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Abstract

This paper shows that measurement invariance (defined in terms of an
invariant measurement model in different groups) is generally inconsistent
with selection invariance (defined in terms of equal sensitivity and specificity
across groups). In particular, when a unidimensional measurement instrument
is used, and group differences are present in the location but not in the
variance of the latent distribution, sensitivity and positive predictive value
will be higher in the group located at the higher end of the latent dimension,
whereas specificity and negative predictive value will be higher in the group
located at the lower end of the latent dimension. When latent variances are
unequal, the differences in these quantities depend on the size of group
differences in variances, relative to the size of group differences in means. The
effect is shown to originate as a special case of Simpson’s paradox, which
arises because the observed score distribution is collapsed into an
accept/reject dichotomy. Simulations show that the effect can be substantial
in realistic situations. It is suggested that the effect may be partly responsible
for overprediction in minority groups as typically found in empirical studies
on differential academic performance. A methodological solution to the
problem is suggested, and social policy implications are discussed.
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Measurement invariance versus selection
invariance:

Is fair selection possible?

The extent to which our society is dominated and structured by
psychometric selection processes can hardly be overestimated. College
admission tests are used to determine who is admitted to university education,
IQ-tests to choose between job applicants, and diagnostic tests to determine
what treatment one will receive upon experiencing psychological problems.
Such selection procedures affect people’s lives directly and profoundly. For
many people, psychometric testing procedures may be among the most
significant encounters with applied psychology that they will ever have.

Psychometric tests, however, are fallible instruments. Any decision
based on a psychometric test is the result of a probabilistic inference, which
implies that there always remains a chance that one has made the wrong
decision: John was admitted into college, while he does not have the capacity
to successfully complete his education, and Mary was diagnosed with an
attention deficit hyperactive disorder, while she did not actually suffer from
this condition. Because such incorrect decisions may have an adverse impact
on people’s lives, it is important to gauge the probabilities with which such
errors are made, and, if possible, to control them in such a way that every
tested person has a fair chance of a correct decision. Although it may be
impossible to avoid incorrect decisions completely, it may nevertheless possible
to construct tests in such a fashion that they are unbiased, i.e., do not result
in discrimination against particular groups.

How does one establish that test scores are unbiased? The selection
literature has long been dominated by conceptualizations of lack of bias that
emphasize invariant predictive models; in fact, this property was used in the
highly influential definition of test bias by Cleary (1968). This definition says
that test scores are unbiased if the regression of some criterion (e.g., success
on the job, or educational achievement) on the test scores (e.g., IQ-scores or
SAT-scores) is equal for different groups (e.g., for males and females, or for
different ethnic groups); bias occurs when there are differences in the
regression function. This definition of bias is espoused in influential sources
such as the Standards for Educational and Psychological Testing (AERA,
APA, & NCME, 1999, p. 79) and the Principles for Validation and Use of
Personnel Selection Procedures (SIOP, 2003, p. 31-34).

However, contemporary psychometric work has delivered a very serious
competitor to prediction invariance as the basis for definitions of test bias,
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namely measurement invariance. Measurement invariance holds when not the
test-criterion relation, but the relation between test scores and the latent
structure that these test scores measure is the same for different groups
(Mellenbergh, 1989; Meredith, 1993; Millsap & Kwok, 2004). A test that
fulfills the requirement of measurement invariance measures the same
attribute in the same way in different subpopulations. Mathematically, the
requirement of measurement invariance means that the function that relates
psychological abilities to test scores is invariant over groups (Mellenbergh,
1989; Meredith, 1993). Therefore, measurement invariance ensures that,
conditional on the measured attribute, individuals from different groups have
the same test score distribution, and hence the same probability of being
admitted or rejected in a selection procedure.

It is interesting that the notions of predictive invariance and
measurement invariance seem to have coexisted as a basis for defining test
bias for quite a long time during the 1980s and 1990s, presumably because
many people thought that they were conceptualizations of the same property
(or nearly so). This misconception may have been fueled by two incorrect
ideas about measurement invariance and prediction invariance. First, that
criterion scores Y can be taken to be identical to the attribute θ measured by
the test scores X; second, that if the regression of Y on X is the same for two
groups, then the regression of X on Y is also the same. To one who holds
these ideas, it will seem that prediction invariance and measurement
invariance are really the same property: for if one believes that
f(Y |X) = f(Y |X, G) implies that f(X|Y ) = f(X|Y, G), and one also believes
that Y = θ, then one will think that f(Y |X) = f(Y |X, G) (predictive
invariance) implies f(X|θ) = f(X|θ, G) (measurement invariance). Such a line
of reasoning, or a very similar one, must be prevalent among psychologists;
otherwise it is hard to reconcile the fact that invariant test-criterion
regressions continue to be adduced as evidence for measurement invariance
(e.g., Aguinis & Smith, 2007; Evers, Te Nijenhuis, & Van der Flier, 2005;
Gamliel & Cahan, 2007; Hunter & Schmidt, 2000; Rushton & Jensen, 2005).

This line of reasoning is incorrect, and given the importance of this fact
it must be considered remarkable that a study that investigated the
relationship between prediction invariance and measurement invariance did
not appear until the late 1990s. Whatever the cause of the delay, Millsap
(1997) woke psychologists from their dogmatic slumbers (or should have done
so; Borsboom, 2006) when he presented a formal investigation into the
question when measurement invariance is at all consistent with prediction
invariance, in the context of the common factor model. It was surprising to
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many psychologists that the answer to this question is: never (apart from
some very esoteric situations). Millsap’s (1997) work therefore forces a choice
between conceptualizations of bias in terms of prediction invariance or in
terms of measurement invariance. One simply cannot hold on to the position
that, in general, test scores have to be both measurement invariant and
prediction invariant, for this position is logically inconsistent.

When faced with the choice between the properties of measurement
invariance and prediction invariance in defining bias, we think that
psychologists should favor measurement invariance. There are several reasons
for this. First, as the work of Millsap (1997; see also Millsap, in press) has
shown, prediction invariance implies a violation of measurement invariance
when groups differ on the attribute measured. Thus, when the regression of,
say, job success on IQ-scores is equal for two groups, but the groups are not
equal in the distribution on the latent variable measured by the IQ-scores
(i.e., intelligence), then measurement invariance must be violated. This means
that, should one choose to equate lack of bias with prediction invariance, then
one implicitly embraces the unreasonable position that, for instance, IQ-tests
on which people with the same level of intelligence have different expected
IQ-scores according to their ethnic background, are unbiased.

Second, predictive invariance is itself a conceptually and temporally
ambiguous concept. The reason is that predictive relations are relations
between the test score and some criterion variable, which is normally
temporally separated from the test score. This means that predictive
invariance requires a choice of a) which variable will function as the criterion,
and b) at which time point this variable is measured. Both choices are
obviously important determinants of the correlations one will find, and hence
will influence whether prediction invariance is satisfied; yet they are to a
significant extent arbitrary. Definitions of bias in terms of measurement
invariance do not suffer from such problems of ambiguity, because the relevant
inferences concern the attribute measured by the test at the time of testing,
rather than some future state of affairs.

Third, further complications arise when test bias is defined on the basis
of predictive invariance because that definition does not involve a causal
measurement model. For instance, a common finding in differential prediction
studies using cognitive ability tests is that criterion performance of
lower-scoring minority groups is overpredicted when the regression of the
higher-scoring majority group is used (Sackett & Wilk, 1994). Hence,
minority groups perform worse on the criterion than is to be expected from
their average test scores. This result is often proffered in support of the claim
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there tests are biased against the majority group (e.g., Campbell, 1996;
Hunter, Schmidt, & Rausenberger, 1984; Sackett & Wilk, 1994). However, an
entirely different picture might emerge if one were to reverse the regression by
predicting the test scores from criterion performance (as an indicator of the
‘true ability’) using the same data. Specifically, it is quite possible that
predicted test scores of minority group members with a particular level of
criterion performance might be lower than the predicted test scores of
majority members with the same level of criterion performance (Birnbaum,
1979). But this implies the opposite result: the test is biased against the
minority group. Such inconsistencies do not arise when test bias is defined in
terms of a measurement model that dictates the causal direction of effects
(e.g., test scores are the result of latent ability and not the other way around).

Thus, given that one has to choose between prediction invariance and
measurement invariance when defining the concept of test bias, measurement
invariance has better cards. Now the question arises whether one can connect
the broader concept of fairness to the psychometric concept of test bias in an
unambiguous manner, so that one could define ‘fair test use’ as ‘the use of
tests that yield measurement invariant test scores’. Such a definition, if
plausible, clearly would be very useful. However, in the present paper we will
argue that such a move presents serious problems, and that the concept of
fairness cannot be unambiguously attached to the concept of measurement
invariance. We argue that, even though the literature on measurement
invariance must be considered a major stride forward in psychometric
theorizing on test bias, it does not provide an unambiguous definition of fair
test use. In fact, we doubt whether such a definition can be given at all.

The reason for this is that, from a truly fair selection procedure, one
should expect not only that people with the same ability have the same
chance of being selected, regardless of their group membership, but also that
the selection procedure works equally well for each group, so that the test’s
accuracy (in terms of sensitivity and specificity) is invariant; call this property
selection invariance. Now, intuitively, one may expect that measurement
invariance and selection invariance can coexist; several colleagues whom we
probed for their intuition on this point in fact thought that the former implies
the latter. This is because measurement invariance ensures that, in every
subpopulation of people with equal ability, the proportion of incorrect
decisions will be identical across groups, so that in these subpopulations
selection invariance holds. Hence, one may expect that selection invariance
also holds for the proportion of incorrect decisions in the intact populations,
because these can be conceptualized as the union of the subpopulations in
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question. Also, Millsap and Kwok (2004) evaluated the effect of violations of
measurement invariance for differential test accuracy across groups, and found
that the more measurement invariance was violated, the greater were the
differences in test accuracy. On the basis of these findings, one might be
tempted to conclude that in the situation where measurement invariance does
hold, no differences in test accuracy would occur.

