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Abstract

This paper concerns exchangeable analogical predictions based on similar-
ity relations between predicates, and deals with a restricted class of such
relations. It describes a system of Carnapian λγ rules on underlying pred-
icate families to model the analogical predictions for this restricted class.
Instead of the usual axiomatic definition, the system is characterized with
a Bayesian model that employs certain statistical hypotheses. Finally the
paper argues that the Bayesian model can be generalized to cover cases
outside the restricted class of similarity relations.

I Analogy within Carnapian rules

Imagine that the marketing director of a bowling alley is interested in the
demographic composition of the crowds visiting her alley. Every evening she
records the gender of some of the visitors, and whether they are married or not.
Now let us say that on one evening half of the recorded visitors are male and
married, and the other half are female and unmarried. Then if a newly arrived
visitor is a man, the director may consider it more likely that he will be married
than not. But if this visitor is a woman, the director may consider it more likely
that she is not married. At least some of the similarity between individuals at
the bowling alley is thus explicit in the observation language, namely in their
gender, and in making predictions on their marital status this similarity may be
employed. In such a case we speak of inductive relevance of explicit similarity in
terms of a specific predicate. Such relations are possible because individuals are
categorised with predicates from more than one predicate family. The explicit
similarity is always with respect to one of these predicate families.

Putting G for gender and M for marital status, the analogical prediction in
the example of explicit similarity may be represented in the following way:
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G0
1 ∩ M1

1

G1
2 ∩ M0
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...

G0
n−1 ∩ M1

n−1

G1
n ∩ M0

n

G0
n+1

M1
n+1 more likely than M0

n+1 .

Here Gg
i with g = 0 or g = 1 is the record that individual i is male or female,

and Mm
i with m = 0 or m = 1 that this individual is not married or married

respectively. The similarity between the individuals with odd index and the
further individual n + 1 is that all of them satisfy the predicate G0 from the
family G, meaning that they are all male. This similarity is used to derive, from
the fact that the odd indexed individuals satisfy the predicate M1 from the
family M , meaning that they are all married, that probably also the individual
n +1 is married. So the similarity of gender is made explicit in the observation
language, and employed for predicting the marital status.

Instead of the two predicate families above, we may imagine that the mar-
keting director categorizes the individuals at the bowling alley according to
the division of bachelor, husband, maiden and wife, denoted with the family of
predicates Qq for q = 0, 1, 2, 3 respectively. This family is linked to the families
G and M according to

Q2g+m = Gg ∩Mm, (1)

so Q0 = G0 ∩M0 is a bachelor, Q1 = G0 ∩M1 is a husband, Q2 = G1 ∩M0 is
a maiden, and Q3 = G1 ∩M1 is a wife. Using the single predicate family, the
director may derive predictions on gender and marital status from the λγ rules
of Stegmüller (1973):

p(Qq
n+1|En) =

nq + λγq

n + λ
. (2)

Here the expression En represents the records of Q-predicates for the first n

subjects, and nq is the number of records of category q within En. The param-
eters γq determine the initial expectations over the family Q, and the parameter
λ determines the speed with which we change these initial expectations into the
recorded relative frequencies of the predicates Qq. With an assumption of initial
symmetry we can fix γq = 1/4 for all q.

With these λγ rules concerning Q-predicates we can also derive predictions
on the underlying predicate families G and M , using the inverse identifications

Gg = Q2g ∪Q2g+1, (3)

Mm = Qm ∪Q2+m. (4)
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With this we can derive the following expressions for predictions on marital
status:

p(M1
n+1|En) =

(n1 + n3) + λ(γ1 + γ3)
n + λ

, (5)

p(M1
n+1|En ∩G0

n+1) =
n1 + λγ1

(n0 + n1) + λ(γ0 + γ1)
. (6)

The prediction rules thus derived have the same format as the above λγ rules.
Note that the indices of n refer to the Q-predicates.

On the evening of the example, there are, up to a certain moment, an even
number n of visitors at the bowling alley, of which half are husbands and half
are maidens:

En =
n/2⋂
i=1

(Q1
2i−1 ∩Q2

2i). (7)

We therefore have n1 = n2 = n/2 and n0 = n3 = 0. Then visitor n+1 parks a car,
and upon entering it turns out to be a man. As already suggested in Carnap
and Stegmüller (1959: 242-250) and made explicit in Niiniluoto (1981), the
symmetric λγ rule on family Q predicts a higher probability for this individual
being married after incorporating that the visitor is a man than if the gender
is unknown:

p(M1
n+1|En ∩G0

n+1) =
n/2 + λ/4
n/2 + λ/2

>
n/2 + λ/2

n + λ
= p(M1

n+1|En). (8)

The λγ rule thus shows analogy effects of explicit similarity, in the sense that
the similarity of visitor n + 1 to the present visitors with respect to the family
G, the gender, affects the predictions with respect to family M , the marital
status.

II Analogical predictions

The above analogy effects are captured in the λγ rules, but many more such
effects cannot be captured. It may be the case that husbands, Q1, and bachelors,
Q0, have the disposition to visit the bowling alley together, and that on a
particular evening the director has only recorded husbands. Then, apart from
the fact that this may make further instances of husbands more probable, we
may find an instance of a bachelor more probable than an instance of a maiden
or a wife, Q2 or Q3, because husbands are more likely to hang out in the bowling
alley with their bachelor friends. That is, we consider the presence of husbands
more relevant to bachelors than to maidens or wives on the basis of some prior
information.
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It is easily seen that the λγ prediction rules cannot accommodate such
differences in relevance among the Q-predicates. For any instance of Qq, the
ratios between the predictions of any two other predicates Qv and Qw will not
change, because this ratio is given by

p(Qw
n+1|En)

p(Qv
n+1|En)

=
nw + γwλ

nv + γvλ
, (9)

which is independent of nq. Therefore analogy effects that hinge on differences
in inductive relevance between Q-predicates fall outside the scope of λγ rules.

