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This volume arose out of an international, interdisciplinary academic net-
work on Probabilistic Logic and Probabilistic Networks, called progicnet and
funded by the Leverhulme Trust from 2006–8. Many of the papers in this vol-
ume were presented at an associated conference, the Third Workshop on Com-
bining Probability and Logic (Progic 2007), held at the University of Kent on
5–7 September 2007. The papers in this volume concern either the special focus
on the connection between probabilistic logic and probabilistic networks or the
more general question of the links between probability and logic. Here we intro-
duce probabilistic logic, probabilistic networks, current and future directions of
research and also the themes of the papers that follow.

1 What is Probabilistic Logic?

Probabilistic logic, or progic for short, can be understood in a broad sense as
referring to any formalism that combines aspects of both probability theory
and logic, or in a narrow sense as a particular kind of logic, namely one that
incorporates probabilities in the language or metalanguage.

In the latter case, if the probabilities are incorporated directly into the log-
ical language we have what might be called an internal progic. An example
is a first-order language where one or more of the function symbols are in-
tended to refer to probability functions. Thus one can form expressions like
(P1(Fa) = 0.2 ∧ P2(Rab)≥0.5) → Gb. This kind of language is suitable for rea-
soning about probabilities and is explored by Halpern (2003), for instance. If,
on the other hand, the probabilities are incorporated into the meta-language
we have an external progic. For example, one might attach probabilities to
sentences of a propositional language: (p ∧ q) → r

0.95. This kind of language
is suitable for reasoning under uncertainty, and maintains a stricter distinction
between the level of logic and the level of probability (see, e.g., Paris, 1994). A
logic that incorporates probabilities both within the language and the metalan-
guage is a mixed progic.

The central question facing a progic is what conclusions should be drawn
from given premisses. For an internal progic the question is which ψ to conclude
from given premisses ϕ1, . . . , ϕn, where these are sentences of a language involv-
ing probabilities. This is analogous to the question facing classical logic. But for
an external (or mixed) progic, the question is rather different. Instead of asking
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what ψY to conclude from given premisses ϕ1
X1 , . . . , ϕn

Xn one would normally
ask what Y to attach to a given ψ, when also given premisses ϕ1

X1 , . . . , ϕn
Xn .

Note that, depending on the semantics in question, the X1, . . . , Xn, Y might be
probabilities or sets of probabilities.

Since the fundamental question of an external probabilistic logic differs from
that of a non-probabilistic logic, different techniques may be required to answer
this question. In non-probabilistic logics one typically appeals to a proof theory
to determine which ψ to conclude from given ϕ1, . . . , ϕn. This is not always
appropriate in the case of a probabilistic logic. An external progic requires ma-
chinery for manipulating probabilities, not just tools for handling sentences. In
Haenni et al. (2008) it is suggested that the machinery of probabilistic networks
can fruitfully be applied here.

2 What are Probabilistic Networks?

Probabilistic networks (or probabilistic graphical models) is a general term for
various mathematical models in which probabilistic information is linked to
network-based structural information. The network structure is usually formal-
ized by a directed graph with nodes and arrows, where an arrow between two
nodes is meant to represent some sort of influence or dependency between the
variables associated with those nodes. This in turn means that the absence
of an arrow between two nodes implies some sort of independence among the
associated variables. As an example, we could thus represent our knowledge
about the positive correlation between smoking and lung cancer by two network
nodes S and L and an arrow from S towards L. And we could then enhance the
network by nodes and corresponding arrows for further smoking-related diseases
or for other possible (but possibly independent) causes of lung cancer. To avoid
circular dependencies, directed graphs are normally assumed to be acyclic.

Depending on the available probabilistic information, it is common to dis-
tinguish different types of probabilistic networks. In the most simplest case of
so-called Bayesian (or belief ) networks, it is assumed that the conditional proba-
bility of each network variable given its parents is fully specified. In the example
above, we could meet this requirement by specifying P (L=yes|S=yes) = 0.05
and P (L=yes|S=no) = 0.01 for the network variable L (which means that
smoking increases the risk of lung cancer by a factor 5) and by assuming a prior
probability P (S=yes) = 0.3 for the network variable S. What makes Bayes-
ian networks particularly attractive is the fact that the included structural and
probabilistic information is sufficient to specify a unique joint probability func-
tion over all involved variables, which in turn can be used to answer all sorts of
probabilistic queries. Note that an explicit specification of a joint probability
function would require exponentially many parameters. Bayesian networks are
thus useful to specify large joint probability functions efficiently and to reduce
the complexity of respective computations.