This intuition, however, is incorrect. The present paper shows that, for
very general class of situations in which latent differences between groups
exist, the properties of measurement invariance and selection invariance are
inconsistent. This somewhat counterintuitive result arises as a special case of
Simpson’s (1951) paradox. Measurement invariance is a property that applies
to the expected test score for individuals of equal ability, while test accuracy
is a property that applies to subpopulations that are aggregated over ability
levels. In the process of aggregation, the independence of group membership
and the probability of passing the test is destroyed, which in turn causes
violations of selection invariance. On the other hand, if selection invariance is
satisfied, the selection procedure must assign different odds of being selected
to people with the same ability, but different group membership, in which case
the test cannot be measurement invariant. In sum, in many cases in which
groups differ in the measured ability, a test cannot exhibit both measurement
invariance and selection invariance. Because we focus on the situation in
which measurement invariance holds, the present paper can be viewed as a
companion paper to Millsap and Kwok (2004), who investigated essentially
the same situation for the case in which measurement invariance is violated.

This paper is structured as follows. First, we discuss the relation
between measurement invariance and selection invariance in greater detail,
and provide proof of the incompatibility between measurement invariance and
selection invariance. Second, we give a conceptual explanation of the
statistical mechanism that produces the inconsistency. Third, we present
simulation studies to estimate the severity of the problem in realistic
scenarios. We close the paper by considering the theoretical, practical, and
societal implications of this work.

Measurement invariance and selection invariance

The basic idea of psychometric selection is to optimally select persons
for differential treatment on the basis of their test scores. This may involve
college admissions, where one aims to select the brightest candidates;
personnel selection, where one aims to select the candidates who have the
skills required for the job; or health care, where one has to decide whether a
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person is eligible for treatment. In all these contexts, invariance properties of
the selection procedures across groups are crucially important, especially
when groups vary in the properties assessed; these concerns may vary from sex
differences in college admission test scores to ethnic differences in diagnostic
test scores that relate to eligibility for medical treatment. We will identify the
persons that the selection procedure should select as ‘suitable’ persons, and
persons that it should reject as ‘unsuitable’.

Throughout this paper, we assume that individual differences in
suitability can be represented as a single continuous latent variable θ. Define a
suitable candidate as an individual i with θi ≥ θc, where θc is the latent cutoff
that separates individuals who one wants to reject from those one wants to
select. Because the variable θ is not directly observable, people are selected on
the basis of a test score that is viewed as an observable indicator of θ; denote
this test score X. We will assume that the latent variable is distributed
according to the normal probability density function, denoted f(.), with mean
µg and standard deviation σg in group G = g, so that

p(θ) = fµg ,σg(θ). (1)

Further, we assume that the test scores X are linearly related to the abilities θ

according to the regression line E(X|θ) = τg + λgθ, so that

X = τg + λgθ + εg. (2)

where λg > 0 is the regression coefficient for group g, τg is the intercept, and
εg denotes the residual or error score. Finally, we assume that the errors ε are
normally distributed with variance σ2

ε constant across levels of θ (i.e.,
homoscedasticity).

These assumptions are consistent with the single factor model for
continuous item responses (Mellenbergh, 1994). However, when people are
selected on the basis of a total test score composed of dichotomous items,
these assumptions will never be exactly met, because the total test score is
bounded. Nevertheless, provided that the number of items is reasonably large
and the item difficulties are well-spread along the θ-scale, the relation between
the total score and the latent variable will approximate linearity. Similarly, we
conjecture that a total test score constructed from Likert items will, in many
situations, approximate the assumptions made, although this also depends the
distribution of item parameters over the θ-scale, and the number of items
used. Thus, because in these situations the present assumptions are
approximated at best, and the proofs in this paper do assume strict linearity,
the exact extent to which they apply to any concrete alternative situations
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should be studied on a case-by-case basis; this may be done through analytical
methods or through simulations.

Given the assumptions stated, the test score of an individual in group g

with a certain true position θ is a random draw from the probability density
function:

p(X|θ) = fτg+λgθ,σεg
(X). (3)

The selection procedure operates on the bivariate distribution of X and θ,
which for a single group with intercept τg = 0 may be represented graphically
as in Figure 1. The objective of a selection procedure is to select those
individuals whose ability θ exceeds the threshold θ = θc. Throughout this
paper we use the convention that θc = 0. Note that this is not a restrictive
choice because we are free to choose the zero point of the latent variable.
Individuals whose ability exceeds the threshold θ = 0 are called suitable,
denoted S, others are unsuitable, ¬S. A standard selection procedure based
on an ability test selects those individuals whose test score exceeds a certain
threshold value Xc. Individuals whose test score exceeds the value Xc and
hence pass the test are accepted, denoted A, others are rejected, ¬A.

In any selection procedure, it may happen that an individual who is not
suitable according to the attribute measured by the test, having θ < 0,
nevertheless passes the test, X ≥ Xc; that is, the person passes the test
because of factors different from the attribute measured (e.g., luck,
test-specific preparation, having an exceptionally good day, etc.). In that case,
the individual is accepted yet unsuitable: A ∩ ¬S. Similarly, an individual
who is suitable, θ ≥ 0, may fail the test, X < Xc. The individual is then
suitable yet rejected: S ∩ ¬A. In the simplified situation of Figure 1, in which
τg = 0 and Xc = 0, the four quadrants are thus occupied by four combinations
of suitable and unsuitable accepted and rejected individuals (true positives,
false positives, true negatives, and false negatives). The accuracy of a
selection procedure is determined by the distribution of individuals over these
quadrants; obviously, one desires as many people as possible in the true
positive and true negative quadrants.

Insert Figure 1 about here
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The two group scenario

The primary focus of this paper is on a situation that involves the
selection of individuals from two groups that differ in the distribution of the
latent variable. This is the same scenario as that considered by Millsap and
Kwok (2004). In this section we consider the situation in which the variance
of the latent distributions are equal but the means differ. The assumption of
equal variances will be relaxed later in this paper.

Denote the group with the higher mean as H and the group with the
lower mean as L. In the context of fair selection, it is generally deemed
important that, regardless of group differences in the distribution of θ, the
relation between the test scores and the latent variable be invariant across
groups. If this is not the case, then individuals from different groups, who
have the same position on θ, have different expected test scores. This should
be considered unfair, because it implies that, given a specific level of ability,
group membership still influences the selection procedure. The requirement
that the relation between observed scores and latent ability is invariant across
groups is known as measurement invariance. Formally, measurement
invariance is satisfied if and only if, conditional on θ, the probability
distribution or density of the observed scores does not depend on group
membership. Thus, measurement invariance is defined by the restriction

p(X|θ) = p(X|θ ∩ g). (4)

This requirement is identical to the conditions formulated by Mellenbergh
(1989) and Meredith (1993). Further, given the fact that the probability
function p has been assumed to be linear and the population distributions
normal, the requirement of measurement invariance (4) comes down to the
equality of τg, λg, and σεg across the levels of the grouping variable
G = {L,H}.

Under the assumption of measurement invariance, we can introduce one
further convention regarding test scores. By measurement invariance we have
τL = τH . Throughout this paper we will fix τL = τH = Xc = 0. Like the
fixation of θc = 0, this assumption does not lead to any loss of generality in
our characterization of the selection procedure, because we are free to choose
the scaling of the scores. So, if measurement invariance is satisfied and if this
further convention is respected, Figure 1 is an adequate representation of the
selection situation, and the situation for a two group scenario may be depicted
as in Figure 2. The bivariate distributions of X and θ lie on the same
regression line.
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Insert Figure 2 about here

Measurement invariance implies that the distribution of the test score,
conditional on a given value of the latent variable, is invariant across groups.
This, in turn, means that the probability of being accepted, determined by
passing the test, does not vary among members of the different groups G

conditional on their level of ability:

p(A|θ) = p(A|θ ∩ g). (5)

Equation (5) implies that, for every level of ability, the false positive and false
negative rates are exactly the same in both groups (see Appendix A for a
proof). For this reason, it is tempting to think that measurement invariance
entails equal sensitivity and specificity in each group. The next section shows
that this is incorrect.

Measurement invariance and selection invariance

It would seem that a fair selection procedure should be characterized by
an identical number of selection errors across groups; that is, it should
distribute its errors evenly. This requirement implies that the test’s positive
predictive value (the probability of suitability, given acceptance), negative
predictive value (the probability of non-suitability, given rejection), sensitivity
(the probability of acceptance, given suitability) and specificity (the
probability of rejection, given non-suitability) be equal across groups. If these
probabilities are equal across groups, then the test works equally well in each
group; i.e., it has the same accuracy. This is what we call selection invariance.
Formally, it is expressed by the following equalities:

Invariant Positive Predictive Value p(S|A ∩ g) = p(S|A), (6)

Invariant Negative Predictive Value p(¬S|¬A ∩ g) = p(¬S|¬A), (7)

Invariant Sensitivity p(A|S ∩ g) = p(A|S), (8)

Invariant Specificity p(¬A|¬S ∩ g) = p(¬A|¬S). (9)

Analogous to the terminology of the theory of measurement invariance, we
define selection bias as the violation of one or more of these equalities.