The predictive relevance between Qv and Qw may be expressed in terms
of an inductive relevance function ρ(v, w). A general expression of analogy by
similarity, using the relevance function, is:

ρ(q, w) > ρ(q, v) ⇒
p(Qw

n+1|En−1 ∩Qq
n)

p(Qw
n |En−1)

>
p(Qv

n+1|En−1 ∩Qq
n)

p(Qv
n|En−1)

. (10)

It must be stressed that this is certainly not the only expression of analogy by
similarity, and in particular that the focus differs from that of Carnap (1980:
46-47). The characterization offered here is qualitatively equivalent to Kuipers’
characterization in (1984), which is associated with K>G inductive methods
in the categorisation of Festa (1997: 232-235). The focus is therefore not on
Carnap’s and Maher’s kind of similarity, which concerns differences between
ρ(v, q) and ρ(w, q). On the other hand, I assume in this paper that the function
is symmetric:

ρ(v, w) = ρ(w, v). (11)

Because of this the above expression of relevance is very much akin to that of
Carnap and Maher. Note finally that some authors employ a distance function
instead of relevances. Strictly speaking this is inadequate, since the relevances
need not comply to triangular inequalities.

Many models have been proposed in order to capture analogical predictions
based on similarity. The main focus of these models is on an alternative pre-
diction rule concerning Q-predicates that somehow incorporates the relevances.
Some of these prediction rules are exchangeable, that is, invariant under permu-
tations of the given Q-predicates, and some are non-exchangeable. Examples of
such models are given in Kuipers (1984, 1988), Skyrms (1993), Di Maio (1995)
and Festa (1997). However, to my mind analogical predictions are more easily
associated with similarity in terms of underlying predicates, here called explicit
similarity, than with similarity between predicates directly. Moreover, as it
turns out, the use of underlying predicate families is very useful in defining
analogical predictions. For these reasons the following employs the underlying
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predicate families G and M in the construction of the analogical prediction
rules for Q.

The models of Carnap, Maher and Niiniluoto do employ underlying pred-
icates. Specifically, Niiniluoto (1981, 1988) uses the structure of underlying
predicates to explicate the strengths of the similarity between the Q-predicates.
As an example, husbands and bachelors are more similar than husbands and
maidens, because the first two have their gender in common, where the second
two do not share any underlying predicate. To the extent that this explication
of similarity between Q-predicates is adopted in other models, we can say that
these other models employ the underlying predicates as well. However, in all
these models the relation between the similarities and the prediction rules is
rather ad hoc. The predictions of Q are influenced by the similarities, but the
explication of the similarity in terms of underlying predicates is itself not used
in the construction of the prediction rules. The rules are defined by assigning
probabilities to the Q-predicates alone. Probabilities over M and G may be
derived from that, but no use is made of the possibility to assign probabilities
over the families M and G.

The model of Maher (2000), which is basically an improved version of the
model of Carnap and Stegmüller (1959: 251-252), makes more elaborate use
of underlying predicates. Maher supposes two predicate families, like G and
M , to underly the Q-predicate. He distinguishes two hypotheses on these un-
derlying predicates, one concerning complete independence between them, and
one on undifferentiated dependence. He then translates these hypotheses into
hypotheses on Q-predicates, and employs the latter in a model of analogical
predictions. However, conditional on the hypothesis of statistical dependence,
the model of Maher comes down to a single λγ rule for the Q-predicates. By
contrast, the present model employs predictions on underlying predicates in
the case of dependence as well. Moreover, and perhaps more importantly, the
present model elucidates the exact relation between inductive relevances ρ and
the statistical dependencies between underlying predicates. Specifically, the
relevance relations ρ, which are assumed at the start of the update, are related
to the parameters of the model. On this point the model differs from Maher’s
(2000) model and the other models discussed in Maher (2001), which are not
directly related to assumed relevance relations ρ.

The model of this paper thereby is restricted in a certain way. It provides
analogical predictions that cannot be captured by the single λγ rule, but it
considers only a limited set of relevance relations. As an example, consider the
husbands and bachelors who like to go bowling together, and prefer not to have
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female company. In terms of relevance functions,

ρ(0, 1) = ρ(1, 0) > ρ(0, 2) = ρ(1, 2) = ρ(0, 3) = ρ(1, 3). (12)

That is, the relevances of husbands and bachelors to each other are equal, and
larger than relevances between individuals of different gender. Let us further
say that if wives visit the bowling alley, they are likely to bring their husbands,
who then also invite their bachelor friends. But the wives typically do not invite
their maiden friends. Similarly, if maidens visit the bowling alley, they are likely
to be together with the bachelors, who in turn bring along some husbands, but
the maidens do not usually invite any wives. That is,

ρ(2, 3) = ρ(3, 2) < ρ(2, 0) = ρ(2, 1) = ρ(3, 0) = ρ(3, 1), (13)

or in words, the relevances of wives and maidens to each other are equal, and
smaller than relevances between individuals of different gender. Note that due
to the symmetry of the relevance function, the four equal relevances in expres-
sions (12) and (13) are the same.

As said, this example is one in a set of similar cases. The common element
is that the relevances between categories with different gender are all equal, and
that the relevances between categories within the genders may vary. Defining

∀m,m′ ∈ {0, 1} : ρG = ρ(m, 2 + m′), (14)

∀g ∈ {0, 1} : ρg
M = ρ(2g, 2g + 1), (15)

the similarity relations are in effect characterized by three relevances, ρG, ρ0
M

and ρ1
M , representing the relevances between individuals of different gender, the

relevance between bachelors and husbands, and the relevance between maidens
and wives respectively. These relevances may have any ordering in size. The
subclass of cases thus defined, for which the relevance relations between cat-
egories of different gender do not differ, are exactly the cases of analogy by
similarity that can be made explicit in terms of gender. In the following I
therefore refer to them as cases of explicit similarity.

Summing up, the aim of this paper is to provide a rule for analogical pre-
dictions based on explicit similarity with respect to a specific predicate, namely
G, to connect the relevance relations ρG, ρ0

M and ρ1
M to parameters in this

prediction rule, and finally to give a proper statistical underpinning for it.

III A model for explicit similarity

This section presents a system of λγ rules that models the intended analogical
predictions. It is shown that the system generalizes the analogy effects that are
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captured in single λγ rules. The function of the parameters in the system is
explained, and a numerical example is provided.

