apply in this case, since the new information can in
this case not be represented, in any straightforward manner, as an element of
the algebra. It seems that the possibility of partition change necessitates new
criteria of rationality, and the definition of an associated update operation.
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8.6 Distance between partitions

This section answers the need for a rationality criterion and an associated update
operation. In particular, it elaborates on a distance function between the old
and the new partition, and shows how to minimise this distance during the
partition change.

Minimising cross-entropy. Partition change may be considered as an external
shock to the probability assignment over the algebra. Williamson (2003) argues
that changes in the probability assignment must be conservative, that is, as
small as possible, and further that such conservatism can be explicated by a
minimisation of the cross-entropy distance function between the old probability
p0 and the new probability p, under the restrictions imposed by the external
shock. The distance function is defined by

∆(p, p0) =
∑
U

p(U) log
p(U)
p0(U)

, (8.23)

where the index U runs over all sets in the finite algebra over which p0 and
p are defined. As elaborated in Kullback (1959) and Paris (1994: 120–126),
minimising this distance under the external restrictions effectively minimises the
information change that is induced in the probability assignment by the external
shock. Interestingly, the operation of minimising cross-entropy coincides with
the operation of a Bayesian update in the case that some probability p[H,et](Q

q
t )

is restricted to 1. It therefore accords with Bayesian statistical inference to
adopt the minimisation of cross-entropy as the update operation in cases of
partition change.

We are not yet done with the update operation for partition change. For
one thing, the above distance function blows up if the algebra contains an in-
finite number of elements, as is the case for the algebra Q. We need to select
a finite collection of elements of the algebra, for which we may then minimise
the distance between the old and the new probability assignment. Note that it
is not desirable to minimise the difference between the old and the new predic-
tions. The reason for the partition change is exactly that the old predictions
do not match the pattern in the observations well. And note further that the
probability assignment over the hypotheses is changed deliberately, so that we
cannot apply the minimisation of the distance to the assignments over hypothe-
ses either. In sum, we have to apply the minimisation of cross entropy to a
collection of elements from the observational algebra that does not emphasise
the predictions or the hypotheses themselves.
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As already indicated in the example, it is rather intuitive to choose a minimi-
sation of the distance between the likelihoods of the hypotheses Hn and of the
associated collections ∪mGnm. These likelihoods fully express the hypotheses,
and the distance between the likelihoods is therefore an intuitive measure for
the closeness of the two partitions. A further reason for choosing the collection
∪mGnm can be found in the relation between the old and the new hypothe-
ses. Recall that the likelihoods of Hn for observations Qq

t are determined by
the relative frequencies of the observations q ∈ K within the infinite sequences
of observations, or possible worlds, for which Hn is true. With the change of
hypotheses, we effectively make a further division of these possible worlds into
the hypotheses Gnm. Specifically, each infinite sequence of observations e ∈ Hn,
having a relative frequency θq

n, must be split into M infinite subsequences em,
having relative frequencies γq

nm, and these subsequences can then be incorpo-
rated into separate hypotheses, em ∈ Gnm. Because the hypotheses Gnm are
derived from the original hypotheses Hn in this way, we may expect the relative
frequency associated with the aggregate ∪mGnm to be the same as, or at least
close to, the original relative frequency associated with Hn.

A note on Kollektivs. At this point we may recall the definition of hypotheses as
sets of sequences with specific relative frequencies, which is developed in chapter
2. In the context of that chapter it seems more elegant to equate hypotheses
with collections of Kollektivs. Section 2.3.2 argues that there are further reasons
for the definition of hypotheses by means of relative frequencies only, and these
reasons can become apparent if we consider the creation of hypotheses alluded
to above. Let me first admit that this creation is not a neatly defined operation
yet. However, I do think that such an operation can eventually be defined,
and that it then mimics the kind of epistemic move involved in choosing a new
partition. Indeed, the veterinary surgeon imagines that an infinite sequence of
unobserved cows is broken up into finite segments, the herds, which are then
marked as being treated carefully and carelessly. These finite segments are
then concatenated to render two different infinite sequences. But if the infinite
sequences e ∈ Hn are taken to be Kollektivs, we simply cannot create these
different sequences em ∈ Gnm from the single hypothesis Hn by means of a
place selection. We must therefore maintain that the e ∈ Hn are not Kollektivs.

Calculations. Any hypothesis prescribes the likelihoods for infinitely many ob-
servations Qq

τ+t, associated with different times t ≥ 0. However, these likeli-
hoods are in this chapter constant, and it seems natural to define the distance
between the partitions as the distance between the likelihoods at a single time



220 CHAPTER 8. BAYESIAN THEORY CHANGE

t. For p0 we can use the old likelihoods p[H,eτ ](Q
q
τ+t|Hn) = θq. For p we use

the aggregated likelihoods, given by

γq
n = p[G,eτ ](Q

q
τ+t| ∪m Gnm)

=
∑
m

p[G,eτ ](Gnm)∑
m p[G,eτ ](Gnm)

p[G,eτ ](Q
q
τ+t|Gnm) (8.24)

=
∑
m

ρnmγq
nm. (8.25)

Here the ρnm are defined by the fraction in equation (8.24), so that
∑

m ρnm = 1.
The γq

n are a function of these ρnm.
We can now use the distance function to find the aggregated likelihoods

p[G,eτ ](Q
q
τ+t| ∪m Gnm) that are closest to the likelihoods p[H,eτ ](Q

q
τ+t|Hn), for

any time t. These distances are defined for each hypothesis Hn separately:

∆n(ρnmγq
nm, θq) =

∑
q

γq
n log

γq
n

θq
n

. (8.26)

The distance for Hn is thus a function only of the fractions ρnm, which determine
how the probability of Hn is distributed over the Gnm. The update operation
after a hypotheses change is to find, for every Hn separately, the values of ρnm

that minimise the distance function ∆n.
This can be employed to provide a further underpinning for the choice of the

probabilities p[B,e5](B10) and p[B,e5](B11) in the example. It was stated there
that the veterinary surgeon chooses these probabilities in order to arrive at the
overall incidence rate of 0.2. Note that the distance between the likelihoods of
H and the aggregated likelihoods of G is zero and therefore minimal if we find
values for ρnm so that γq

n =
∑

m ρnmγnm = θq
n. In the case of the partitions

D and B, the equation simply becomes 0.9× ρ10 + 0.025× (1− ρ10) = 0.2, for
which ρ10 = 0.2 is the solution.

Generalisations. It must be stressed that the present exposition does not com-
prise the full story on partition change. There are many cases of partition
change that are not covered by the above framework, but that can in principle
be treated in a similar way. One such case deserves separate attention here. The
example presents a probability assignment that is not open-minded: almost all
hypotheses on relative frequencies are given a zero probability. This may cause
the impression that the framework for partition change can only be applied if
the old probability assignment is not open-minded. It may be hard to see what
other hypotheses can be added if, for instance, the prior probability already
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includes all possible hypotheses on relative frequencies. However, the above
framework can also be used to change a partition of all hypotheses on relative
frequencies into a partition of hypotheses that concern all Markov processes.
The application of the framework for partition change is thus not limited to
cases in which the prior is not open-minded.