In the literature on fairness, similar quadrants have been defined in
terms of the relation between test scores and a criterion (Cleary, 1968; Cole,
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1973; Darlington, 1971; Hunter et al., 1984; Petersen & Novick, 1976;
Thorndike, 1971). In this literature, Petersen & Novick (1976) showed that
several models defined in terms of invariance of (combinations of) the
probabilities associated with quadrants 6-9 were mutually inconsistent, and
inconsistent with the invariance of the regression of the criterion on the test
score. Here, we will show that an analogous inconsistency occurs when
selection invariance and measurement invariance are both required to hold
while groups differ in the distribution of θ; moreover, we will explain why this
is so, explicate the conditions under which the violations favor different
groups, and assess the size of these effects.

To see that measurement invariance and selection invariance are
mutually inconsistent properties in case the locations of the latent
distributions differ, first consider the positive predictive value, i.e., the
probability of suitability given acceptance, as represented in Equation (6). As
a function of the continuous distributions assumed for the test scores and the
ability, the relevant expression for the probability in question is:

p(S|A ∩ g) =
p(S ∩A|g)

p(A|g)
=

p(θ ≥ 0 and X ≥ 0|g)
p(X ≥ 0|g)

. (10)

Both the numerator and the denominator in this equation are integral
expressions involving both the distribution of group g over the ability
parameter θ and the distributions over test scores given an ability. These
integrals cannot be solved analytically. However, it can be shown that their
quotient is a monotonically increasing function of µg, the mean of the
distribution of group g over the ability: the higher the mean of the group’s
distribution function over θ, the higher the probability of suitability given
acceptance. For two groups H and L we therefore obtain:

µH > µL ⇒ p(S|A ∩H) > p(S|A ∩ L). (11)

The details of the proof are in Appendix A. This shows that, if measurement
invariance holds, then the positive predictive value necessarily varies over the
groups considered: in the group with higher mean ability, the positive
predictive value will be higher than in the group with lower mean ability.

We may wonder whether a similar result holds for test sensitivity, i.e.,
the probability of acceptance given suitability:

p(A|S ∩ g) =
p(S ∩A|g)

p(S|g)
=

p(θ ≥ 0 and X ≥ 0|g)
p(θ ≥ 0|g)

. (12)

This is indeed so, as can be derived in roughly the same way. We have already
established that p(S|A ∩ g) gets larger with larger µg. Therefore, to establish
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that p(A|S ∩ g) gets larger with larger µg, it suffices to show that the problem
discussed above is symmetric with respect to interchanging the variables X

and θ. Appendix B establishes that this is indeed the case. This means that
the inequality derived in Appendix A (i.e., Equation 11) is invariant under
substitution of θ for X and of X for θ.

Thus, with respect to the probability of acceptance given suitability, the
same relation holds as was established for the probability of suitability given
acceptance. Namely:

µH > µL ⇒ p(A|S ∩H) > p(A|S ∩ L). (13)

The sensitivity of the testing procedure will be better for the group with
higher mean ability.

The inverse results hold for negative predictive value and specificity
because they are the mirror images of positive predictive value and sensitivity.
Hence, we further have:

µH > µL ⇒ p(¬S|¬A ∩H) < p(¬S|¬A ∩ L), (14)

and
µH > µL ⇒ p(¬A|¬S ∩H) < p(¬A|¬S ∩ L). (15)

The specificity and negative predictive value of the testing procedure will be
better for the group with lower mean ability.

The following explanation of the results, and the proofs that underlie
them, may be instructive. Examine Figure 2 and consider the probability
mass located in the true positives quadrant. This is roughly the surface of the
ellipse in that quadrant. Compare this surface to the entire surface above the
line X = Xc. The ratio of these two quantities is the positive predictive value.
Appendix A proves that this ratio is always higher for group H, as can be
expected from inspecting the figure. Now rotate Figure 2 counterclockwise 90
degrees (this is the symmetry argument of Appendix B), and compare the
ratio of probability mass located in the true positives quadrant to that above
the line θ = θc. This ratio is test sensitivity, and clearly it is higher for group
H as well.

Why is this true in general? Imagine that the joint distribution moves
up along the regression line (i.e., in the direction of higher θ and X). One can
sense that sensitivity and positive predictive value will both get higher; they
are monotonically increasing in θ. Therefore, since group L and group H

differ only in their location along the regression line, moving group L up that
line until it coincides with group H will result in higher sensitivity as well as
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higher positive predictive value. Hence these quantities are always higher for
the group with higher mean ability. If one turns the figure counterclockwise
another 90 degrees, one can do the same for negative predictive value, and
turning it a last 90 degrees for specificity. In this orientation, moving H in the
direction of L can be seen to lead to a higher specificity and negative
predictive value. Hence these quantities are always higher for the group with
lower mean ability. For the current distributional assumptions, Appendices A
and B show that these results are generally true; for further background to
the proofs see also Kotz et al. (2000).

This shows that, in a selection procedure that conforms to the present
assumptions of a) bivariate normality, b) equal variances of the ability
distributions across groups, and c) measurement invariance, we get the
following result: In the group with higher mean ability, the procedure will
have a higher sensitivity and positive predictive value, while in the group with
lower mean ability, it will have a higher specificity and negative predictive
value. Under the assumptions stated, it is impossible to simultaneously satisfy
measurement invariance and selection invariance. The test does better in
accepting members from the group with higher mean ability, and it does
better in rejecting members from the group with lower mean ability.

Generalization of the impossibility result

In real world situations, groups may differ both in mean ability and in
variance. However, the foregoing was based on the assumption that the
variances of the latent variable distributions are equal across groups. When
this assumption is relaxed, the impossibility result may no longer hold in all
situations; whether simultaneous satisfaction of measurement and selection
invariance is possible depends on how the means and variances differ over
groups. In this section, we describe how the relation between measurement
invariance and selection invariance behaves as a function of these differences.

The situation where variances differ is rather more complicated than the
case of equal variances, and we therefore discuss the full analysis of this case
in Appendices C and D. Appendix C gives an explanation of the situation,
whereas Appendix D contains the proof on which that explanation is based.
Here we focus on the impossibility results themselves. For two groups with
µ, σ and µ′, σ′ respectively, we assume without loss of generality that σ′ < σ.
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The results then fall into two categories. First,

σ′

σ
µ ≥ µ′

⇒

 p(S|A ∩ gµ,σ) > p(S|A ∩ gµ′,σ′),

p(A|S ∩ gµ,σ) > p(A|S ∩ gµ′,σ′).
(16)

This result is proved in detail in the Appendices. Second,

σ′

σ
µ ≤ µ′

⇒

 p(¬S|¬A ∩ gµ,σ) < p(¬S|¬A ∩ gµ′,σ′),

p(¬A|¬S ∩ gµ,σ) < p(¬A|¬S ∩ gµ′,σ′).
(17)

As explained in Appendix C, these latter inequalities are basically the same as
the former. We employ the same equations in deriving them but we transform
θ into −θ.

These results widen the scope of the inequalities derived in the previous
section; if we choose σ = σ′, we obtain the original inequalities. Equation (16)
says that, if in the group with the larger variance we transform the latent
scale via θ′ = σ′θ/σ and the resulting mean of θ′ lies above the untransformed
mean of the other group, then sensitivity and positive predictive value will be
larger in the group with the larger variance.1 Equation (17) implies that, if
this transformed mean lies below the untransformed mean of the other group,
then specificity and negative predictive value will be larger in the group with
the smaller variance. Thus we can either prove the inequality of sensitivity
and positive predictive value, or the inequality of specificity and negative
predictive value.

This means that measurement invariance and selection invariance are
inconsistent in all situations, because at least one of the pairs of sensitivity
and specificity or positive and negative predictive value will not be invariant.
Note that this does not mean that for any combination of values of σ′

σ , µ and
µ′, only one of the two invariances will be violated. Our conditions are
sufficient for proving the inequalities at issue, but not necessary for the
inequalities themselves, so the failure of a condition does not entail the failure
of the inequalities. If for example σ′/σ � 1 while µσ′/σ < µ′, the inequalities
for sensitivity and positive predictive value still hold. More generally, we
conjecture that both the invariance of sensitivity and specificity and the
invariance of positive and negative predictive value are violated almost
everywhere in the space σ′

σ × µ× µ′, except for on two planes where only one
of the two invariances holds. These planes intersect along the line where
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σ′

σ = 1 and µ = µ′, that is, the situation where the latent distributions of the
groups are identical. Unfortunately we do not have a proof of this conjecture.
However, for present purposes it is sufficient that we have proved that
selection invariance, in the general sense, will be violated if measurement
invariance is satisfied.

Explaining the paradox

We have shown that, under a wide range of conditions, the satisfaction
of measurement invariance entails the violation of selection invariance. The
paradoxical nature of this result can be clearly seen when one compares
Equation (5) to Equation (13): Although it is true that, for any two
subpopulations in H and L with equal θ, the probability of passing the test
given their level of ability is identical (per measurement invariance), for the
intact populations H and L, which are the unions of these subpopulations, the
probability of passing the test, given suitability, is different (selection bias).
This section aims to offer a conceptual explanation of the mechanism that
produces these inconsistencies.