The system of prediction rules offers separate entries for instances of the
family M for individuals satisfying either of the two predicates of the family G.
This is expressed in the following:

p(Gg
n+1|En) =

nGg + λGγGg

nG + λG
, (16)

p(Mm
n+1|En ∩Gg

n+1) =
ng

Mm + λg
Mγg

Mm

ng
M + λg

M

. (17)

The indexed numbers n can all be derived from En using the translations (3)
and (4). In particular, we have the total number of records on gender nG = n,
the number of records of males and females, nGg = n2g + n2g+1 for g = 0, 1,
which is the same as the number of records on marital status given a certain
gender, ng

M = nGg, and finally the number of records for a specific gender and
marital status, ng

Mm = n2g+m for g,m ∈ {0, 1}.
The above system consists of three prediction rules, one that concerns indi-

vidual n + 1 in the family G, and two that concern the family M , conditional
on the individual satisfying G0 and G1 respectively. With these predictions we
can construct a prediction rule for Q-predicates:

p(Qq
n+1|En) = p(Gg

n+1|En) × p(Mm
n+1|En ∩Gg

n+1)

=
nGg + λGγGg

nG + λG
×

ng
Mm + λg

Mγg
Mm

ng
M + λg

M

. (18)

As will be seen below, these predictions for Q-predicates can capture explicit
similarity. But note first that the above system is a generalization of the single
λγ rule for Q-predicates. By writing the numbers n in terms of the nq, by
identifying

λG = λ, (19)

γ2g+m = γGgγ
g
Mm, (20)

and finally by choosing
λg

M = λGγGg, (21)

the system of rules generates the very same predictions that are generated by
the single λγ rule of equation (2). Note also that on the level of Q-predicates
the predictions are exchangeable, whatever the values of the parameters.

Analogical predictions for explicit analogy can be obtained by choosing the
values of the parameters λg

M different from those in equation (21). To explain
this, let me first reformulate explicit similarity in terms of probabilities over
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the underlying predicate families G and M . First, the higher relevance between
husbands and bachelors means that the effect of updating with the male gender
of an individual must be larger than the effect of updating with the marital
status conditional on the individual being male. In case we update for a hus-
band, for example, the probability for further instances of males may strongly
benefit from the husband being male, while the husband’s being married does
not make bachelors much less likely. In similar fashion, the lower relevance
between wives and maidens means that the effect of updating with the female
gender of, say, a maiden is much smaller than the effect of updating with the
marital status of the maiden conditional on her being female. On finding a
maiden, the profit that the wives derive from the fact that the maiden is female
is then overcompensated by the loss that stems from the fact that contrary to
the wives, the maidens are not married.

In the λγ rules of Carnap, the reluctance to adapt probabilities to new ob-
servations is reflected in the size of λ. In the above formulation, it is exactly
differences in the reluctance to adapt probability assignments that leads to anal-
ogy effects. The above paragraph therefore suggests that we can connect the
differences in relevance with specific differences between the values of the pa-
rameters λG and λg

M . As it turns out, we can identify a correspondence between
parameter inequalities and inequalities of relevance functions. Normalizing the
size of the relevances for the number of Q-predicates N , so that in this case
N = 4, these correspondences can be translated into rather simple relations:

λG = ρGN, (22)

λg
M = ρg

MγGgN. (23)

In updating with observations on the family G, we may be more or less prepared
to adapt our expectations concerning gender, which is reflected in a low or high
value for λG respectively. Similarly, conditional on the observation of Gg, we
may be more or less prepared to adapt our expectations on an observation
concerning M , which is reflected in the value of λg

M . With these variations in
the willingness to adapt probabilities, we can model explicit analogy of gender.

Let me make explicit the relation between the values of the λs and the
relevances between predicates of equal gender for the specific case of husbands
and bachelors. Recall that we have chosen ρG < ρ0

M . In the model this relevance
relation is supposed to be assumed at the start of the update. Now to encode
this relevance relation in the system of prediction rules, we must according to
the above equations choose γG0λG < λ0

M . With these parameter values, the
observation of a male strongly enhances the probability for further males, while
the prediction for marital status conditional on males grows much slower with
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the observation of the males having a specific marital status. In the resulting
predictions with respect to the predicates Q, this has the combined effect that
observations of husbands and bachelors are mutually beneficial. This is because
the observation of the common element of these predicates, their gender, affects
the expectations much more than the observation that distinguishes the one
from the other, their marital status.

Let us say that one night at the bowling alley the first three visitors are
husbands, after which three maidens enter:

En = Q1
1 ∩Q1

2 ∩Q1
3 ∩Q2

4 ∩Q2
5 ∩Q2

6. (24)

For the example of equations (12) and (13) we have ρ0
M > ρG > ρ1

M . In
particular, we may choose ρ0

M = 4, ρG = 1 and ρ1
M = 1/2, and accordingly fix

the following values for the parameters in the system of prediction rules:

λG = 4,

λ0
M = 8,

λ1
M = 1,

γG0 = 1/2,

γ0
M0 = γ1

M0 = 1/2.

The predictions that can be generated with the above parameter values then
show the analogical effects that can be expected on the basis of the correspond-
ing values of the relevance function:

Number n 0 1 2 3 4 5 6
Observations q - 1 1 1 2 2 2

p(Q0
n+1|En) 0.25 0.27 0.27 0.26 0.23 0.20 0.18

p(Q1
n+1|En) 0.25 0.33 0.40 0.45 0.40 0.35 0.32

p(Q2
n+1|En) 0.25 0.20 0.17 0.14 0.28 0.37 0.44

p(Q3
n+1|En) 0.25 0.20 0.17 0.14 0.09 0.07 0.06

As can be seen from these predictions, the husbands are positively relevant to
the bachelors, while the maidens are negatively relevant to the wives. As is
to be expected from the fact that the predictions are exchangeable, this effect
wears off as the number of records increases, but it only reaches zero at infinity.

Let me stress once again an important aspect to the model of analogical
predictions defined in this section, namely that inductive relevances serve as
explicit input to the prediction rules. In this sense the model is similar to
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the models of Niiniluoto (1981) and Kuipers (1984), while it differs from the
models of Festa (1996) and Maher (2000). In these latter models, there is no
direct access, in terms of input parameters, to the inductive relevances that
may be assumed. However, whether this aspect of the accessibility of inductive
relevances can be considered an advantage depends on the perspective we take
on inductive logic.