8.7 Concluding remarks

In this chapter it has been shown how we can frame a partition change, and a
procedure has been provided to render this change rational, employing a distance
function between the partitions. I complete the chapter with a summary and
some remarks on the proposed framework in the context of Bayesian statistical
inference.

The proposed framework enables us to adapt the hypotheses that function
in a scheme for making predictions. By writing down the predictions in terms of
a Bayesian scheme, I locate the theoretical structure underlying the predictions
inside the probability assignment. Theoretical developments can therefore be
framed as external shocks to the probability assignment representing the current
opinions, just as new observations. I then argue that the operation that updates
the assignment for the external shock is a generalised version of Bayesian con-
ditioning, namely cross-entropy minimisation. The framework is therefore a
natural extension of Bayesian statistical inference. On the whole, the chapter
proposes an answer to the problem that Bayesian statistical inference cannot
accommodate theory change.

The chapter may also fulfil a role in an older discussion between inductivists
and Popperians: it basically shows how we can incorporate a notion of conjecture
within an inductivist setting. It is a typical feature of Carnapian inductive logic
that there is no room for an explicit formulation of inductive assumptions, as
such assumptions are part and parcel of the choice of language. Conjectures can
therefore not be captured within a Carnapian logic. However, the above discus-
sion associates the premisses with the hypotheses used in the Bayesian scheme,
and further allows us to change them. It provides a truly nonmonotonic induc-
tive Bayesian logic, in the sense that besides the set of available observations,
also the inductive assumptions may be altered along the way. This chapter is
thus a first step in generalising inductive Bayesian logic to incorporate changes
in the projectability assumptions.





9

Abducted by Bayesians?

This chapter discusses the use of theoretical distinctions between hypotheses
in Bayesian inductive inference. A theoretical distinction is any distinction be-
tween hypotheses that is not reflected in a difference in likelihoods. This chapter
shows that under certain conditions inductive predictions may benefit from the-
oretical distinctions, and further that under such conditions the observations
can tell theoretical hypotheses apart. Two considerations follow from this main
conclusion. First, the puzzle on theoretical hypotheses can be repeated at a
higher level, concerning scientific method more generally. This leads to the
claim that underdetermination fulfils a function in scientific method. Second,
the choice between theoretical hypotheses in science is usually associated with
abductive inference. This chapter therefore contains the promise of a Bayesian
model of abduction.

The present chapter can again be read entirely independently. However, the
technical part of the chapter is rather concise. For a more elaborate treatment
I refer to section 1.3. A deeper understanding of statistical hypotheses can be
obtained from chapter 2. Chapters 3 and 7 are useful for understanding the
relation between theoretical background and inductive predictions more gener-
ally.

9.1 Statistical inference using partitions

This section describes a Bayesian scheme for inductive inferences, running from
observations and statistical hypotheses to predictions. The prior probability
over hypotheses is first updated to the given observations, and the updated
probability is subsequently used to generate predictions. The resulting predic-
tions may be also captured directly in prediction rules, but the hypotheses are
seen to be useful for expressing knowledge of underlying chance mechanisms.

Bayesian inductive inference. The inductive scheme employs a formal frame-
work of observations and hypotheses. Consider an observation at time i with
a possible result q ∈ {0, 1}, denoted Qq

i , and denote sequences of observations
of length t with Et. The example of this section supposes the observations
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to consist of results of coin tosses. Consider a partition H of hypotheses Hθ

concerning the chance θ on tails, q = 1, so that

p(Q1
i+1|Hθ ∩ Ei) = θ, (9.1)

and further a prior probability over these hypotheses, p(Hθ)dθ. The partition,
the likelihoods of the hypotheses in it, and the prior probability over the hy-
potheses together determine the Bayesian scheme.

The observations are the other component that is needed to arrive at in-
ductive predictions. Bayes’ rule can be used to update the prior probability to
given observations Et. After updating we obtain a posterior probability,

p(Hθ|Et)dθ =
p(Et|Hθ)

p(Et)
p(Hθ)dθ. (9.2)

Predictions follow directly from this posterior by the law of total probability:

p(Q1
t+1|Et) =

∫ 1

0

p(Q1
t+1|Hθ ∩ Et) p(Hθ|Et) dθ

=
∫ 1

0

θ p(Hθ|Et) dθ. (9.3)

This scheme for predictions covers a substantial part of Bayesian statistical
inference, as many such inferences are made with models concerning constant
chances.

The use of hypotheses. In a sense, the hypotheses Hθ are already theoretical.
They concern the objective chance of an observation, and such chances cannot
be translated into finite observational terms. Moreover, the hypotheses can be
eliminated from the inference completely. De Finetti’s representation theorem
states that the above scheme of hypotheses covers exactly those prediction rules
for which the order of the observations in Et is inessential. Defining tq as the
number of Qq

i in Et, these rules maybe characterised with

p(Qq
t+1|Et) = pr(tq, t). (9.4)

Every rule pr corresponds to a specific prior p(Hθ)dθ over the hypotheses in the
scheme, and vice versa. In particular, if we assume the prior to be a symmetric
Dirichlet distribution, we can derive the Carnapian λ rules:

p(Qq
t+1|Et) =

tq + λ/2
t + λ

= prλ(tq, t). (9.5)

A higher peak in the Dirichlet density p(Hθ) is reflected in a larger parameter
λ.
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Although the hypotheses in the above inferences can thus be replaced with
direct links between observations, there are good reasons for keeping the hy-
potheses in. First, they express the chance mechanism that is supposed to
underlie the observations. For example, if the observations concern coin tosses,
we know that the mechanism underlying the observations concerns constant
and independent chances. Second, the hypotheses enable us to express further
knowledge of the chance mechanisms in a prior probability over them. In the
example, a normal coin motivates a prior over these chances that is strongly
peaked at 1

2 , while a coin from a conjurer’s box may have little probability at
1
2 and more probability at 0 and 1. In the prior we can thus express knowledge
of the chance mechanism that is not incorporated in the statistical hypothe-
ses themselves. It is not always a straightforward matter to incorporate such
knowledge in a direct prediction rule.

9.2 Duplicate partitions

in what follows the above scheme will be extended by a duplicate partition.
The distinction between the two duplicates is therefore entirely theoretical. It
is shown that this purely theoretical distinction facilitates the choice of pri-
ors. It is further shown that this move makes the two duplicate subpartitions
observationally distinguishable after all. In addition, it is seen that there are
computational advantages to keeping the two subpartitions distinct.

A normal or magical coin. Let me start with the example on coin tosses. Imag-
ine that we are undecided on whether the coin is from a conjurer’s box or from
an ordinary wallet. Now both these kinds of coins have an unknown constant
chance on tails, q = 1, so that we may employ the hypotheses Hθ. However, we
have some further knowledge of the mechanism underlying the observations that
must somehow be incorporated in the prior: either the coin is most probably
fair, having a chance that is close to 1

2 , or the coin is most probably strongly
biased, having a chance that is close to 0 or 1. To incorporate this knowledge,
we can now employ an additional partition into the hypotheses G0 concerning
the normal coin and G1 concerning the magical coin.