First, consider test sensitivity. The discrepancy in test sensitivity can be
understood as the result of a continuous version of Simpson’s paradox
(Simpson, 1951; Wainer & Brown, 2004; Yule, 1903). Simpson’s paradox
describes how effects that are observed in subpopulations can differ
dramatically from effects observed in the aggregate of the subpopulations.
Consider the case in which we follow 50 women and 50 men in their search for
a job in either the fire or the police department. Say that the police
department is looking to hire 40 people while the firefighters hire only 15, and
further imagine that at the firefighters 10 women and 40 men apply, while at
the police the numbers of women and men are 40 and 10 respectively. Now
assume that, for police and firefighters alike, women and men have an equal
success rates, or probability of getting a job, namely 0.8 for the police and 0.3
for the firefighters. So the probability of getting a job is independent of
gender. Nevertheless, if we do the maths we find that 0.8× 40 + 0.3× 10 = 35
women will find a job, while only 0.8× 10 + 0.3× 40 = 20 men do. It looks as
if on the aggregate level of government services, gender and job opportunity
are not independent, and that men are being treated unfairly. In the
subpopulations of the police and the firefighters, however, there is perfect
independence, and hence no unfairness at all. The apparent dependence
results from the fact that gender is not independent of department: many
more men decide to apply at the fire department, while the firefighters offer
fewer jobs.
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The present case is structurally similar to the above case. By
measurement invariance, we have independence of the probability of incorrect
decisions and group membership in all subpopulations with equal θ: for each
value of θ the probabilities of false rejection and false acceptance are the same
for the different subpopulations L and H. So the values of θ in the selection
setting are analogous to the separate departments of the above example. But
we find that aggregating over different values of θ destroys the independence
of false rejection and group membership, in the same way as that aggregating
over different departments destroyed the independence of job opportunity and
gender in the above example. To see how this works in detail, note that most
incorrect selection decisions would occur around the cutoff score X = 0. The
Gaussian on the left side of Figure 3 shows the probability of a false rejection
for a point of θ which is associated with an expected test score slightly above
the cutoff. As can be seen, this chance is considerable, although it will always
be less than .50 for values of θ > 0. The point is that, with increasing ability,
the chance of such an error becomes increasingly small. This can be seen from
the Gaussian on the right.

Insert Figure 3 about here

Now, the reason for the existence of group differences in sensitivity lies
in the fact that, in the population of suitable candidates (i.e., candidates with
θ > 0), there are proportionally more suitable members from population L
than there are members from population H in the direct neighborhood of the
cutoff score: The group of suitable members from L is distributed more
towards the left of the figure than the group of suitable members from H.2 A
different way of viewing this is by noting that, among suitable candidates,
there are proportionally more members from H than members from L among
those far above the cutoff.3 As a result, incorrect rejections will occur more
frequently in the subpopulation of suitable members from L, which lowers
sensitivity in that population. The same argument, but now considered for
the subpopulation of unsuitable candidates (i.e., candidates with θ ≤ 0)
explains why specificity will be higher among members of L: there will be
proportionally fewer members of L than members of H in the neighborhood of
the cutoff score. Since the probability of the relevant false decision (i.e.,
incorrect acceptance) is highest for those who score in the neighborhood of
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X = 0, and there are proportionally more such candidates among unsuitable
members of H, specificity will be lower for population H.

It is useful to give a simple numerical example to illustrate this process.
We will consider just two points on the θ-scale. Suppose that 80% of
population L is located at the point θ = 1 and 20% is located at θ = 2, and
that for population H this pattern is reversed: 20% is located at θ = 1 and
80% at θ = 2. Assume, as before, that the cutoff for suitability is at θ = 0, so
that all of the candidates are suitable (the only errors that we can make are
false negatives). Suppose the common regression line that connects θ to the
test score X is E(X) = θ, with homoscedastic errors being distributed
normally with unit variance. That this regression line is the same for both
groups means that the test scores are measurement invariant with respect to
the group variable. Then the conditional distribution of X given that θ = 1 is
N(1, 1), equal for candidates in L and in H; and the conditional distribution of
X given that θ = 2 is N(2, 1), also equal for candidates in L and in H.

Now we select only candidates with scores X > 0. The associated
probabilities of a false negative, as evaluated on the relevant normal
distributions, are approximately P (X ≤ 0|θ = 1) = .16 and
P (X ≤ 0|θ = 2) = .02, respectively; again these figures are equal for
candidates in L and H. However, the probability of a false negative occurring
in group L is not the same as in group H, due to the different distributions of
θ in the groups. In group L the probability of a false negative equals
.8× .16 + .2× .02 = .13, whereas in group H the probability of a false negative
equals .2× .16 + .8× .02 = .5. Exactly as in Simpson’s paradox, aggregating
across the levels of θ creates a dependence between the group variable and the
probability of false negatives. Given the assumptions of normality, linearity,
and homoscedasticity employed in this paper, integrating over infinitely many
such subpopulations, instead of two, yields the impossibility results of the
previous section.

To understand why groups differ in positive predictive value, i.e., in the
probability of suitability given acceptance, it is instructive to focus on the
regression of θ on X (see also Appendix B, which formalizes this point). The
following counterintuitive fact now emerges: whereas the regression of test
scores on latent trait scores is identical across groups (i.e., measurement
invariance), the regression of latent trait scores on test scores is not. The
regression of trait scores on test scores is not group-invariant because (due to
mean group differences in ability) the intercept in the regression of the low
scoring group will be lower. Thus, although the expected value of X given θ is
the same for members of different groups, the expected value of θ given a
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particular test score X is lower for those in the low-scoring group. This
counterintuitive effect was dubbed Kelley’s paradox by Wainer (2000, 2005),
because the effect follows from Kelley’s (1927) classic formula for estimating
ability scores from test scores. In contrast to the group differences in
sensitivity and specificity discussed above, this effect also occurs without
dichotomization of latent and observed variables in suited-unsuited and
accepted-rejected categories.

In Kelley’s (1927) formula trait score estimation is a function of the test
score and the mean ability score of the particular group, which is weighted by
the test’s unreliability. The effect is due to variance in the test scores that is
unrelated to the latent trait (i.e., residual variance) and does not occur for the
special case that θ and X are perfectly correlated. However, in case of a
less-than-perfect relation between test scores and the latent trait scores, group
differences in mean latent ability are necessarily underestimated by the mean
differences in test score. This effect ‘penalizes’ members of population L when
ability is regressed on test scores. The key concept here is differential
regression to the mean: the effect of regression to the mean will be stronger
for population L, because in that group selection has occurred proportionally
more often on high scores that are not due to high ability (i.e., ‘measurement
errors’).

Seriousness of violations of selection invariance

We have shown that selection invariance and measurement invariance
are inconsistent for almost all situations, and have explained the mechanism
that produces these inconsistencies. We now address the question how large
these effects are for realistic selection scenarios.

The seriousness of violations of selection invariance, given measurement
invariance, depends on the percentage of variance in test scores unrelated to
the trait (i.e., unreliability), the value of the selection ratio, and the size of
group differences in mean latent ability. To examine the seriousness of
violations of selection invariance, we simulated data for a two-group scenario
with a one standard deviation difference in mean latent ability between groups
and equal group size. We varied the selection ratio as the top 5% and top 25%
(these percentages apply to the combined population). For each of these
scenarios we examine the between-group differences in sensitivity, positive
predictive value, specificity, and negative predictive value as a function of
reliability. Reliability was defined as the ratio of true score variance to total
variance (Lord & Novick, 1968) in the combined population; we varied this
parameter by adding different amounts of white noise to the test scores,
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corresponding to different values of σε in Equation (3). Correct acceptance
was defined as acceptance of a candidate, given that the candidate occupies a
position in the top s percent of the combined latent distribution, where s

equals the selection ratio for the relevant scenario; the other relevant
probabilities were computed analogously. The results of the simulations are
graphically depicted in Figures 4 and 5.

Insert Figure 4 about here

Insert Figure 5 about here

The simulations show that, for the chosen parameter settings, the
amount of selection bias implied by measurement invariance can be
substantial. Differences in sensitivity are consistently between 5 and 10%; and
when less reliable tests are used for selection, differences in positive predictive
value may be as large as 20%. The differences for specificity and negative
predictive value are less pronounced, and become serious only for less extreme
selection ratios. As is to be expected from the theoretical work above, for all
levels of reliability below 1.0, the probability of false positives is lower for the
group with higher mean ability, while the converse is true for the probability
of false negatives. In Figure 4, it can further be seen that the differences in
test sensitivity are relatively stable across different levels of reliability, while
the differences in positive predictive value increase rapidly as reliability drops.
This differential effect of reliability originates as follows. Because the
difference between groups in test sensitivity depends only on the distribution
of θ, the difference remains constant over all reliability ranges (after an initial
divergence from the point of perfect reliability). On the other hand, the effect
of differential regression towards the mean, which causes the difference in
positive predictive value, increases in severity when reliability decreases and
when selection becomes more extreme. This explains why the difference in
positive predictive value increases for lower reliability as well as for more
extreme selection ratios.
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When compared with the results for sensitivity, differences in specificity
depend on the extremity of the selection ratio in the opposite way: the
difference in the correct rejection rates becomes larger as the selection ratio
becomes less extreme. This is because, as the selection ratio becomes less
extreme, the cutoff score becomes lower. As a result, the cutoff score moves
into the lower tail of the distribution of population with higher mean ability;
hence there are proportionally more unsuitable members of that population
directly below the latent cutoff score, and incorrect acceptance occurs
proportionally more often. In accordance, differences in negative predictive
value become larger as the selection ratio becomes less extreme. Like the
positive predictive value, the negative predictive value is sensitive to reliability
as well; hence, the effects on negative predictive value become larger as tests
become less reliable.