IV Problematic aspects

This section discusses the fact that the system shows two distinct asymmetries
in dealing with the families G and M , and motivates a difference in methodology
that sets this treatment apart from the Carnapian tradition.

First I discuss whether the above system of rules preselects an order in the
underlying predicate families. Note that in the above system of rules, we can
only directly adapt the predictions for the marital status of individuals if we
already know their gender. For example, if we know that only unmarried people
drive sport scars, and we see a visitor arriving at the bowling alley in such a car
before having determined her or his gender, it is not immediately clear how we
must adapt the prediction rules. Accordingly, we cannot directly use the system
to predict the gender of the visitors on the basis of their being unmarried.

All this is not to say that the system of prediction rules breaks down if
the order of the observations is reversed. The system does assign a probability
to the gender of a visitor conditional on this visitor having a certain marital
status, and it also assigns a probability to the marital status of a visitor uncon-
ditionally. Both can be derived from the prediction rules (16) and (17) together
with the law of total probability. It is just that the calculations become rather
intricate if we update on marital status first, because adapting the system of
rules to records of marital status independently of gender is a messy operation.
Moreover, as it turns out the numerical values of the predictions do not change
under permutations in the order of the underlying predicates. That is to say,
the system is still exchangeable with respect to the underlying predicates. Un-
fortunately, an argument for that can only be given in section VI. For now the
main thing is that the system of rules does not necessitate a specific order in
the observations to obtain numerical values for the predictions.

Leaving the matter of order and order dependence aside for the moment, it
may be noted that there is yet another way in which the above systems treat
the underlying predicates differently. When it comes to expressing relevance
relations, there is an undeniable asymmetry in the predicates G and M : the
systems are perfectly suitable for determining the relevance relation of some
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Q-predicate to the other Q-predicate with the same gender, ρg
M , relative to the

relevance relation of this Q-predicate to the two Q-predicates of the opposite
gender, ρG. But, swapping the predicate classes of G and M themselves, the
system is not at all suitable to determine the relevance relations ρm

G relative
to the relations ρM . In short, the system models explicit similarity of gender,
and not of marital status. In setting up the system, we must choose which
of these two complexes of relevance relations will be allowed implementation.
Therefore, while the system of rules is exchangeable in the sense of invariant
under permutations of the order of the observations, it is certainly not suitable
for expressing analogy effects after swapping the predicates.

Now in some cases, a natural priority is suggested by the underlying predi-
cate families themselves. One of the two is sometimes more directly observable
than the other, or epistemically prior in some other way. For the purpose of
adapting the system, and for modelling explicit similarity, such considerations
may guide our choice. But there remains an inherent asymmetry in the ex-
pressible relevance relations, and in this sense the present model of analogical
predictions is weaker than, for example, the model of Maher (2000). It is hoped
that this disadvantage is compensated by the new perspective that the model
offers, and the new possibilities that may result from that. As section VII
suggests, the asymmetry between predicates can eventually be overcome.

Let me turn to the second problematic aspect of the above system, which
is that so far, it lacks an axiomatic underpinning. In Carnapian inductive logic
the aim is to derive, from a chosen language or algebra and the notion of logical
probability, a class of probability assignments over the algebra that describes
all rationally permissible predictions. But the above system of rules has been
introduced without any such derivation, and in this sense seems entirely ad hoc.
It is not even clear whether the probability assignment over the algebra that
is entailed by the above system is internally consistent. The remainder of this
paper is aimed at solving this problem. To provide the further underpinning
of the system of prediction rules, and to prove its internal consistency, the
next two sections specify a class of Bayesian statistical models that underlie
the proposed systems of rules. In the remainder of this section, I discuss this
modelling perspective, and its relation to more traditional Carnapian methods.

As used here, the Bayesian statistical models make use of hypotheses to de-
fine the prior probability assignment over the algebra, and they employ Bayesian
updating to incorporate observations into this assignment. The system of pre-
diction rules is thus not based on the algebra or language we have chosen,
or on further principles or predictive properties we may assume. Instead, we
define the inductive prediction rule by partitioning the algebra into a specific
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set of statistical hypotheses, and by stipulating a class of prior probability as-
signments over them. At the start we can choose a specific configuration of
relevance relations, which may be encoded in a prior probability assignment.
This signals an important methodological difference between the present paper
and most papers from the Carnapian tradition. The present paper maintains
that hypotheses and priors can be chosen freely, and that there are no re-
strictions implicit in the statistical framework. Relatedly, in this paper there
is no attempt to provide a rationalisation for the choice of hypotheses or the
prior probability. The hypotheses and prior are taken to exhibit the induc-
tive assumptions underlying the analogical predictions, much like premises in
a deductive inference. Attempting to justify hypotheses and prior falls outside
the reconstruction of analogical predictions as a statistically sound, or logically
valid method.

Adopting this perspective on analogical predictions may look like a cheap
escape from a challenging problem. Surely it is much harder to give a set of
axioms that have an intuitive appeal or some independent justification, from
which the exact class of all rationally permissible analogical predictions can be
derived. While searching for these axioms and rationalisations is a worthwhile
and venerable task, I side with the criticisms towards such axiomatic meth-
ods for analogical predictions, as can be found in Spohn (1981) and Niiniluoto
(1988): it may be too ambitious to aim for the definitive class of all rational
probability assignments that capture analogical considerations. It is more in
line with an emphasis on local inductive practice, as recently discussed in Nor-
ton (2003), to propose a collection of models only, and to decide about the
exact nature of analogical predictions on a case by case basis. This perspec-
tive resembles that of Bovens and Hartmann (2003), who advocate a kind of
philosophical engineering as opposed to a quest for first principles.

There are some important advantages to providing statistical models that
underly the analogical predictions. First of all, the models connect research
in analogical prediction rules with Bayesian statistical inference. I think it is
important to bring these research traditions closer together. Second, as will
be seen below, extending the models to more predicate families, or to more
predicates within given families, is a straightforward operation in the statistical
model. It thus turns out that these models are very easy to generalise. Third,
the statistical models clarify that the system of prediction rules is really invari-
ant under permutations of the order of the underlying observations. In other
words, the statistical underpinning settles the issue of the exchangeability of
the underlying observations.