Both hypotheses Gj cover exactly the same subpartition, Gj = {gj} × H.
They are only labelled differently. We can use the likelihoods θ for the hy-
potheses g0 × Hθ and g1 × Hθ alike. In terms of these statistical hypotheses,
the distinction between the magical coin and the normal coin is therefore not
observable. For each hypothesis in the one subpartition, there is a hypothe-
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G1

θ →

G0

θ →

Figure 9.1: Two different priors over the two subpartitions of Bernoulli processes Hθ. The

peak prior is associated with the normal coin, the valley prior with the magical coin. Both

function are from the class of Dirichlet priors. For λ = 2 the prior distribution is uniform, for

larger values of λ the peak gets higher, and for smaller values of λ2 the valley gets deeper.

sis in the other subpartition that has exactly the same likelihoods for all the
observations. The partition as a whole is thus underdetermined.

Advantages of a degenerate partition. There is a particular advantage, however,
to employing this duplicate partition in the Bayesian scheme. We have separate
control of the priors over the subpartitions on the normal and magical coin,
g0 ×H and g1 ×H respectively. The further knowledge about the two kinds of
coins motivates specific forms for the priors in both partial partitions, leading to
two separate Carnapian rules, for example with λ = 10 and λ = 1

4 . The priors
are illustrated in figure 9.1. Let us say that initially we are undecided between
these two, p(G0) = p(G1). The rules can then be weighed with the probabilities
of the coin’s origin, resulting in a so-called hyper-Carnapian prediction rule:

p(Qq
t+1|Et) = p(G0|Et) pr10(tq, t) + p(G1|Et) pr1/4(tq, t). (9.6)

The idea here is that the probabilities within the two subpartitions g0 · H and
g1 · H are updated separately, and that the resulting values yielded by the
Carnapian rules can function as the likelihoods in an update over the hypotheses
G0 and G1.

Interestingly, even while the subpartitions associated with G0 and G1 consist
of pairwise identical hypotheses, the differing priors over them cause different
aggregated likelihoods of G0 and G1, namely the different Carnapian rules. That
is, the two partitions themselves are observationally indistinguishable, but the
different expectations over these partitions make the partitions observationally
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Figure 9.2: The hyper-Carnapian prediction rule can also be expressed in a single prior over

one partition C. The prior is simply the sum of the two separate priors over the separate

subpartitions.

distinct after all. As a side effect of updating over g0 × H and g1 × H, the
observations become relevant to the theoretical distinction between hypotheses
G0 and G1.

This effect is less magical than it may seem. The distinction between the
hypotheses G0 and G1 may not be observational relative to the subpartitions
H, but the hypotheses G0 and G1 do have an observational content: a magical
coin is much less likely to yield an observed relative frequency of tails of close to
1
2 than the normal coin. This content is exactly expressed in the differing priors
over the partial partitions g0×H and g1×H. The theoretical distinction simply
facilitates the use of these differing priors over the two subpartitions. A further
function of the distinction consists in keeping calculations manageable. The
function that expresses the combined prior over a single partition H is naturally
the sum of the priors defined over the above subpartitions, as expressed in figure
9.2, but it is much more convenient to update these terms separately. The
resulting predictions can not be equated with a single Carnapian rule, and it is
not easy to find some other exchangeable direct prediction rule that captures
them.

Relations to preceding chapters. Some remarks may connect the present dis-
cussion with preceding chapters. Note first that in terms of the frequentist
semantics of chapter 2, the hypotheses G0 and G1 are indeed identical. They
consist of the very same subpartitions, and thus of the very same sequences of
observations. The use of a duplicate partition reminds of the initial Kolmogorov
picture of the Bayesian scheme, as presented in chapter 1. Just as the hypothe-



228 CHAPTER 9. ABDUCTED BY BAYESIANS?

ses Hj in that chapter, the hypotheses Gj are here associated with a complete
observational algebra. Secondly, it is notable that the partition of hypotheses
is here used to encode specific inductive assumptions in a prior probability as-
signment. In this sense the chapter has much in common with chapters 4 and
5. While in these chapters the partition of hypotheses is transformed, in the
present chapter the partition is duplicated. But in both cases we manipulate
the partition of hypotheses in order to access the appropriate prior.

In the case of the above hyper-Carnapian rule, the reader may find that the
advantages of the representation of inductive predictions in terms of statisti-
cal hypotheses is entirely unhelpful, or even contrived. It may be much more
natural to employ the hypotheses Gj with the Carnapian rules as likelihoods.
However, in view of chapter 3 there are independent reasons for preferring the
partition of statistical hypotheses Hθ, with constant likelihoods, over the single
Carnapian prediction rules. Moreover, I feel that a Bayesian statistician may
have some problems in making sense of the Carnapian prediction rules in the
role of statistical hypotheses. According to chapter 2 they are not even included
in the class of such hypotheses. Finally, and in relation to all this, I want to
maintain that the use of the hypotheses Hθ allows us to disentangle two different
aspects of the way we deal with the observations of the coin tosses, and that
these two aspects are conflated if we use just the hyper-Carnapian rule.

Another set of considerations concerns the role of the knowledge about un-
derlying mechanisms, in this case knowledge about the possible type of the coin.
First of all, I am not sure that we can speak of knowledge of the underlying
mechanism. In the example of the coin we are perhaps in that position, but
in the standard case of scientific investigations the underlying mechanism can
at best be a supposition. On the other hand, such suppositions may be used
to inform the priors just as well. As a second consideration, and following up
on this, it is not in all cases clear how exactly these suppositions determine the
form of the prior probability assignment over the subpartitions. The example
may suggest that this link is straightforward, but there are many cases in which
this is simply not true. The second part of this thesis illustrates that finding a
prior probability assignment over hypotheses that encodes certain assumptions
on the underlying mechanism is a substantive and all but trivial part of the task
of inductive logic.

Summary. Let me summarise the main point of this section. It directs attention
to inductive inferences using two duplicate subpartitions, which differ only in
the entirely theoretical property that they posit different mechanisms underly-
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ing the observations. It may seem pointless to use such duplicate partitions.
However, the mechanisms underlying the observations can motivate different
prior probabilities over these subpartitions. And because these priors react to
the updating operations differently, the partitions can be distinguished by the
observations even while they consist of statistically identical hypotheses. The
reason for using duplicate partitions is thus that they facilitate the expression
in the prior probability assignment of knowledge of underlying mechanisms,
thereby making the duplicate partitions observationally distinguishable after
all.