Discussion

The theoretical work reported in this paper has shown that, if latent
differences between groups exist and measurement invariant tests are used,
selection procedures will produce different rates of incorrect decisions in these
groups. Hence, with the exclusion of cases, in which latent population
differences are absent, measurement invariance and selection invariance are
mutually inconsistent. Further, the reported simulation results suggest that
the use of measurement invariant tests for selection purposes leads to
considerable violations of selection invariance. The results of this paper
therefore do not concern a mere statistical curiosity, but imply the presence of
a potentially serious problem in selection situations. We now turn to some
empirical, methodological, and social policy implications of this problem.

Empirical implications: Overprediction

The empirical situation implied by the present work is that, in a group
with higher mean ability, there will be more people who should have been
accepted but were not; and in a group with lower mean ability, there will be
more people who were accepted while they should not have been. There are
reasons to suspect that such a situation does, in fact, obtain in our society. In
educational selection situations, minority groups are often observed to achieve
lower scores on the tests that are used for selection, which, if measurement
invariance holds, may be due to differences in the location of the ability
distributions between these groups. On purely statistical grounds, we would
then expect higher drop-out rates among selected members from minority
groups. Such increased drop-out rates have indeed been observed. In
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differential prediction studies, criterion performance (e.g., study success as
reflected in freshmen GPA) is often regressed on ability test scores. The
typical result in these studies is that the regression line of low-scoring minority
groups is lower than the regression line of majority groups, indicating that the
former group has lower criterion scores than would be expected from their test
scores (Neisser et al., 1996; Sackett & Wilk, 1994; Willingham, Pollack, &
Lewis, 2002). This so-called ‘overprediction effect’ could be accounted for by
differential regression towards the mean as discussed above (see also Linn &
Werts, 1971; Millsap, 1997, 1998; Reilly, 1973).

Of course, there may be many other causes of increased drop-out rates
among minority groups (e.g., stereotype threat; Steele, 1997). For one thing,
the assumption of a latent difference, which drives the statistical mechanism
discussed here, may be false in real selection situations; overprediction may, in
such cases, be caused by different factors. However, it is important that, in
the interpretation of research findings, the effects of this purely statistical
mechanism are also recognized. One reason for this is that, regardless of other
explanations of the overprediction phenomenon, if there exist latent
differences between groups, we can be certain that differential regression to
the mean actually occurs.

The size of this effect depends for a large part on the reliability of the
scores that are yielded by the measurement instrument used for selection.
Now, while inspecting the simulations reported here, one may feel that with
respect to, say, college admissions in the U.S., the problem cannot be very
large; for the reliability of (subtest) scores on selection instruments like the
SAT is considerable in the general population (typically over .80, often over
.90). However, it should be noted that reliability is a population dependent
concept (Mellenbergh, 1996) that is sensitive to restriction of range as it
occurs in subpopulations with comparable abilities (as an illustration, in the
limiting case of a subpopulation of people with equal ability reliability equals
zero by definition; e.g., see Borsboom, 2005).

Since the SAT admittance policies for U.S. universities are known to the
public, a significant degree of self-selection occurs prior to the formal selection
process as carried out by universities (see Linn, 1983, for some illustrative
empirical examples of the effects of self-selection). This suggests that the
reliability of the SAT score within populations that apply to the same
university may be considerably lower than the reliability of the SAT scores in
the general population; and of course it is the reliability in the self-selected
applicant populations, not the reliability in the general population, that drives
the mechanisms discussed in the present paper. Thus, it would be unwise to
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dismiss the mechanism discussed above purely on the basis of reliability
estimates that apply to the general population. In any practical situation,
evaluation of whether the problem actually occurs requires the inspection of
reliability estimates as they apply to the subpopulation that will actually be
subjected to the selection procedure in question. These figures are likely to
differ substantially over different universities and campuses, depending on how
serious the restriction of range induced by self-selection is.

Social policy implications: Fairness

The present paper is largely based on the juxtaposition of two intuitions
that most people have with respect to fairness in selection. On the one hand,
we want selection procedures to be fair to individuals. The conditions that
best protect such fairness are provided through the requirement of
measurement invariance, because measurement invariance operates conditional
on levels of ability. On the other hand, we want selection procedures to be fair
to groups. This condition applies to aggregate populations and therefore is
best guaranteed by selection invariance. The present paper elaborates on the
conflicting implications of these requirements; in that sense it shows that,
unless one is prepared to give up either invariance at the individual or at the
group level, the notion of fair test use cannot be consistently connected to
psychometric invariance properties at both levels simultaneously.

While we think that the results presented in this paper elucidate the
workings of selection procedures with respect to different selection scenarios,
it also presents us with a significant problem. How should we deal with this
situation? What are the implications for social policy?

One problem that immediately presents itself is the following. A direct
implication that follows from the difference in positive predictive value across
groups, is that in the estimation of trait scores prior information on group
membership increases the precision of the estimates. This raises the question
of whether one should use this information in selection. The argument for
doing this is that it results in a more accurate selection procedure, and on this
basis some have indeed argued for incorporating information on group
membership in selection procedures (e.g., Miller, 1994). The argument against
such practice is that it implies the use of different cutoff scores in different
groups, which is commonly viewed as unfair and discriminatory. Howard
Wainer (personal communication, October 28, 2005) articulated the case
against using prior information on group membership in selection forcefully,
by drawing attention to the distinction between the use of tests as
measurement instruments, and the use of tests as contests:
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‘I think a key issue in this is the use of the group membership
information. If it is for diagnosis (e.g. educational diagnosis—what
is the best course of study for a particular child; medical
diagnosis—what disease do you have) using prior information is
fine—and maybe even imperative. This is the so-called testing for
the purpose of measurement. But for selection (testing as contest)
it is not o.k. If you and I get the same score on a selection test it
is not proper to take me over you because my mother might have
had more education. Measurements must be as accurate as
possible. Contests must be as fair as possible. So using priors is
fine for measurement, but not for contests. [This is] subtle
perhaps, but critically important.’

We are of the opinion that the ethical implications of using prior information
on group membership in selection outweigh the technical benefits of increased
precision, and hence tend to agree with Wainer on ideological grounds. We
should, however, be very careful in evaluating the effects of any given policy in
selection, even when ethically it is prima facie beyond contention. Even when
we agree that tests, as contests, should be a fair as possible to individuals, and
accordingly hold on to the requirement of measurement invariance, the
implication is that the sensitivity and positive predictive value will differ over
populations. This may have negative consequences in itself.

For instance, consider again the scenario as it may occur in selection
situations that involve minority groups. As explained in the previous
paragraph, there are empirical reasons to consider the possibility that accepted
members from some minority groups may include a larger number of false
positives, which may be partly responsible for the observed increased dropout
rates among members of such groups. The presence of more false positives
among minorities may create a perceived empirical basis for prejudice.

Suppose that people notice that, among minority groups that (for
whatever reason) have a lower position on the dimensions that determine
academic performance, there are more candidates who were incorrectly
accepted. Such a perception may promote and sustain negative attitudes
towards minorities. This, in turn, may affect the performance of minority
groups adversely, so that the improvement of the social status of these groups
is hampered. Because such a result may itself have a negative effect on the
determinants of academic performance of new generations of minorities, a
vicious circle of reciprocal negative effects looms. Even when our intentions
are good, our actions may have adverse consequences.
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Thus, even when we choose to treat tests as contests, and focus on
measurement invariance as the preferred conceptualization of fairness in
selection, the violation of selection invariance that is entailed by this decision
may have negative consequences in itself. Our ideological inclinations simply
will not make such problems go away. Therefore it would seem best to have a
methodological procedure that minimizes the violations of selection
invariance, conditional on measurement invariance. The next section evaluates
a number of possible methodological solutions that could be considered.

Methodological implications: Can the problem be solved?

The effects on selection invariance that are discussed in this paper can,
in general, be countered by using more reliable test scores. In particular, we
can design tests in which the variance of the errors around the regression line
is made smaller. Three methodological procedures can be followed to achieve
this. First, one could try to improve test reliability across the board; i.e., for
all populations involved in selection. Second, one could try to improve test
reliability selectively, for instance in the group with lower mean ability. Third,
one could try to improve test reliability locally, by improving reliability in the
region of the latent ability θ that is most influential in producing selection
bias.

It is well known that reliability increases with test length. The first
option could therefore be realized by creating longer tests. This option,
however, is often not viable. Test constructors are already doing all they can
to make test scores as reliable as possible, and moreover are faced with
practical and financial limitations to test length. In addition, increasing
reliability across the board is inefficient; especially at the extremes of the
latent dimension, it is not necessary since the persons located there do not
play a significant role in producing differences in test accuracy. Moreover, as
indicated above, it is the reliability of test scores within applicant populations,
not the general population, that drives the violation of selection invariance;
and since applicant subpopulations will typically be self-selected, and hence
more homogenous in ability level, adding items that increase reliability in the
general population may have negligible effects on the reliability of test scores
in actual applicant populations.

Selective increases in reliability in the group with lower mean ability
could also be envisioned to decrease the problem in question, at least insofar
as the differences in sensitivity and positive predictive value are concerned.
An advantage of this solution is that it allows for an analytic evaluation: for
sensitivity and positive predictive value the transformation σε → ασε is
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equivalent to transformation (39). However, implementing this solution would
involve the use of longer tests for the group with lower mean ability. Such a
procedure has two obvious drawbacks. First, although it will decrease
differences in sensitivity and positive predictive value, it will simultaneously
increase differences in specificity and negative predictive value. Second, the
procedure would involve differential treatment of the members of each
population, which may be perceived as discriminatory; also, the cutoff scores
would be different since they are defined on different sets of items.