Finally, and perhaps most importantly, the statistical models suggest a more
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general model of analogical predictions, which accommodates analogical pre-
dictions based on more general relevance relations than the ones considered
above. We may for example consider bachelors more relevant to maidens than
to wives, and it turns out that statistical models offer a rather natural place
for relevance relations of this kind. Eventually the use of the statistical model
leads to a model of analogical predictions based on a completely general rele-
vance function. This development, however, cannot be dealt with in the present
paper.

V Statistical underpinning for λγ rules

This section discusses an observation algebra for Q-predicates, and the statis-
tical underpinning of the λγ rule for these predicates. The discussion prepares
for the statistical underpinning of the system of λγ rules in the next section,
which employs the basic partition of this section in threefold.

Let me first introduce a representation of records of Q-predicates in terms
of a so-called observational algebra. Let K be the set of possible values for q,
and let K∞ be the space of all infinite sequences e of such values:

e = q1q2q3 . . . (25)

The observation algebra, denoted Q, consists of all possible subsets of the space
K∞. If we denote the i-th element in the sequences e and en with e(i) and ens(i)
respectively, we can define an observation Qq

i as an element of the algebra Q as
follows,

Qq
i = {e ∈ K∞ : e(i) = q}, (26)

and a finite sequence of observations Een
n as follows,

Een
n =

n⋂
i=1

Q
en(i)
i . (27)

Records of visitors at the bowling alley refer to such subsets. Note that there
is a distinction between the observations, which are elements of the algebra Q,
and the values of the observations, which are natural numbers.

Statistical hypotheses can also be seen as elements of the algebra. If we
say of a statistical hypothesis h that its truth can be determined as a function
Wh(e) of an infinitely long sequence of observations e, writing Wh(e) = 1 if h is
true for the sequence e and Wh(e) = 0 otherwise, then we can define hypotheses
as subsets of K∞:

H = {e ∈ K∞ : Wh(e) = 1}. (28)
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A partition is a collection of hypotheses, D = {Hθ}θ∈D, defined by the following
condition for the indicator functions Whθ

:

∀e ∈ K∞ ∃!θ : Whθ
(e) = 1. (29)

The hypotheses here are point hypotheses. The condition entails that the hy-
potheses Hθ are mutually exclusive and jointly exhaustive sets in K∞, param-
eterized by a point vector θ in an as yet unspecified space D.

Probability assignments are defined for all the elements of the observational
algebra Q. The probability assignment can be adapted to a sequence of ob-
servations En by conditioning the original probability assignment p on these
observations:

p(·) → p(·|En). (30)

Both the probabilities assigned to observations, and the probabilities assigned
to hypotheses can be adapted to new observations in this way.

The schemes of this paper employ observational hypotheses for generating
the predictions p(Qq

n+1|En). To calculate the predictions, we may employ a
partition of hypotheses and the law of total probability:

p(Qq
n+1|En) =

∫
D

p(Hθ|En) p(Qq
n+1|Hθ ∩ En) dθ. (31)

The probability function over the hypotheses is a so-called posterior probability,
p(Hθ|En)dθ. This probability is obtained by conditioning a prior probability
p(Hθ)dθ on the observations En. The terms p(Qq

n+1|Hθ ∩ En) are called the
posterior likelihoods of the hypotheses Hθ, which are defined for observations
Qq

n+1. The prediction is obtained by weighing these posterior likelihoods with
the posterior density over the hypotheses.

To characterize the partition that renders exchangeable predictions, define
the relative frequency of the observation results q ∈ K in a sequence e:

fq(e) = lim
n→∞

1
n

n∑
i=1

Wq(e(i)), (32)

in which Wq(e(i)) = 1 if e(i) = q, and Wq(e(i)) = 0 otherwise. Taking θ to be
a real-valued vector, we can define Whθ

as follows:

Whθ
(e) =

1 if ∀q ∈ K : fq(e) = θq,

0 otherwise.
(33)

The hypotheses Hθ form a so-called simplex, associated with a hypersurface
C = {θ ∈ [0, 1]|K||

∑
q θq = 1} in a |K|-dimensional space. For |K| = 4, this

hypersurface is a tetrahedron. We can further define Wh¬θ
(e) = 1 if fq(e) is
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undefined for any of the q ∈ K, and Wh¬θ
(e) = 0 otherwise. The collection

of hypotheses C = {H¬θ, {Hθ}θ∈C} is a partition of hypotheses concerning the
relative frequencies of q ∈ K.

We can now provide the likelihoods associated with the partition that ren-
ders exchangeable predictions. First we assume that p(H¬θ) = 0, which states
that the observations have some convergent relative frequency. The likelihoods
of H¬θ may then be left unspecified. The likelihoods of Hθ may be defined by
taking the long run relative frequencies θq as chances on predicates Qq at every
single observation:

∀n ≥ 0 : p(Qq
n+1|Hθ ∩ En) = θq. (34)

So the likelihoods do not depend on the observations En. The prior probability
over the hypotheses Hθ can be chosen freely. According to De Finetti’s represen-
tation theorem, there is a one-to-one mapping between exchangeable prediction
rules and prior probability densities over partition C with these likelihoods.

Because the single λγ prediction rules are exchangeable, they can also be
characterized by a specific class of densities over C. This turns out to be the
class of so-called Dirichlet densities:

p(Hθ) ∼
∏
q

θ
(λγq−1)
q . (35)

On assuming this prior, the resulting predictions are the λγ prediction rules
with the corresponding parameter values. See Festa (1993: 57-71) for further
details. So the λγ rules can be generated if we assume a partition of hypotheses
C and its associated likelihoods p(Qq

n+1|Hθ ∩ En) = θq, and a prior probability
density p(Hθ) from the Dirichlet class.

We can now reformulate the aims of this paper. To capture exchangeable
predictions based on analogy by similarity of gender, we must effectively define
a prior density over partition C that is not Dirichlet, and that somehow incor-
porates analogical effects. Intuitively, we need a prior over the tetrahedron C

that has an internal twist: within the triangular segments with hypotheses that
have relatively high likelihoods for Q1, we must allocate more prior probability
to those hypotheses that also have relatively high likelihoods for Q0, and sim-
ilarly, within the triangular segments with hypotheses that have relatively low
likelihoods for Q1, we must allocate more prior probability to those hypotheses
that have relatively low likelihoods for Q0. With such a twisted prior density,
we effectively favour the probability of Q0 over those of Q2 and Q3 whenever
we update with Q1.