9.3 The use of underdetermination

One of the main messages of this thesis is that hypotheses are useful for express-
ing suppositions on chance mechanisms in inductive inference, by making ac-
cessible, that is, conceptually and computationally manageable, certain classes
of prior probabilities. The present chapter argues that this latter usage also
applies to entirely theoretical distinctions between hypotheses: the theoretical
distinction motivates specific priors, and the distinction is thereby given obser-
vational content. In this last section I transfer this insight to scientific method
more generally. First I propose a different perspective on the problem of under-
determination. After that I argue that the use of duplicate partitions is holding
the promise of a Bayesian model of abductive inference.

Underdetermined statistical inference. The problem of underdetermination is
that science, if interpreted as a realist undertaking, is dramatically underde-
termined by observation: at first sight it seems that much of the theoretical
superstructure of scientific theories cannot be warranted by the observational
substructure. The primary challenge for realists is to show that this appar-
ent underdetermination is not harmful to the realist objective of science, where
this objective, put crudely, is to present science as an enterprise that success-
fully aims for the truth. A good example of this reaction is to be found in
structural realism as presented in Worrall (1989), Ladyman (1998), and Votsis
(2005). However, some realists take on the bigger challenge of showing that un-
derdetermination can in some cases be avoided. They achieve this by providing
inference rules such as abduction, which enable us to choose between theoretical
superstructures on the basis of explanatory considerations or other theoretical
virtues.

By contrast, in the following I stick to the original challenge of showing that
underdetermination does not obstruct the realist aims of science. More specifi-
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cally, I attempt to show that underdetermined theoretical superstructures have
a specific use in statistics. I thus accept that science is underdetermined, but
I go on to suggest that it is possible to explain this fact by reference to the
methodological use of underdetermination. How this use of theoretical super-
structures reflects back on realism I leave for future research.

Recall the claim of the preceding section that a partition that employs purely
theoretical distinctions may offer a better grip on statistical analyses of exper-
imental observations. In the example, the hypotheses G0 and G1 cause under-
determination, since we can never tell them apart by observations. But dis-
tinguishing them is very useful in the statistical procedure: they facilitate the
expression of knowledge or suppositions on underlying mechanisms in priors,
and they carve up statistical inference in manageable parts. More generally, we
may tentatively say that the use of theoretical distinctions in statistical analy-
ses reveals the advantages of underdetermination. In future research I hope to
support this claim with case studies on actual experiment, in which theoretical
distinctions are indeed employed to elicit specific conclusions from the obser-
vations. The idea is that enriching the observational algebra with theoretical
distinctions improves the expressive force of the inductive scheme, and thus the
ability to elicit answers from nature and make specific inductive inferences.

Abduction. It is important to note that, as a side effect of using theoretical
distinctions, it looks as if these distinctions themselves become observational.
This is where the use of theoretical distinctions in inductive inference begins
to look like abduction. An abductive inference enables us to choose between a
number of observationally indistinguishable, and thus theoretical, alternatives
on the basis of certain theoretical virtues, for example explanatory force. Now
the key insight here is that such a theoretical virtue is also presented in the
fact that one of the two priors in the duplicate partition corresponds better to
the observations. Recall that the observations have exactly the same impact on
the separate hypotheses in each of the two subpartitions. The different impact
is entirely due to the difference in the subjectively determined probability over
these two subpartitions. We may therefore say that the observations reflect
differently on the two subpartitions, exactly because they interact differently
with our expectations.

Let me briefly explain these remarks by relating them to empirical equiva-
lence and the nature of observations. Note first that whether two theories are
empirically equivalent or not depends on the notion of theory that is employed.
If we assume that the theories about the origin of the coin are determined by
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the statistical hypotheses that they consist of, in both cases H, they are in-
deed empirically equivalent. But if we say that the prior probability assignment
is an inherent part of the theories, then the two theories are not empirically
equivalent. Furthermore, on the stipulation that the theories are empirically
equivalent, whether two theories may or may not be told apart by observations
in a sense indicates the nature of these observations. That is, if we take the
content of the observations to be the effect they have on the probability assign-
ment on the whole, it may be argued that the observations in the coin example
are not entirely empirical. In that case they somehow incorporate theoretical
content. If, on the other hand, we stipulate that the theories are empirically
distinct in the first place, or if we stipulate that the content of the observations
is given by the likelihoods for the observations and by nothing else apart from
that, then there is no reason to say that observations have theoretical content.

It will be clear that I prefer the view that observations also convey theoretical
content, and that they manage to do so because of the theoretical scheme in
which we have chosen to frame them. My main reason for preferring this view is
that I think it holds the promise of a Bayesian model of abduction. It provides a
formal expression for the position that there is no sharp line between observation
and theory, from which the use of observations for deciding over theoretical
distinctions is seen to follow. However, the details of this position, which will
elaborate the idea that the observations have different content in the context of
different theoretical subpartitions, must be left to further research.





Conclusion

Summary. This thesis falls into three main parts. The first part claims that
the hypotheses in the Bayesian scheme offer a better control over the inductive
assumptions inherent to predictions. The second part adds to this by show-
ing that spaces of hypotheses prove very useful in encoding specific aspects
of the predictions in a prior probability. The third part illustrates the use of
the Bayesian scheme in solving some problems in the philosophy of science, in
particular problems concerning scientific method.

Let me run through the chapters in some more detail. As for the first
part, chapter 1 presents inductive inferences as logical, using a representation
of observations in a cylindrical algebra, a representation of beliefs in terms of a
probability assignment over this algebra, and the probability axioms alongside
Bayesian updating as the inference rules. I distinguish between a Carnapian and
a Bayesian scheme for generating the inductive predictions. Chapter 2 concerns
the nature of statistical hypotheses in the Bayesian scheme. The hypotheses
can be associated with specific sets in the observation algebra, so that the two
schemes can be treated on equal footing. In chapter 3 I argue that the Bayesian
scheme has a specific advantage over the Carnapian scheme. The hypotheses
offer a natural control over the inductive assumptions underlying the predictions.
Where the Carnapian scheme leaves the assumptions implicit, the Bayesian
scheme brings them within conceptual grasp.

The Bayesian scheme invites two different discussions in the two other parts
of the thesis. The second part concerns the use of the Bayesian scheme in
capturing inductive predictions that are sensitive to analogy and independence.
In chapter 4, in particular, I discuss the specific class of analogical predictions
based on explicit similarity. After providing a system of Carnapian prediction
rules, I define the Bayesian scheme that underlies this system. This latter
scheme offers some insights into the system of prediction rules, and leads up
to a further exploration in chapter 5. This chapter employs the scheme to
develop a general model of analogical predictions, but unfortunately it fails to
achieve full generality. Chapter 6, finally, employs the same scheme to model
predictions for nodes in a Bayesian network. It further shows how the notion
of inductive dependence can be incorporated in the Bayesian scheme. More
generally, the second part of this thesis illustrates that the Bayesian scheme,



234 conclusion

by using hypotheses, allows for a better expression of inductive assumptions
in a way that stands quite apart from the advantage stressed in the first part:
transformations in the hypotheses space allow for the definition of priors that
are difficult to define otherwise.