Local increases in reliability would be effective in diminishing the
problem and would not share the drawbacks of the first two options. Because,
with respect to selection invariance, the most important region of θ is the
region around the cutoff, selection procedures could be tailored to be more
reliable in that region. Classical approaches to reliability are not suitable for
achieving this goal because they are population dependent, but Item Response
Theory (IRT) approaches are. IRT models evaluate measurement precision as
a continuous function of the latent dimension known as the test information
function (see Mellenbergh, 1996, for a discussion of the difference between
conceptualizations of measurement precision in classical and modern test
theory). The form of the test information function can be influenced by
administering different items.

In the present situation, measurement precision could be targeted at the
value of θ that is estimated to be the cutoff score (i.e., the value that produces
the right selection ratio). This could be done by administering extra items
with difficulty parameters close to that point on the latent scale. Such extra
items could be administered, for instance, when the available test scores
indicate that the tested person is located in the relevant region of the latent
dimension. It is perhaps useful to note that such a procedure is not the same
as that followed in widely used adaptive testing programs; these programs
increase measurement precision at the location of a person’s estimated latent
ability, whereas what would be needed here is a procedure that increases
measurement precision at a fixed point of the latent scale. Rather, the
procedure is an implementation of sequential mastery testing as studied in the
IRT literature (e.g., Eggen & Straetmans, 2000; Lewis & Sheehan, 1990; Spray
& Reckase, 1996; Vos, 1999; Weiss & Kingsbury, 1984). Although in the IRT
literature, the focus is on gaining efficiency in deciding whether a person is a
master or non-master (because fewer items have to administered to those far
above the cutoff), rather than on producing selective increases in measurement
precision, the statistical machinery in place could be used for either purpose.
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It is useful to note that the cutoff score used here need not have any
substantive meaning, in the sense that it separates masters from non-masters.
Rather the goal would be to reach a simple pass-fail decision. The cut point
on the θ-scale would be defined by the selection ratio the selecting institution
entertains, together with the mean and variance of the ability distribution in
the applicant population, and hence would generally differ across institutions.
Standard IRT algorithms for sequential mastery testing could then be used to
achieve local increases in measurement precision at the point of the cutoff
score for θ. Such a procedure may serve to approximate selection invariance to
a greater degree, while maintaining measurement invariance, and therefore
could be used to steer a middle course between protecting fairness at the level
of the individual and at the level of the group.

Insert Figure 6 about here

A selective improvement of reliability along these lines would result in a
joint distribution of test and ability scores that is ‘squeezed’ in the region
around the cutoff. The joint distribution would therefore look like the one
represented in Figure 6. For obvious reasons, we have come to refer to this as
the dogbone method. The method would not counter selection bias entirely
but would decrease the difference in incorrect decision across groups, while it
retains the property of measurement invariance: the conditional distribution
of the test score, given θ, would still be identical across groups. Also, it would
not require differential treatment of members of different populations;
members of both groups are administered extra items if they score in the
relevant region. Finally, because different items could be administered by
institutions that employ different selection ratios and deal with applicant
populations centered at different positions of the latent scale, the procedure
can be efficiently tailored to particular selection situations.

Future work

Although the present paper has outlined some of the most important
aspects of the relation between measurement invariance and selection
invariance, several questions that are beyond the scope of this paper may be
addressed in future research.
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First, we have assumed bivariate normality throughout this paper, but
in most selection procedures this assumption will be approximately true at
best. One reason for this is that test scores are usually bounded; hence the
relation between the expected test score and the latent variable will be
nonlinear, and the joint distribution of ability and test scores will not be
bivariate normal. The influence of nonlinearity and non-normality on selection
properties thus requires attention. For one, it looks like the linearity of the
relation between X and θ is not essential. Rather the proof hinges on this
relation being monotonic. An analogous proof may perhaps be constructed on
weaker assumptions.

Second, we have restricted ourselves to a scenario where selection is
based on a single test score. In reality, however, selection usually takes place
on more than one variable. Hence the problem becomes multidimensional. It
could be the case that incorporating sets of variables in the selection process
decreases the violations of selection invariance discussed in this paper. This
could happen if group differences are reversed on different variables, so that
the group which is located at the low end of one variable is located at the high
end of another. In cases where group differences are in the same direction on
different variables, however, the problems could be expected to be aggravated;
the same holds for situations where some of the additional measures used are
less reliable. Investigating the mechanisms of multidimensional selection may
thus be fruitful, although we expect that analytic approaches will quickly
become mathematically forbidding. In such cases, simulation studies may be
used to shed some light on this issue.

Third, the viability and effect of incorporating local improvements in
measurement precision, which was suggested as a possible methodological
solution to the problem of selection bias, can be studied from an IRT
perspective. One important question is how many additional items one would
need to establish a reasonable approximation to selection invariance. The
answer to this question will probably differ according to the selection situation
considered, and hence may be best addressed in particular selection contexts
with known psychometric qualities. Another important point is that using
many items with an item difficulty located at the cutoff point would serve to
strengthen the nonlinearity of the relation between the test score and the
latent variable; hence the effects of this on selection invariance should be
investigated as well. Finally, various results from the IRT literature on
sequential mastery testing may be utilized to further study this method and
judge its viability.
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Fourth, the relation between the current conceptualization of selection
invariance and previous conceptualizations of that property (e.g., Petersen &
Novick, 1976) should be studied in greater detail. In much literature the
criterion score functions to define whether a person is a ‘true’ positive or a
‘false’ positive. In our conceptualization these quadrants are defined in terms
of the latent dimension measurement through the test. Now suppose, for
instance, that in addition to the test score, we also have a ‘criterion’ measure
that depends on θ or on a related latent variable. Assume that we have
measurement invariance and group differences in the distribution of θ, so that
selection invariance in our terms is violated. Does this entail that selection
invariance, as defined through the criterion scores, is violated as well?
Conversely, suppose that measurement invariance is violated in such a way
that selection invariance is satisfied. Does this entail that selection invariance,
as defined through the criterion scores, will be satisfied as well? Under
reasonable assumptions, we think that these questions are amenable to
systematic investigation. We conjecture, in fact, that selection invariance as
defined through the criterion will generally fail to align with selection
invariance as defined in terms of the latent variable, and some preliminary
simulations suggest that this is indeed the case. Clearly, this would have
important consequences for test practices. Thus, the relation between
predictive models and measurement models is one that invites and deserves
further study.
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Appendix A
Failure of selection invariance

We first prove Equation (5). Because of Equation (3) we have

p(A|θ ∩ g) = p(X ≥ 0|θ ∩ g)

=
∫ ∞

0
fλgθ,σεg

(X)dX

=
∫ λgθ

−∞
f0,σεg

(X)dX = N0,σεg
(λgθ), (18)

where fm,s and Nm,s refer to the Gaussian density and the normal
distribution with mean m and standard deviation s respectively. The
requirement that over all values of θ, p(A|θ ∩ g) is the same for each value of
G thus comes down to the requirement that N0,σεg

(λgθ) is the same for each
value of G, which is true by assumption, since λg and σεg are constant.

Using expression (18), we can write out the numerator and the
denominator in Equation (10) as

p(S ∩A|g) =
∫ ∞

0
fµg ,σ(θ)N0,σε(λθ)dθ, (19)

p(A|g) =
∫ ∞

−∞
fµg ,σ(θ)N0,σε(λθ)dθ, (20)

the sole difference between numerator and denominator being the integration
boundaries. Note that, because of the assumption of measurement invariance,
the parameters λ and σε do not carry an index g. Only µg varies over the
groups.

Unfortunately there is no analytic solution for the quotient of the above
integrals. Nevertheless we may study p(S|A ∩ g) as a function of the
parameter µg. Specifically, we can differentiate this function with respect to
µg and prove that

d

dµg
[p(S|A ∩ g)] > 0. (21)

This means that of two groups L and H, if µL < µH , the probability of
suitability given acceptance is strictly larger for H than for V . In other words,
the procedure is then not selection invariant due to an inequality of positive
predictive value.

To derive Equation (21), first consider the differentiation rule for
quotients,

d

dz

[
A

B

]
=

dA
dz B −AdB

dz

B2
. (22)
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Since the denominator of this expression is always positive, we are only
required to show that

p(A|g)
d

dµg
[p(S ∩A|g)]− p(S ∩A|g)

d

dµg
[p(A|g)] > 0 (23)

to derive the inequality (21). Rewriting this we find

dp(S ∩A|g)/dµg

p(S ∩A|g)
>

dp(A|g)/dµg

p(A|g)
. (24)

The remainder of the derivation focuses on this inequality.
To arrive at inequality (21), note first that we may apply the

differentiation operation within the integral expressions. From the functional
form of the normal density,

fµg ,σ(θ) ∝ exp−(θ − µg)2

2σ2
, (25)

we can derive that
dfµg ,σ(θ)

dµg
=

(
θ − µg

σ2

)
fµg ,σ(θ). (26)

Applying this to the terms in the inequality (24), eliminating the factor 1/σ2

on either side, we obtain∫∞
0 (θ − µg) fNdθ∫∞

0 fNdθ
>

∫∞
−∞(θ − µg) fNdθ∫∞

−∞ fNdθ
, (27)

where we have written fN to abbreviate fµg ,σ(θ)N0,σε(λθ). The integration
variable θ can now be substituted with θ′ = θ − µg. On the left side of the
inequality, this entails a shift in the integration boundary.