On the level of Q-predicates, the system of λγ rules defined in equations
(16) and (17) is exchangeable, just like the single λγ rule. It can therefore be
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represented as a class of prior densities over C. To find the statistical mod-
els underlying the system of rules, we must thus find the exact class of prior
densities over C with which these systems can be represented. However, this
class of priors is very hard to define if we only have recourse to the parameter
components in the space C. Even if we knew what function satisfies the fea-
tures sketched above, it is not easy to formulate this prior in such a way that
we can actually derive the system of rules. For this reason it is worthwhile to
look for an alternative framework. The following proposes a transformation of
the partition C into the partition A. This latter partition comprises exactly the
same hypotheses, but casts these in a different parameter space. Within that
space we can derive the analogical predictions of section III.

VI Analogy partition

This section proposes a transformation of the algebraQ into one on observations
of predicates from the underlying families G and M . After that the hypotheses
and densities that result in the system of λγ rules can be specified.

First we must define a space on which the algebra for records concerning G

and M can be defined. Taking L as the set of ordered pairs 〈g,m〉, we can define
the space L∞ of all infinitely long ordered sequences u of such observations:

u = g1m1 g2m2 g3m3 . . . (36)

The record that the individual i is a husband, qi = 1, can then be written as
two consecutive records in a sequence u, namely gi = 0 and mi = 1, meaning
that the individual i is recorded to be male and married. More generally, we
can identify all infinite strings of observations e ∈ K∞ with some infinite string
u ∈ L∞. Using u(t) as the t-th number in the sequence u, we can construct

e(i) = 2gi + mi,

u(2i− 1) = gi,

u(2i) = mi.

In this way every sequence e is mapped onto a unique sequence u, and every
such u can be traced back to the original e.

We can now define the algebra R for records concerning the predicate fam-
ilies G and M on the basis of the space L∞. The following elements generate
this algebra:

Gg
i = {u ∈ L∞ : u(2i− 1) = g}, (37)

Mm
i = {u ∈ L∞ : u(2i) = m}. (38)
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The sets Gg
i ∩Mm

i thus contain all those infinitely long sequences u that have
the number g and m in the positions 2i − 1 and 2i. The relations between
the families Q, G and M are therefore as specified in equation (1). For future
reference, sequences of records in R that correspond to a specific en are here
denoted Sen

n .
The idea of the hypotheses concerning the underlying predicate families

is essentially the same as for those concerning Q-predicates. We may again
partition the above observational algebra into hypotheses concerning relative
frequencies. However, the relative frequencies in the family M must in this case
be related to the result in the family G. We may define the following relative
frequencies:

fg(u) = lim
n→∞

1
n

n∑
i=1

Wg(u(2i− 1)), (39)

fg
m(u) = lim

n→∞

∑n
i=1 Wg(u(2i− 1))Wm(u(2i))∑n

i=1 Wg(u(2i− 1))
. (40)

Here Wr(u(t)) = 1 if u(t) = r and Wr(u(t)) = 0 otherwise. The function fg

simply gives the relative frequency of results g within the observations with
respect to G in the sequence u. But the function fg

m(u) is somewhat more
complicated. It returns, for every u, the relative frequency of results m for ob-
servations with respect to the family M , conditional on the observed individual
belonging to the category g within the family G. This is the relative frequency
of m conditional on g within u, or the conditional relative frequency for short.

We are now in a position to define the analogy partition A for predictions
concerning the predicate families G and M . The hypotheses in this partition
employ the conditional relative frequencies in order to pick up the exact statis-
tical dependency between the two families. Let αg and αgm be the parameters
labelling these hypotheses, and define

Whα(u) =

1 if fg(u) = αg and fg
m = αgm

0 otherwise.
(41)

and then define the hypotheses Hα = {u ∈ L∞|Whα(u) = 1}. Again define H¬α

as the set of all u for which one of the three relative frequencies in equations (39)
or (40) does not exist. The analogy partition is then given by A = {H¬α} ∪
{Hα}α∈A. Here the parameter α = 〈α0, α1, α00, α01, α10, α11〉 lies in the set
A = {α ∈ [0, 1]6 | α0 = 1− α1, α00 = 1− α01, α10 = 1− α11}.

The likelihoods of the hypotheses on the underlying predicates are given by
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these relative frequencies and conditional relative frequencies:

p(Gg
i+1|Hα ∩ Se

i ) = αg, (42)

p(Mm
i+1|Hα ∩ Se

i ∩Gg
i+1) = αgm. (43)

It may be noted that observations in the sequence Se
i do not influence the

likelihoods of Hα, but that Gg determines which of the αgm must be used as
the likelihood for Mm. In this sense, the likelihoods for the family M depend
on earlier observations in the family G. Note also that we can write

p(Q2g+m
i+1 |Hα ∩ Se

i ) = p(Gg
i+1 ∩Mm

i+1|Hα ∩ Se
i )

= αg αgm. (44)

The likelihoods for the separate families G and M therefore also imply like-
lihoods for the family Q, and with that also unconditional likelihoods for the
family M .

It is useful to consider the parameter space A for the above partition in
some more detail, and relate it to the parameter space C. First recall that
pairs of the parameter components of α sum to one. The parameter space A is
therefore built up from a separate simplex CG for the two parameters αg, and
two simplexes CgM for the four parameters αgm. We can write

A = CG × C0M × C1M . (45)

Like the original simplex C for |K| = 4, the parameter space A therefore has
three independent components. In fact, following the above expression for the
likelihoods, the parameter space C can be obtained from A by a simple trans-
formation:

θ2g+m = αgαgm. (46)

When it comes to the statistical hypotheses, the partitions A and C are thus
equivalent. However, they employ different parameter spaces, and therefore
provide access to different classes of prior probability functions. Specifically,
the space C is a tetrahedron, which is transformed into a unit cube A. This is
the transformation intended at the end of section V.

The prior probability assignment over A that generates the system of λγ

rules can now be made precise. It is noteworthy that the partition A consists of
three separate and orthogonal dimensions. However, it is not yet clear whether
these three dimensions can be treated independently, let alone that they result
in such prediction rules. To establish the independence, it must be determined
under what conditions the updates and predictions over the parts do not affect
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each other. As it turns out, independence is guaranteed if we assume that the
prior probability density is factorisable:

p(Hα) = pG(αg) p0M (α0m) p1M (α1m). (47)

In that case updating in one of the dimensions leaves the functions in the
other two dimensions unchanged. The separate dimensions in A may then be
associated with the separate λγ rules of 16 and 17.