The third part of the thesis considers the Bayesian scheme in relation to
three venerable problems in the philosophy of science. Chapter 7 shows that
the Bayesian scheme offers a solution to the logical part of the problem of
induction, but also that it offers nothing on the epistemological part of the
problem. Chapter 8 concerns the problem of inductive inference and theory
change. It is shown that the Bayesian scheme suggests a natural place for
changes in the inductive assumptions, namely in a change of the statistical
hypotheses. It further develops the formal tools to ensure that such changes
remain as conservative as possible. Finally, chapter 9 concerns the use of purely
theoretical concepts and distinctions in inductive inference, and thus relates to
the problem of underdetermination. It shows that such distinctions can indeed
be useful, and suggests a further exploration of this fact in a Bayesian model
of abductive inference. On the whole the third part claims that the Bayesian
scheme is not only suitable for an interesting inductive logical exercise, but that
it provides insight into actual scientific methods.

The bigger picture. Let me start by noting that from its conception onwards,
probabilistic inductive logic has developed rather slowly, and never really picked
up speed. I can see two reasons. First, without meaning to be disloyal to the
old masters, there is what I call the curse of Carnap. While the Carnapian
framework has certainly been a step forward in studying inductive inference as
part of a formal system, both the inherent empiricist view on language and the
notion of logical probability have not always been helpful in the development of
this system. It may even be conjectured that a failure to disentangle logic from
epistemology is the main cause for the problematic development of inductive
logic, certainly in comparison to the mature discipline of deductive logic.

As a second reason for the slow development of inductive logic, it appears
that Carnapian logic has never really been connected to the main use of proba-
bilistic inductive inference in science, namely in statistical inference. An excep-
tion to this is the statistical treatment of λγ rules in Festa (1993), which has
been a strong source of inspiration for the present thesis. In the larger discus-
sion on scientific methodology, however, Popper had statisticians such as Fisher,
Neyman and Pearson on his side, whereas Carnap failed to find fruitful com-
mon ground for his logical framework and the tradition of Bayesian statistics.
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Apart from that, Carnapian logic has been connected to conceptual problems
in the philosophy of science only to a very limited extent. Inductive logic has
therefore remained a rather isolated discipline, immersed in its own problems,
and at best gesturing towards applications to statistics and scientific method
more generally.

This thesis hopes to improve the prospects for inductive logic, both as a
separate discipline and as a formal tool for solving problems in methodology
and the philosophy of science. With respect to inductive logic as a separate
discipline, it proposes a reorientation of the field by pushing two points: the
logical perspective, and the Bayesian scheme. The logical perspective obviates
the need for a notion of logical probability, and puts strong emphasis on the
fact that inductive inference must be valid inference. It further emphasises that
inductive logic must make explicit the assumptions underlying inductive infer-
ence. This is where the second point becomes effective. The Bayesian scheme
employs statistical hypotheses, which are seen to provide access to underlying
assumptions. They enlarge the expressive force of inductive logic, and provide a
new take on some well-known problems. Thus, while the first part of this thesis
simply describes the reorientation of inductive logic, and shows some conceptual
advantages of it, the second part shows that this reorientation also results in
a better treatment of internal questions. It turns out that certain problems of
traditional inductive logic can be solved more easily within a Bayesian scheme.

The use of inductive logic in philosophy of science is illustrated in the third
part. It is here suggested that the Bayesian scheme can provide insight into, and
to a certain extent solutions for, some problems concerning scientific method.
However, much is left to be done in this last research area. First, I suspect that
the Bayesian scheme connects naturally to statistical procedures as used in the
sciences, but an argumentation for this has not yet been produced. Moreover, it
may be noted that there is still a yawning gap between the above schemes and
the abundant use of Fisherian and Neyman-Pearson statistics in most of the
social sciences. Future research will be directed towards a better understanding
of these statistical techniques, and where possible to a reformulation of them in
terms of valid statistical inferences. As a second line of development, besides
this debate on statistics, I expect that the Bayesian scheme can contribute to
many more philosophical debates in the philosophy of science, apart from the
ones discussed here.

The need for both observations and theory. In the philosophical debate about the
theory-ladenness of observations, I expect Bayesian inductive logic to be particu-
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larly helpful. It may be noted that this thesis employs a rather naive framework
for the observations, which are supposed to enter the Bayesian schemes as clear-
cut and numbered packages of independently obtained information. This seems
in direct opposition to the widely shared view that observations are partly de-
termined by theory, in particular that they cannot be described or processed
unless we already presuppose some theoretical framework. This point becomes
all the more pressing for observations within a scientific experiment, as they are
usually processed elaborately before being subjected to statistical analysis. In
short, there are strong assumptions inherent to taking observations as clear-cut
packages: we assume an unshakeable observation language. However, I submit
that the Bayesian scheme contains the conceptual ingredients for a more nu-
anced view on observations than has been suggested until now. The first part
of this thesis makes clear that in the Bayesian scheme, the partition functions
as a pair of glasses for looking at the observations. The idea is to take the
observations Qq

t as referring to the raw material of the observation, or in other
words the unrefined stimulus. The partition of hypotheses, which determines
the impact of the raw observation on beliefs, then concerns the theoretical side
of the observations.

This view on the Bayesian scheme, and on inductive inference within it, em-
phasises that there is not much that observations can convey all by themselves.
They always presuppose a theoretical framework, and it is in this sense mis-
guided to hope for objective inductive knowledge. The choice of a partition is
similar to the choice of a language in an Carnapian inductive logic, and as Fried-
man (2004) argues, this choice may again be seen as a relativised and dynamic
variant of the Kantian synthetic a priori. The difference is that within the con-
text of Bayesian logic, the choice is within conceptual and formal grasp. On the
other hand, as with the Carnapian language choice and the Kantian synthetic a
priori, the assumptions underlying inductive knowledge do not convey much by
themselves either: statistical partitions usually leave all possibilities open. Once
one is provided with these assumptions, the observations are fully responsible
for the result of the inductive inferences. It is therefore equally misguided to
conclude that in inductive inference, anything goes. As elaborated in the third
part of this thesis, inductive knowledge is best seen as a co-production of the
observer and the observed, which interact on the strict interface of a logical
scheme. The eventual value of the result, in many cases the accuracy of the
predictions, thereby depends on making correct observations, on using a proper
logic, and finally on the truth of the inductive assumptions.
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Choosing inductive assumptions. I want to conclude with some philosophical
remarks on the three elements of observation, logic and assumption, starting
with the last. I must admit that it is rather disappointing that in this thesis
the matter of choosing inductive assumptions has been left aside completely.
As may be recalled from chapter 1, the motivation for this disregard is that
choosing inductive assumptions is deemed an epistemological issue, or an issue
closer to scientific practice, while this thesis is focused exclusively on the logical
aspect of inductive inference. Here I want to briefly consider this epistemological
aspect after all.