It thus turns out that for inequality (21) to hold, it is sufficient that the
following inequality holds:∫∞

µg
θ′ fNdθ′∫∞

µg
fNdθ′

>

∫∞
−∞ θ′ fNdθ′∫∞

µg
fNdθ′

. (28)

Interestingly, this is the same as an inequality of expectation values for θ′

under the distribution fN :

E[µg ,∞)[θ
′] > E(−∞,∞)[θ

′]. (29)

But this inequality is evident: the expectation value of θ′ over the interval
[µg,∞) is always strictly larger than the expectation value of θ′ over the
interval (−∞,∞), if only there is some probability mass in the domain
(−∞, µg). And this is in fact the case for the function fN .
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Appendix B
Symmetry of problem with respect to X and θ

The symmetry argument establishes that the inequalities of Appendix A
are invariant under interchanging θ and X. The proofs in Appendix A are
constructed for a selection problem characterized by a normal distribution of a
group over the ability parameter θ and a linear dependence linking the ability
θ to normal distributions over a test score X. What we first have to show is
that the same problem is characterized by a normal distribution of a group
over the scores X, and a linear dependence linking scores X to normal
distributions over ability θ. Then we ask whether this reparameterized
function has the same properties as the original function, in the sense of
having more probability mass in the true positives quadrant relative to the
combined true positives and false negatives quadrants, i.e., whether the case
of sensitivity is susceptible to the same proof as given in Appendix A. This
will be the case if the order of the latent means µg, is preserved in the
observed means, and the variances of the observed scores remain identical.

To establish this, consider the test as a linear dependence linking ability
to normal distributions over a test score. It is captured completely by a single
function ptest over θ and X, referring to the event of a person with ability θ

receiving a test score X. Note that ptest differs from the full probability
assignment p by the fact that we have not fixed a marginal probability over θ.
Now we may reformulate the function as follows,

ptest(X, θ) = fλθ,σε(X)

= f0,σε(X − λθ)

= f0, σε
λ

(
X

λ
− θ

)
= fX

λ
, σε

λ
(θ). (30)

The point of this reformulation is that we can describe the very same function
defining the test by looking at normal distributions over X given θ and by
looking at normal distributions over θ given X. The test may just as well be
characterized by a linear dependence linking scores X to normal distributions
over ability θ as by the converse dependence.

Now assume the normal distribution of a group G = g over abilities θ,
fµg ,σ(θ) as the marginal probability over θ. The full probability of the event of
a member of group g with ability θ receiving a test score X can now be
written as the product of this marginal and the above function:

p(θ, X) = fµg ,σ(θ)fλθ,σε(X). (31)
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To establish the symmetry of the selection problem with respect to
interchanging X and θ, we must now show that under the assumption of a
certain test ptest, the marginal distribution with respect to X is again the
normal, and that a difference of means in ability, µL < µH , translates to a
difference of means in test scores, mL < mH , while the standard deviations
are again equal, sL = sH . If this is indeed the case, then we can use the
results of Appendix A to establish that differences in sensitivity are in the
same direction as differences in positive predictive value.

This requires us to compute the functional form of the marginal
distribution for X. To this aim, we will write out the marginal probability
p(X) in such a way that we can integrate out the variable θ by means of a
number of suitably chosen substitutions. The selection problem determines
that

p(X) =
∫ ∞

−∞
p(X, θ)dθ

=
∫ ∞

−∞
fµg ,σ(θ)fλθ,σε(X)dθ

=
∫ ∞

−∞
exp

[
−1

2

(
θ − µg

σ

)2

− 1
2

(
X − λθ

σε

)2
]

dθ. (32)

We may substitute θ′ = θ−µg

σ and write

p(X) ∼
∫ ∞

−∞
exp

[
−1

2
θ′2 − 1

2

(
X − λ(σθ′ + µg)

σε

)2
]

dθ′

=
∫ ∞

−∞
exp

[
−1

2
θ′2 − 1

2

(
X − λµg − λσθ′

σε

)2
]

dθ′. (33)

Now we can further substitute X ′ = X−λµg

σε
and γ = λσ

σε
, so that

p(X) ∼
∫ ∞

−∞
exp

[
−1

2
θ′2 − 1

2

(
X ′ − λσ

σε
θ′

)2
]

dθ′

=
∫ ∞

−∞
exp

[
−1

2
θ′2 − 1

2
(X ′ − γθ′)2

]
dθ′ (34)
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Writing out this expression and collecting the terms we find

p(X) ∼
∫ ∞

−∞
exp

[
−1

2
(1 + γ2)θ′2 + γθ′X ′ − 1

2
X ′2

]
dθ′

=
∫ ∞

−∞
exp

[
−1

2

(
(1 + γ2)1/2θ′ − γ

(1 + γ2)1/2
X ′

)2

− γ2

1 + γ2
X ′2 − 1

2
X ′2

]
dθ′

=
∫ ∞

−∞
exp

[
−1

2

(
(1 + γ2)1/2θ′ − γ

(1 + γ2)1/2
X ′

)2
]

dθ′

× exp
[
−

(
1
2

+
γ2

1 + γ2

)
X ′2

]
. (35)

We can now substitute once again, θ′′ = (1 + γ2)1/2θ′ − γ
(1+γ2)1/2 X ′ and

integrate out θ′′. Note that X ′ may here be treated as constant. The
integration runs over a different θ′′ at each X ′, but these variables θ′′ only
differ in a simple translation, and this translation is nullified because the
integration runs from −∞ to +∞.

The functional form of the marginal distribution has now been
computed. We end up with

p(X) ∼ exp
[(

1
2

+
γ2

1 + γ2

)
X ′2

]
= exp

[(
X − λµ

σε

)2 (
1
2

+
γ2

1 + γ2

)]
. (36)

The distribution over test scores comes out normally distributed with a mean
mg = λµg and the rather elaborate standard deviation

s = σε

(
1
2

+
γ2

1 + γ2

)−1/2

, (37)

with γ = λσ
σε

. The order in the means of the two groups L and H is preserved:
if for the means over the abilities we have µL < µH , then also we have
mL < mH for the means over the test scores. Moreover, since σ, σε and λ are
all identical for both groups, the standard deviation s is the same for both
groups too. Hence the probabilistic inequalities derived in Appendix A are
invariant under interchanging X and θ, and Equation 13 follows.
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Appendix C
Generalized inequality

The strategy we use to deal with the situation in which groups differ in
both means and variances is the following. We apply a transformation to the
latent variable distribution in one group in order to remove the difference in
variances. This causes the variance of the latent variable distribution to be
the same across groups, but alters the mean and regression coefficient in the
transformed group. We then scale the regression coefficient back to its original
value. This gives a counterfactual situation, in which both the variances and
the regression parameter are the same in both groups. We then use the results
derived in the previous section to evaluate whether, in that counterfactual
situation, a difference in, say, sensitivity exists.

If so, we consider the direction of the effect of the employed
transformations on sensitivity to evaluate whether we can generalize the
conclusion from the transformed case to the untransformed case. For instance,
if we know that the set of transformations made sensitivity smaller than it
originally was, while in the resulting situation sensitivity was still larger in the
transformed group when compared to the untransformed group, then
sensitivity must also have been greater in that group before the
transformation started. Finally, we derive a set of conditions under which this
situation obtains; i.e., the set of conditions that describes the class of
situations in which measurement invariance and selection invariance are
provably inconsistent.

We first concentrate on sensitivity and positive predictive value, as
expressed in Equations (10) and (12). We make the following two observations
concerning these probabilities. First, they are invariant under the combined
scale transformations of the ability parameter and the regression coefficient,

θ → αθ, (38)

λ → λ

α
. (39)

for α ∈ (0,∞). Second, considering the transformation (39) while all else is
kept fixed, both sensitivity and positive predictive value get larger for larger
regression coefficients λ. Both observations are proved in Appendix D.

We can write down the observations more formally as follows. Consider
a group g with a density fµ,σ(θ), and denote this group with gµ,σ. Further
consider a test characterized by fλθ,σε(X) and denote the corresponding
probability assignment over X and θ by pλ,σε , or pλ for short. The first
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observation then comes down to the following statements:

pλ(S|A ∩ gµ,σ) = p λ
α
(S|A ∩ gαµ,ασ),

pλ(A|S ∩ gµ,σ) = p λ
α
(A|S ∩ gαµ,ασ).

(40)

The second observation comes down to the following two statements:

α < 1 ⇒

 p λ
α
(S|A ∩ gµ,σ) > pλ(S|A ∩ gµ,σ),

p λ
α
(A|S ∩ gµ,σ) > pλ(A|S ∩ gµ,σ).

(41)

Both these pairs of observations are used in the proof concerning two groups
with differing means and variances.

Consider the selection problem for two groups, gµ,σ and gµ′,σ′ with
σ 6= σ′, and a test characterized by a regression coefficient λ and an error
variance σ2

ε . We assume nothing on the order of µ and µ′, and we hold on to
measurement invariance, so that λ and σε are the same for both groups. We
further assume σ > σ′ without loss of generality. We may then employ the
above observations to derive more general inequalities for the probabilities
involved in selection invariance.

The first observation allows us to transform the standard deviation in
one group so that it equals the standard deviation in the other group. For this
purpose we use the combined transformations (38) and (39) with α = σ′

σ so
that α < 1. We choose to transform in the group with the larger standard
deviation. For this group, Equation (40) then gives us

α =
σ′

σ
⇒

pλ(S|A ∩ gµ,σ) = p λ
α
(S|A ∩ gαµ,ασ),

pλ(A|S ∩ gµ,σ) = p λ
α
(A|S ∩ gαµ,ασ).