In order to derive these λγ rules, we must assume more than factorisabil-
ity. We must assume that the prior densities over the separate dimensions are
members of the Dirichlet class:

p(Hα) ∼
∏
g

α
(λγg−1)
g

∏
m

α
(λ0

Mγ0
Mm−1)

0m

∏
m

α
(λ1

Mγ1
Mm−1)

1m . (48)

From here onwards the derivation of the separate λγ prediction rules runs en-
tirely parallel to the derivation of a single rule. Again, the details for this
derivation may be found in Festa (1993: 57-71).

The statistical model shows that the predictions resulting from them are
indeed exchangeable, meaning that the predictions are invariant under permu-
tations of the order of observations. Since we can assign a likelihood for an
observation Mm

i before Gg
i on every hypothesis Hα, we can adapt the proba-

bility over A for these unconditional observations of Mm
i in the same way as

that we can adapt the probability upon observing Gg
i . Both updates are simply

multiplications with the likelihood functions. In the Bayesian model, there is
therefore no principled restriction on the order of the observations, and in this
sense the Bayesian model offers a wider framework than the system of λγ rules.
The restriction only shows up as the fact that the integrals for the predictions
based on the Bayesian model cannot be solved analytically, in the form of a
system of prediction rules, if the observations Mm

i occur before Gg
i .

Let me return to the relation between the parameter spaces C and A. Re-
call that the class of Dirichlet densities over C corresponds to a special class
of Dirichlet densities over A, which results in the predictions determined by
equation (21). This follows from the fact that for this choice of parameters, the
system of rules boils down to a single λγ rule. At the level of the partitions,
however, we may also transform the Dirichlet density over C by means of the
relations (46), and multiply the transformed density with the Jacobian deter-
minant of the transformation matrix. This results in the very same equivalence.
On the other hand, there are many more Dirichlet densities over A that cannot
be captured by the Dirichlet densities over C in this way. Transforming these
densities over A back to C is a less clear-cut operation, and the resulting densi-
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ties over C do not fall within any special class of densities. The transformation
of C into A has in this way provided access to a new class of prior densities.

As suggested, the above perspective opens up the possibility of modelling
many other analogical predictions. We may consider densities over A that are
not Dirichlet, and more specifically, that are not factorisable. However, these
latter analogical predictions can only be dealt with in a future paper. The next
section only presents a brief sketch of these possibilities. For present purposes,
the main point is that the system of rules has been connected to a range of
statistical models: the existence of these models ensures the consistency of the
system of rules. Moreover, in view of the methodological perspective that this
paper adopts, the task of an inductive logician is no more than to supply these
models, in order to bring out the inductive assumptions that drive analogical
predictions and provide the means to manipulate these assumptions.

VII Generalizing the analogy partition

This section argues that the steps taken above can be generalized to cover
analogical predictions based on explicit similarity more generally. It considers
the extension of the foregoing to cases with more than two underlying predicate
families. It further suggests how a problem for the model of Hesse, as noted in
Maher (2001), can be solved. The solution opens up a number of interesting
modelling possibilities.

Until now we have been concerned with explicit similarity between predicate
families M and G, but nothing precludes the use of more than two underlying
predicates, or of more cells within each partition. With the same construction
we can model predictions based on explicit similarity relations that are much
more complex than the above. As an example, let us say that before recording
gender and marital status, we observe the type of car B in which the individual
arrives, and that we distinguish between family cars, b = 0, vans, b = 1, and
sports cars, b = 2. We may then keep track of a dependency between marital
status and gender, which can on itself be made dependent on the car type. As
an example, the parameter space for that partition may be

A = CB ×
∏
b

CbG ×

(∏
g

CbgM

)
, (49)

All simplexes can again be associated with separate prediction rules, leading to
an extended system of prediction rules. Note that the simplex CB is an equilat-
eral triangle, and that the corresponding λγ rule has three possible observation
results. It will be clear that in adding further underlying predicates there are
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no restrictions.
As already discussed in section IV, the system of rules is suitable for ex-

pressing analogical predictions based on explicit similarity only, which means
that it cannot express all possible configurations of symmetric relevance rela-
tions between the Q-predicates. To characterize the restriction on expressible
relevance relations for the general case, recall first that the analogy partition
always determines a certain order to the underlying predicates, such as first
B, then G, and finally M . If we associate these relations with an increasing
ranking number, the restriction to expressible relevance configurations may be
characterised as follows: the system of prediction rules can only distinguish
between the relevances of a predicate Qq to the predicates Qv and Qw if the
ranking numbers of the first predicate in the ranking that Qv and Qw do not
have in common with Qq are not the same. In other words, the system is not
able to model a difference between relevances of Qq to predicates Qv and Qw if
the first predicate in the ranking in which the latter two differ from Qq is the
same. We may for example consider husbands more relevant to wives than to
maidens. However, the system of rules cannot model these relations between
the Q-predicates, because both maidens and wives differ from husbands in the
first underlying predicate family in that example, namely in G.

The system of rules thus accommodates explicit similarity specifically of
gender, or of marital status, but never of both. One exception to this may now
be presented by slightly adapting the above example with three underlying
predicates. For simplicity, the family B only concerns family cars, b = 0, and
vans, b = 1. Imagine that we think that driving a van is somehow indicative
of the gender, suggesting male drivers irrespective of their marital status, and
further that we think family cars are indicative of the marital status, suggesting
a married driver irrespective of their gender. In that case it is natural to employ
the following analogy partition:

A = CB × C0M × C1G × C00G × C01G × C10M × C11M . (50)

Conditional on the individual driving a family car, we make the marital status
indicative of the marital status of further family car drivers. But conditional
on the individual driving a van, we make the gender indicative of the gender of
further van drivers. In other words, the direction of dependence relations may
vary within one analogy partition, as long as these directions are themselves
conditioned on different predicates from a third family.