It can first be noted, in particular with respect to science, that choosing in-
ductive assumptions is related to the activity of conjecturing and model building.
In other words, asking for the origin of inductive assumptions leads us to the
context of discovery, the realm of supposedly irrational and intuitive scientific
reasoning. Now I do not think that this side of scientific reasoning is irrational,
and like most other philosophers I think it is also a perfectly respectable subject
for further research. However, it seems to me that this research is not served
best by a restriction to philosophical methods. It also requires empirical research
into actual reasoning, which may be accessed by studying the history of science,
and perhaps also by performing psychological experiments. The epistemolog-
ical part of inductive inference is thus moved into the domain of the sciences
themselves. Note further that the findings of these empirical studies are likely
to differ from the schemes presented in this thesis. After all, sailors do not use
fluid mechanics to determine the optimal positions of the sails on their boat.
They just follow the rules of sailing. In the same way, actual scientific reasoning
will quite probably be a dense network of ad hoc rules rather than a neat logical
scheme. It is only by writing down the rules in terms of a Bayesian scheme
that we can reconstruct and investigate the inductive assumptions underlying
the reasoning.

Spinoza resolves Cartesian doubts. As for the second element of inductive in-
ference, namely making correct observations, I can only offer the kind of basic
trust, perhaps best known from Spinoza, that human cognition is by its very
nature attuned to the world. This reliabilist trust is obviously not supposed to
apply to all convictions, in which case the inductive schemes of this thesis would
all become irrelevant. The trust applies only to the raw material of observa-
tions, that is, the direct sensory input. And I hold that for this raw material,
the reliabilist ideas are in fact rather natural. The starting point of the argu-
ment for this is that the cognitive system of a human body is part of this world,
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or rather, fully submerged in it just as tables and chairs are. In the way in
which it interacts with the world on the level of unrefined stimuli, it does not
differ in any fundamental sense from tables and chairs, although it is of course
much more complex. But if that is so, then to say that human cognition, on
the level of unrefined stimuli, is structurally at variance with the world is like
saying that a certain type of chair cannot be fitted into space, suspends gravi-
tation, or something of that sort. Under the assumption that human beings are
nothing special, in the sense that they are as any other object part of this world,
whatever this world consists in, it becomes hard to imagine what doubting the
unrefined stimuli amounts to.

Logic as metaphysics? This brings me to the last element of inductive logic,
namely that of using proper inference rules. Here I briefly discuss the their
epistemic status. It will be clear by now that I think it sadly misguided to aim for
a logical scheme that somehow also provides the correct inductive assumptions.
The force of a logical scheme is exactly that it provides only the criteria for valid
inference, and avoids the whole matter of truth. When it comes to probabilistic
inductive logic, I am therefore emphatically against the slogan that probability
is the guide of life. On itself, probability cannot tell us anything about life, if
only for the simple fact that it is merely a formal tool.

It may be objected that, considered as a formal tool, the logical scheme
reveals something synthetic after all. The idea behind this is that there must be
something to the logical scheme that ensures its applicability to the world we
live in. One may argue that logic is not just a game of symbolic manipulation,
but that it really concerns the world, and that it somehow reveals invariances
in its structure. Now I am not sure whether there is indeed some structure
to the world that makes Bayesian updating the valid inference rule for it, or
whether this validity derives only from the form that we choose for assumptions
and conclusions. If the former is the case, Bayesian inductive logic does indeed
not just accommodate the representation of inference, but it is also a branch of
metaphysics. But this, to my mind, stretches the reach of the Bayesian scheme
a bit too far.



Samenvatting

Voordat ik een overzicht geef van het proefschrift zelf, zal ik eerst het induc-
tieprobleem, de inductieve logica, en de ideeën van Bayes inleiden. Wie zich wil
beperken tot het overzicht, kan bij het kopje Dit proefschrift beginnen te lezen.

Eenden en tijgers. De jachtopziener van prinses Perenbloesem houdt sinds jaar
en dag een overzicht bij van het aantal eenden dat zich in het voorjaar rond de
vijvers ophoudt om te broeden. Daarnaast telt hij jaarlijks het aantal tijgers
dat in de zomer de bossen onveilig maakt. Dat doet hij omdat elke winter
van hem een prognose verlangd wordt voor het komend jachtseizoen. Het is
niet ondenkbaar dat het aantal eenden en tijgers sinds zijn aantreden als volgt
gefluctueerd heeft:

Jaar 1 2 3 4 5 6 7 8
Eenden 52 56 24 21 49 64 18 -
Tijgers 3 7 9 3 4 5 8 -

Wat kan hij voor het komend jaar voorspellen? En waarop mag hij zich bij die
voorspellingen baseren? Hoe kan hij bijvoorbeeld het feit dat de tijgers zich
jaarlijks aan de eenden tegoed doen in zijn voorspellingen verwerken?

Het inductieprobleem. De moed zinkt de jachtopziener in de schoenen wan-
neer hij in de lange wintermaanden de complete werken van David Hume leest.
Daarin wordt uiteengezet dat tot op heden verzamelde gegevens op zichzelf niets
vertellen over gegevens die nog verzameld moeten worden, en dat de verzamelde
gegevens bovendien geen eenduidige relatie hebben tot de werkelijkheid waaruit
de gegevens afkomstig zijn. De jachtopziener kan niet anders dan concluderen
dat deze Hume gelijk heeft. Elke invuloefening van de achtste kolom is gebaseerd
op een regelmaat die hij in de gegevens meent te ontwaren, maar telkens moet hij
toegeven dat er ook wel andere regelmatigheden te verzinnen zijn. Nu is er wel
een bepaalde regelmaat waarnaar de voorkeur van de opziener uitgaat, omdat
die het beste aansluit op het verhaal dat over de gegevens verteld kan worden.
Maar dat verhaal zou volgens de jachtopziener juist uit de gegevens moeten vol-
gen, en het mag daaraan niet vooraf gaan. Het zogenaamde inductieprobleem
van Hume bezorgt de opziener slapeloze nachten.
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Gelukkig vindt de jachtopziener nog andere boeken in de bibliotheek van
het jachthuis: een artikel van Bayes, een traktaat van Carnap en een boek
van Fisher. Deze auteurs beweren dat uit de gegevens misschien geen unieke
voorspelling volgt, maar dat het met de tabel in de hand wel mogelijk is om
bepaalde regelmatigheden en voorspellingen waarschijnlijker te noemen dan an-
dere. Het gat tussen de gegevens enerzijds en de regelmaat en voorspellingen
anderzijds wordt dus gedicht met het begrip waarschijnlijkheid. Dat lijkt de
oplossing, maar bij de opziener blijft er iets knagen. Allereerst is die tabel een
nogal karige representatie van de grillige en veelzijdige werkelijkheid van een-
den en tijgers. Maar nog los daarvan: als zich al een regelmaat voordoet in
zijn tabel, dan zou het toch niet aan de wiskundige statistiek moeten zijn om
de relevante regelmaat aan te wijzen? Waar precies wordt de keuze voor een
bepaalde regelmaat gemaakt, en wat is daarna dan nog de rol van de gegevens?