(42)

We now compare these probabilities to a situation where the standard
deviations and means have been transformed as above, but the regression
parameter equals its original value. From Equation (41) we may then derive
the conditional inequalities

α < 1 ⇒

 p λ
α
(S|A ∩ gαµ,σ′) > pλ(S|A ∩ gαµ,σ′),

p λ
α
(A|S ∩ gαµ,σ′) > pλ(A|S ∩ gαµ,σ′).

(43)

Recall that σ′ = ασ. Therefore the expressions on the right side of Equation
(42) are identical to the expressions on the left side of Equation (43).

Because of the employed transformations, the expressions on the right
side of Equation (43) have variance σ′ and regression parameter λ, allowing us
to compare the expressions to those for the untransformed group gµ′,σ′ .
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Specifically, we can apply the results of the previous section concerning
acceptance and suitability as follows:

αµ > µ′ ⇒

 pλ(S|A ∩ gαµ,σ′) > pλ(S|A ∩ gµ′,σ′),

pλ(A|S ∩ gαµ,σ′) > pλ(A|S ∩ gµ′,σ′).
(44)

These are just conditions (11) and (13), used here to compare the transformed
situation in one group with the untransformed situation in the other group.
Clearly, if αµ = µ′, the two terms in the above are equal.

The joint effect of transformations (42) and (43) is a decrease of
sensitivity and positive predictive value, as can be seen from the inequalities
in (43). Thus, if the inequalities in Equation (44) hold, which will be the case
under the condition αµ > µ′, the inequalities must hold for the original,
untransformed case as well. With regard to sensitivity, for example, we have
established that, under the conditions stated, pλ(A|S ∩ gµ,σ) =
p λ

α
(A|S ∩ gαµ,σ′) > pλ(A|S ∩ gαµ,σ′) ≥ pλ(A|S ∩ gµ′,σ′). Hence it follows that

pλ(A|S ∩ gµ,σ) > pλ(A|S ∩ gµ′,σ′), which is the inconsistency between
measurement invariance and selection invariance with regard to sensitivity.

To establish the reach of these results, we may now concatenate
Equations (42) to (44) and collect the conditions. We then obtain

σ′ < σ and
σ′

σ
µ ≥ µ′

⇒

 pλ(S|A ∩ gµ,σ) > pλ(S|A ∩ gµ′,σ′),

pλ(A|S ∩ gµ,σ) > pλ(A|S ∩ gµ′,σ′).
(45)

Furthermore, by inverting the above reasoning we can also prove that

σ′ < σ and
σ′

σ
µ ≤ µ′

⇒

 pλ(¬S|¬A ∩ gµ,σ) < pλ(¬S|¬A ∩ gµ′,σ′),

pλ(¬A|¬S ∩ gµ,σ) < pλ(¬A|¬S ∩ gµ′,σ′).
(46)

For this we employ the Equations (42) to (44), but we transform θ → −θ.
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Appendix D
Scale transformations

We first establish the observation expressed in Equations (38) and (39).
After the combined transformations (38) and (39), the probability over X and
θ can be written as

p(X, θ) = fαµ,ασ(αθ)f λ
α
·αθ,σε

(X)

∼ exp

[
1
2

(
αθ − αµ

ασ

)2
]

fλθ,σε(X)

∼ exp

[
1
2

(
θ − µ

σ

)2
]

fλθ,σε(X)

∼ fµ,σ(θ)fλθ,σε(X). (47)

The scale transformation thus leaves the probability assignment over X and θ

invariant. Integrals such as the probabilities of suitability given acceptance
and acceptance given suitability are therefore left invariant under the
transformations as well.

We now establish the observation concerning stand-alone scale
transformations of the regression parameter, as expressed in Equation (41).
We first deal with the probability of acceptance given suitability, p(A|S ∩ g).
Note that for a group gµ,σ

pλ(S|gµ,σ) =
∫ ∞

0
fµ,σ(θ)

[∫ ∞

−∞
fλθ,σε(X)dX

]
dθ

=
∫ ∞

0
fµ,σ(θ)dθ

= 1−Nµ,σ(0), (48)

where Nµ,σ is again the normal distribution. This integral does not depend on
λ. Recall also that

pλ(A ∩ S|gµ,σ) =
∫ ∞

0
fµ,σ(θ)

[∫ ∞

0
fλθ,σε(X)dX

]
dθ

=
∫ ∞

0
fµ,σ(θ)N0,σε(aθ)dθ. (49)

The probability of acceptance given suitability, p(A|S ∩ gµ,σ), is the quotient
of these two expressions, as given in Equation (12).
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Consider the probability of passing given suitability for the transformed
regression parameter λ

α . We can write

p λ
α
(A ∩ S|gµ,σ) =

∫ ∞

0
fµ,σ(θ)N0,σε

(
λ

α
θ

)
dθ

=
∫ ∞

0
fµ,σ(θ)

[
N0,σε(λθ) +

(
N0,σε

(
λ

α
θ

)
−N0,σε(λθ)

)]
dθ

= pλ(A ∩ S|gµ,σ)

+
∫ ∞

0
fµ,σ(θ)

[
N0,σε

(
λ

α
θ

)
−N0,σε(λθ)

]
dθ. (50)

Since the normal distribution N0,σε is a monotonically increasing function, the
latter integral is strictly positive if λ

αθ > λθ. And because in the above
integral the domain is θ ≥ 0, this condition is equivalent to α < 1. Therefore,

α < 1 ⇒ p λ
α
(A ∩ S|gµ,σ) > pλ(A ∩ S|gµ,σ). (51)

Because the denominator in the quotient of Equation (12), as expressed in
Equation (48), does not depend on λ, the above comes down to (41) for the
probability of acceptance given suitability.

It is now easy to deal with the probability of suitability given
acceptance. We want to obtain

p λ
α
(A ∩ S|gµ,σ)

p λ
α
(A|gµ,σ)

>
pλ(A ∩ S|gµ,σ)

pλ(A|gµ,σ)
(52)

With some algebra, using the fact that p(A|g) = p(A ∩ S|g) + p(A ∩ ¬S|g),
this is equivalent to

p λ
α
(A ∩ S|gµ,σ)pλ(A ∩ ¬S|gµ,σ) > pλ(A ∩ S|gµ,σ)p λ

α
(A ∩ ¬S|gµ,σ). (53)

But because of Equation (51), this holds if we have

pλ(A ∩ ¬S|gµ,σ) ≥ p λ
α
(A ∩ ¬S|gµ,σ). (54)

Writing integral expressions for these probabilities in much the same way as in
(50), we find

pλ(A ∩ ¬S|gµ,σ) =
∫ 0

−∞
fµ,σ(θ)N0,σε

(
λ

α
θ

)
dθ

=
∫ 0

−∞
fµ,σ(θ)

[
N0,σε

(
λ

α
θ

)
+

(
N0,σε(λθ)−N0,σε

(
λ

α
θ

))]
dθ

= pλ(A ∩ ¬S|gµ,σ)

+
∫ 0

−∞
fµ,σ(θ)

[
N0,σε(λθ)−N0,σε

(
λ

α
θ

)]
dθ. (55)

Because in this integral the domain is θ < 0, the inequality is again satisfied if
α < 1.
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Notes

1To see the exact reach of this result, consider the conditions σ′ < σ and
σ′

σ µ > µ′. The condition σ′ < σ can be fulfilled without loss of generality. For
the condition σ′

σ µ > µ′, it is useful to distinguish between cases in which
µ > µ′ and cases in which µ < µ′. In the case µ > µ′, the condition is met
unless both µ and µ′ lie far enough above the threshold θ = 0, so that σ′

σ > µ′

µ .
In the case µ < µ′, however, the condition is met only if µ′ and µ lie far
enough below the threshold θ = 0 so that σ′

σ < µ′

µ .
2Note that this is true in general only for the case where the variances in

the groups are equal; if they are unequal the mechanism is the same but the
direction of the effect depends on the relation between means and variances,
as derived in Appendix C and D. For clarity of exposition, we restrict
ourselves to the case of equal variances here.

3Note that the word ‘proportionally’ is very important here. Clearly, the
conclusion does not apply to absolute numbers of candidates, but only to their
number relative to the entire number of candidates within a group. If the size
of the groups is different, there may be more candidates from the larger group
in every region of the selection space. Similarly, even with equal group size
the absolute number of false decisions may go either way, depending on the
position of the group’s mean µg relative to the cut-off point. The inequalities
are only concerned with the proportions of groups relative to being suitable,
accepted, etc.
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Figure Captions

Figure 1. The selection problem. The figure shows the distribution of

candidates on the selection variable X as a function of the latent ability θ.

Figure 2. Selection in two groups H and L under measurement invariance.

Figure 3. Error distributions for points close to and far from the cutoff score.

The probability of selection errors decreases as the distance from the cutoff

increases.

Figure 4. Sensitivity and positive predictive value as a function of reliability.

The two dark lines represent group H (for selection ratios of 5% and 25%)

and the two light grey lines represent group L (for the same selection ratios).

Figure 5. Specificity and negative predictive value as a function of reliability.

The two dark lines represent group H (for selection ratios of 5% and 25%)

and the two light grey lines represent group L (for the same selection ratios).

Note that, to improve readability, the Y-axis has been scaled differently from

that in Figure 4.

Figure 6. Minimization of selection bias by means of selective increases in

reliability. Adaptive testing may be used to create an increase in reliability in

the neighborhood of the cutoff score, which diminishes the differences in test

accuracy across groups.
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