In the remainder of this section I illustrate one further generalisation, which
uses the statistical model to capture configurations of relevance relations ρ that
are not covered by the system of λγ rules. To this aim I discuss an example
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from Maher (2001), which reveals a shortcoming in the model of analogical pre-
dictions proposed by Hesse. Contrary to that model, the generalised statistical
model can deal with the example case. It is notable that the model of Carnap
and Kemeny also overcomes the difficulties of Hesse, and that their model is
still more general than the model sketched here when it comes to expressible
relevance relations. However, the present solution offers a number of unex-
plored modelling possibilities, which may eventually solve the problems with
the model of Carnap and Kemeny as well.

The example of Maher concerns the predicates of being a swan X, being
Australian Y , and being white Z. The indices x, y and z are 1 or 0 for the
predicate being satisfied or not. Imagine that until now we have recorded, of all
animals in the world, whether they are a swan and whether they are Australian.
Specifically, we have observed

SXY
∞ = X1

1 ∩ Y 0
1 ∩X1

2 ∩ Y 1
2 ∩

( ∞⋂
i=3

Xxi
i ∩ Y yi

i

)
, (51)

the sequence of observations of all animals with respect to being a swan and
being Australian, the first animal in the sequence being a non-Australian swan,
the second an Australian swan. The challenge is to define a probability over
the algebra Q, or equivalently R, for which

p(Z1
2 |Z1

1 ∩ SXY
∞ ) > p(Z1

2 |Z0
1 ∩ SXY

∞ ). (52)

That is, we want the whiteness of a non-Australian swan to be relevant to the
probability of the whiteness of an Australian swan. The fact that we already
know the proportions of Australian and non-Australian swans and non-swans
should have nothing to do with this. But unfortunately the model of Hesse
cannot accommodate such a relevance.

It turns out that the above inequality can be derived by employing a re-
stricted prior over an analogy partition. For simplicity, use the parameter space
A = CXY × C00Z × C01Z × C10Z × C11Z , which has a single, three-dimensional
simplex CXY for the combined predicates X and Y on being a swan and being
Australian. In this tetrahedron space, conditioning on SXY

∞ forces all prob-
ability to be concentrated on one point hypothesis within the simplex CXY ,
associated with the actual relative frequencies αxy of the observations in SXY

∞ .
Subsequent observations Zz

i on being white therefore only influence the prob-
ability over the remaining spaces CxyZ for each of the values xy. Now the
challenge is to establish the relevance of observations of being white within
the category xy = 10, concerning non-Australian swans, to the probability of
animals being white in the category xy = 11, concerning Australian swans.
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In other words, we must somehow couple the probability assignment over the
simplex C11Z to the assignment over C10Z .

One way of doing this is by restricting the probability assignment to a
specific subspace of the hypotheses space A, defined by α10z = α11z. Effectively,
the marginal probability assignments over the two simplexes C10Z and C11Z are
then identified, so that adapting the probability over C10Z for the observation
Z1

i , given that X1
i ∩Y 0

i , implicitly changes the probability over C11Z as well. In
other words, finding a non-Australian swan to be white is immediately relevant
for the probability of Australian swans being white. The probability over the
remaining spaces on non-swans, C01Z × C00Z , can be chosen freely.

Within the hypotheses space on swans, in which all probability is restricted
to α10z = α11z, we may again choose a Dirichlet distribution. For the resulting
predictions, this means that swans, both Australian and non-Australian, are
collected in the same λγ prediction rule on observations of being white, Z:

p(Zz
n+1|SZ

n ∩ SXY
∞ ) =

n11
Zz + n10

Zz + λ1
Zγ1

Zz

n11
Z + n10

Z + λ1
Z

. (53)

For this prediction to be applicable, we must have that SXY
∞ ⊂ X1

n+1, meaning
that animal n + 1 is indeed a swan. Predictions for the case in which SXY

∞ ⊂
X0

n+1 are determined by the probability over the space on non-swans, C01Z ×
C00Z . Note that SZ

n denotes the sequence of observations of the first n animals
with respect to Z. As in the above, n11

Z and n10
Z are defined as the numbers of

Australian and non-Australian swans in the sequence SZ
n , and n11

Z1 and n10
Z1 as

the numbers of Australian and non-Australian white swans in that sequence.
The above rule further uses the abbreviations λ1

Z = λ11
Z = λ10

Z and γ1
Zz = γ11

Zz =
γ10

Zz. These parameters are the same for the simplexes C11Z and C10Z , because
they are determined by one and the same probability assignment.

It can be checked that the inequality (52) is indeed satisfied in this model.
But it must also be conceded that the above model has its shortcomings when
it comes to the expressibility of relevance relations. Moreover, there are many
more possibilities with non-factorisable priors over the partition A that have
not been investigated in the above. A much more detailed study of analogical
predictions based on such priors is necessary in order to make any more general
claims on its relative merits and defects. Accordingly, the main aim of the
above example is to suggest that the use of statistical models deserves further
attention.
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VIII Conclusion

This paper presents a system of λγ rules that models analogical predictions
based on analogy by explicit similarity of gender. After presenting an example
of such similarity, the paper shows how it translates to a specific subset of
relevance relations between predicates in the aggregated family Q: the relevance
of the predicate Q2g+m for the predicate Q2g+m′

, which has predicate Gg in
common with Q2g+m, differs from its relevance for the two predicates Q2g′+m

and Q2g′+m′
, that do not have Gg in common with Q2g+m.

After presenting a system of rules that indeed models these relevance re-
lations, I provide the Bayesian model that underlies the system. It is shown
that analogy hypotheses treat observations Mm separately for the earlier ob-
servation Gg with g = 0, 1, by defining separate relative frequencies for them,
and associating these frequencies with separate dimensions in the parameter
space A. By assuming the prior over this space to be a product of Dirichlet
marginals, the system of λγ rules can be derived. The paper ends with some
generalizations on the proposed system of rules.

Future research will explore the possibilities of the Bayesian model that un-
derlies the system of rules. It will turn out that this model provides the setting
for a completely general model of analogical predictions based on symmetric in-
ductive relevance relations, by employing non-factorisable probability functions
over A. More generally, on the level of research programmes, I take it to be an
important advantage of the present model that it seeks to integrate the rather
isolated discussion on analogical predictions within Carnapian inductive logic
in a wider framework of Bayesian statistical inference.
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