Inductieve logica. Op dit punt van het verhaal was de jachtopziener erbij gebaat
geweest in de bibliotheek dit proefschrift aan te treffen. Het behandelt precies
de hierboven geformuleerde vragen, en geeft als antwoord daarop een redeneer-
schema waarin de rol van aangenomen regelmaat en die van de verzamelde
gegevens helder uiteengezet wordt. Maar voordat ik dieper inga op dat redeneer-
schema, wil ik benadrukken dat dit proefschrift niet alleen voor jachtopzieners
van belang kan zijn. Alle empirische wetenschappen verzamelen gegevens, en
vormen zich op basis daarvan een oordeel over nog niet opgenomen gegevens, en
over de werkelijkheid die zich achter de gegevens schuilhoudt. Veel van het em-
pirisch werk gaat zitten in het verkrijgen van de gegevens langs experimentele
weg, en in het ordenen van de gegevens in bestanden en tabellen. Daarover
gaat dit toch al omvangrijke proefschrift niet. Maar zodra de gegevens eenmaal
in nette nullen en enen op een schijf staan, wordt er meestal een statistische
techniek op losgelaten. Het onderwerp van dit proefschrift is niets minder dan
al deze statistische technieken.

Het uitgangspunt van dit proefschrift is dat het inductieprobleem in twee
afzonderlijke delen uiteenvalt. Ten eerste is er het probleem dat wij uit weten-
schappelijke gegevens, zoals die van de jachtopziener, niet kunnen opmaken
welke regelmaat relevant is. Maar daarnaast is er het probleem dat wij, nadat
we gekozen hebben voor de relevantie van een bepaald soort regelmaat, nog
geen vaste procedure hebben voor de redenering die ons van die keuze brengt
naar voorspellingen, en naar een oordeel over het al dan niet voorkomen van de
regelmaat. Kortom, we hebben te maken met een inductieprobleem in de logica,
dat de vorm van inductieve redeneringen betreft, en met een inductieprobleem
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in de kenleer, dat de waarheid van de uitgangspunten in die redeneringen be-
treft. Dit proefschrift gaat er vanuit dat het mogelijk is om deze twee problemen
afzonderlijk te behandelen, en beperkt zich vervolgens tot een behandeling van
het logische inductieprobleem. Het volgt hiermee de weg van de klassieke logica,
die onder andere door het heldere onderscheid tussen geldigheid en waarheid tot
bloei is gekomen.

Redeneren over kansspelen. Uit het bovenstaande mag duidelijk zijn waarom de
titel van dit proefschrift ‘Inductieve Logica’ is. Wat mist, is een verklaring van
de term ‘Bayesiaans’. Die term heeft betrekking op het feit dat de inductieve
logica in dit proefschrift zich bedient van waarschijnlijkheden en kansen. In 1763
publiceert de Royal Society een essay van wijlen dominee Bayes, waarin een aan-
tal baanbrekende ideeën omtrent kans en waarschijnlijkheid worden uiteengezet.
Kansspelen zijn dan al langer onderwerp van wiskundige bespiegelingen, maar
daarbij gaat het altijd om het bepalen van kansen op bepaalde uitkomsten bij
een gegeven kansspel. Het idee van Bayes is om deze relatie om te draaien:
de waarschijnlijkheid dat wij meespelen in een bepaald kansspel kan worden
afgeleid uit de uitkomsten die zich in het kansspel voordoen.

Neem bijvoorbeeld een dobbelspel waarbij wij alleen van de uitkomsten op
de hoogte worden gebracht, zonder dat we weten of de uitkomsten een optelsom
zijn van de worpen van twee zeskantige dobbelstenen, ofwel de optelsom van de
worpen van een acht- en een vierkantige dobbelsteen. De regels van de kansleer,
aldus Bayes, vertellen ons dan precies welke kansen wij aan deze twee mogelijke
kansspelen moeten toekennen. De toepassing van dit idee van Bayes beperkt zich
echter niet tot spelletjes in casino’s. Ook jachtopzieners en andere empirische
wetenschappers kunnen er hun voordeel mee doen. Voorwaarde is dat zij de
natuur tot op zekere hoogte als een kansspel zien, en zich daarom bedienen van
kansen, samengevat in statistische hypothesen. Ze kunnen dan de regels van de
kansleer gebruiken als de geldige redeneerregels in inductieve redeneringen over
die statistische hypothesen.

Dit proefschrift. Dit proefschrift brengt de hierboven ingeleide onderwerpen
samen in de Bayesiaanse inductieve logica. Deze logica voorziet in een oplossing
van het inductieprobleem, opgevat als een probleem omtrent de geldigheid van
inductieve redeneringen. Deel I presenteert de Bayesiaanse logica zelf. In dit
deel wordt beargumenteerd dat statistische hypothesen de formele representatie
zijn van aannames omtrent de relevantie van regelmatigheden in de gegevens.
Bijzondere aandacht wordt vervolgens besteed aan het gebruik van hypothe-
sen bij het maken van aannames op het gebied van inductieve relevantie en
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onafhankelijkheid in deel II, en bij formele representaties van theorie en theo-
rieverandering in deel III. Het volgende bespreekt elk van deze delen in meer
detail.

Bayesiaanse inductieve logica. Om te beginnen presenteert hoofdstuk 1 de
Bayesiaanse inductieve logica, en zet deze af tegen de Carnapiaanse inductieve
logica. Het essentiële verschil is dat de Bayesiaanse logica gebruik maakt van
statistische hypothesen, waarmee kan worden besloten welke regelmatigheden in
de gegevens van belang zijn. Maar de Bayesiaanse logica zelf doet er op dit punt
het zwijgen toe. Een empirische wetenschapper moet over de relevante regel-
maat helemaal zelf beslissen. En bovendien, als eenmaal tot een verzameling
hypothesen besloten is, dan moet daarna nog bepaald worden wat de begin-
waarschijnlijkheid van elk van de alternatieven is. Het aardige van Bayesiaanse
logica is nu juist dat zij alleen de redeneerregels aandraagt. Alle aannames in
de redeneringen komen zodoende expliciet aan bod in de vaststelling van be-
ginwaarschijnlijkheden, zowel die over de relevantie van regelmatigheden, zoals
vastgelegd in de hypothesen, als de waarschijnlijkheid over de uitgekozen hy-
pothesen. Het kentheoretische inductieprobleem, dat de uitgangspunten in in-
ductieve redeneringen betreft, wordt met de Bayesiaanse logica daarom beslist
niet opgelost.

Het gebruik van hypothesen. Het komt de kritische lezer misschien vreemd voor
dat in het bovenstaande moeiteloos verband wordt aangebracht tussen statis-
tische hypothesen en empirisch onderzoek. Als empirische wetenschappers zich
uitsluitend willen baseren op tabellen met gegevens, is het gebruik van allerlei
veronderstelde kansen achter de gegevens veel te esoterisch. Wat moeten we ons
in dit verband bij een statistische hypothese voorstellen?

Hoofdstuk 2 laat zien dat statistische hypothesen in zekere zin wel met de
gegevens in verband kunnen worden gebracht, door gebruik te maken van de
zogenaamde frequentistische interpretatie van kansen. In die interpretatie zijn
kansen altijd verbonden met herhaalbare experimenten, in het geval van de
eerder opgevoerde jachtopziener bijvoorbeeld de opeenvolgende jaren. De kans
op een bepaalde uitkomst kan dan worden opgevat als de proportie van metingen
met die uitkomst in een groot of zelfs oneindig aantal metingen. Ik betoog dat de
statistische hypothesen via deze interpretatie een min of meer natuurlijke plaats
krijgen in een empiristische inductieve redenering. Bovendien kies ik daarmee
voor een specifieke visie op de noties kans en waarschijnlijkheid, en op hun
relatie: de eerste komt voor in statistische hypothesen, en is zodoende verbonden
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aan kansprocessen in de wereld, de tweede drukt de opinie over statistische
hypothesen uit.

Ten slotte betoog ik in hoofdstuk 3 dat wetenschappers zichzelf een groot
plezier doen wanneer zij hun empiristische reserves opzij zetten, en zich van
statistische hypothesen bedienen bij het vaststellen van de beginwaarschijnlijk-
heden in de eerder besproken inductieve redeneringen. Omdat de hypothesen
direct verbonden zijn aan veronderstelde kansprocessen in de natuur, bieden zij
een helder zicht op de aannames die in deze redeneringen gemaakt worden.

Relevantie en onafhankelijkheid. Dit laatste punt vormt de opmaat voor een
uitgebreide studie naar het gebruik van hypothesen in inductieve redeneringen.
Zoals gezegd, de inductieve logica hoeft geen advies uit te brengen over de te
kiezen aannames in inductieve redeneringen, omdat dit buiten de taakstelling
van de logica valt. Zodra echter de aannames gekozen zijn, kan het wel als deel
van de taakstelling worden gezien om de aannames te vertalen naar een vorm die
op de logica aansluit. Met andere woorden, bij een logica hoort een handleiding
waaruit duidelijk wordt hoe die logica in verschillende redeneringen kan worden
toegepast.

De hoofdstukken 4 en 5 leveren die handleiding voor inductieve redeneringen
waarin aannames worden gemaakt omtrent de relevantie tussen gegevens onder-
ling, terwijl die gegevens ieder voor zich een vaste kans hebben om zich voor te
doen. Een jager kan bijvoorbeeld een vaste kans veronderstellen voor de aan-
wezigheid van konijnen, eenden of tijgers aan de bosrand, maar niettemin menen
dat de aanwezigheid van konijnen de aanwezigheid van eenden waarschijnlijk-
er maakt, terwijl de aanwezigheid van tijgers die aanwezigheid juist minder
waarschijnlijk maakt. Zulke relevanties worden in de literatuur ook wel als
analogie-effecten aangeduid, omdat ze er uiteindelijk op berusten dat konijnen
en eenden iets gemeen hebben dat hen tegenover tijgers plaatst. Het blijkt
verrassend moeilijk om zulke aannames omtrent relevantie direct in een begin-
waarschijnlijkheid onder te brengen, maar het gebruik van bepaalde statistische
hypothesen biedt hierop een natuurlijke ingang. Hoofdstuk 6 gebruikt precies
dezelfde statistische hypothesen voor het beschrijven van inductieve redenerin-
gen waarin vooraf afhankelijkheidsrelaties tussen de gegevens zijn aangenomen.
Causale relaties tussen aantallen eenden en tijgers kunnen op die manier ook in
de inductieve redeneringen worden opgenomen.

Wetenschapsfilosofie. In het laatste deel van dit proefschrift wordt gekeken
naar een drietal onderwerpen uit de wetenschapsfilosofie, en meer precies naar
de relatie die zij hebben tot de Bayesiaanse inductieve logica. Allereerst wordt



244 samenvatting

in hoofdstuk 7 ingegaan op de precieze functie die gegevens en aangenomen
hypothesen hebben in de inductieve redeneringen. Daaruit komt het beeld naar
voren van empirische wetenschap als coproductie: zowel observatie als theorie
hebben een eigen en onafhankelijke inbreng op wetenschappelijke inzichten. Dit
doet sterk denken aan het Kantiaanse perspectief, waarin de werkelijkheid pas
in de interactie van een kenapparaat en een onbekende wereld, en dus eigenlijk
onder onze ogen en handen, ontstaat. Het verschil is dat in het geval van de
statistische redeneringen het kenapparaat geen transcendentaal bepaalde notie
is, maar een vrij te kiezen en naar inzicht te wijzigen statistisch model.

Over het wijzigen van statistische modellen gaat hoofdstuk 8. Dit hoofd-
stuk keert zich tegen de opvatting dat theorieveranderingen zich onttrekken aan
rationaliteitscriteria, en laat zien dat zulke veranderingen goed kunnen worden
ingepast in een Bayesiaans logisch schema. Dit werkt voor zover de theorie
samenvalt met de statistische hypothesen die door de theorie gemotiveerd wor-
den, en zolang de theorie dus samenvalt met de waarschijnlijkheden die de the-
orie over de gegevens vastlegt. In hoofdstuk 9 behandel ik ten slotte het deel
van wetenschappelijke theorieën dat voor eens en voor altijd boven die gegevens
uitstijgt. Wetenschappelijke theorieën worden nu eenmaal nooit eenduidig door
de gegevens vastgelegd. Het laatste hoofdstuk betoogt echter dat in sommige
gevallen de onderbepaaldheid van de theorie door de gegevens een heuristisch en
praktisch nut heeft voor de wetenschapper. In plaats van ons zorgen te maken
over de onderbepaaldheid, doen we er misschien beter aan te proberen de functie
van onderbepaaldheid in concrete gevallen te achterhalen.

Statistiek voor de wetenschappen. In deze slotparagraaf kom ik terug op het
nut van dit proefschrift voor de empirische wetenschappen. Veel van die weten-
schappen gebruiken sinds jaar en dag klassieke statistische methoden, zoals die
van Fisher, Neyman en Pearson, en anderen. Met behulp van die methoden
worden soms ongeldige redeneringen gemaakt, en in het ergste geval worden
daardoor zelfs onjuiste conclusies getrokken. Toch is het onverstandig om de
klassieke statistiek af te raden. In de uitgewerkte schattings- en toetsingsproce-
dures van de klassieke statistiek ligt vaak een schat aan situatiespecifieke kennis
opgeslagen, en in veel gevallen zijn de procedures efficiënt en rekentechnisch
aantrekkelijk. Het zijn in zekere zin epistemische ‘shortcuts’. In plaats daarvan
is de normatieve aanbeveling van dit proefschrift dat statistische procedures op
hun situatiespecifieke geldigheid en toepasbaarheid kunnen worden beoordeeld
door ze uit te schrijven in termen van Bayesiaanse statistische redeneringen.
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Naast een kwaliteitscontrole biedt dit aan wetenschappers een beter zicht op de
uitgangspunten van hun activiteiten.
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