A second type of probabilistic networks, so-called credal networks, arise when
the uniqueness assumption for the given probability values is relaxed. They are
thus similar to Bayesian networks, except that they expect sets of probabilities
instead of point-valued probabilities. In the example above, we could

The price of this additional
but instead of requiring conditional probabilities, they require so-called credal
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sets for each network variable. In the particular case of
Markov nets = undirected
This type of graphical model is known as a directed graphical model, Bayes-

ian network, or belief network. Classic machine learning models like hidden
Markov models, neural networks and newer models such as variable-order Markov
models can be considered as special cases of Bayesian networks.

Graphical models with undirected edges are generally called Markov random
fields or Markov networks.

A third type of graphical model is a factor graph, which is an undirected
bipartite graph connecting variables and factor nodes. Each factor represents
a probability distribution over the variables it’s connected to. In contrast to a
Bayesian network, a factor may be connected to more than two nodes.

3 Current Directions

Research on probabilistic logic has, since its beginnings, explored trade-offs be-
tween expressivity and complexity in various kinds of internal and external prog-
ics. Generally these progics let probabilities be attached to logical constructs
in a very flexible manner, possibly letting many measures satisfy a given set
of probabilistic assessments (this “single-measure vs multiple-measure” debate
is further discussed in Section 5). The current literature continues to investi-
gate the merits and the applications of progics that do not impose any special
structure on probabilistic assessments. Take for instance, the recent work by
Ognjanović (2006), and several papers on philosophical and psychological topics
in this special issue—by Howson, by Leuridan, by Pfeifer and Kleiter, and by
Sprenger.

The last fifteen years have witnessed the arrival of many progics where graphs
are used to structure sentences and assessments, so as to lower the complexity
of inference. Until a decade ago the work on “progics + graphs” focused on
a few narrow strands; a noticeable change took place around 2000, and since
then the literature has been growing at a staggering pace. Most of this recent
literature employs the technology of Bayesian and Markov networks to produce
progics where any set of well-formed formulas is satisfied by a single measure.
The paper by Kee and Lloyd in this special issue gives examples where Bayesian
networks are encoded through logic.

A key reason for the dramatic growth of interest in single-model progics
based on graphs, particularly in the artificial intelligence literature, is the ma-
turity of inference algorithms for Bayesian and Markov networks. Today one
can employ graphs so as to produce a progic with the power to handle problems
of practical significance in reasonable computing time. Relatively little atten-
tion has been given to progics that are based on graphs and yet depart from
the single-measure assumption (however see the papers by Cozman et al and by
Haenni in this issue).

Two further characteristics of the current work on “progics + graphs” de-
serve to be mentioned. First, research on progics based on probabilistic networks
is heavily oriented towards applications—for instance, applications in data min-
ing, because data are relational or structured (an example is textual data), or
because it is advisable to use existing domain knowledge expressed as logical
sentences (Domingos, 2007). Second, the research often focus on learning logical
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and probabilistic sentences from data. Indeed, a key reason for the surge of such
progics around 2000 is that, at that point, researchers began to combine Bayes-
ian networks and logic so as to process relational data (Friedman et al, 1999).
The emphasis on single-model progics is particularly strong when learning from
data is considered.

4 This Volume

A brief paragraph on each paper by the editor responsible Cozman Fabio, Cassio
de Campos, Jose Eduardo Ochoa, Assembling a consistent set of sentences in
relational probabilistic logic with independence

Haenni Rolf, Probabilistic Argumentation
In Can logic be combined with probability? Some observations, Colin Howson

addresses one of the most fundamental questions underlying this special issue
and more generally the Progicnet project. As Howson says, a positive answer to
this question is of course possible, but that would turn out to be very trivial, as
“logic can be combined with anything”. A slightly more sophisticated answer
would be that logic and probability can indeed be combined because of their both
being formal languages: logic and probability have a common set of concept and
methods, and some of their semantic aspects also turn out to be significantly
similar. But the interesting question becomes whether such a formal similarity
is simply formal, or whether there is a deeper degree of conceptual affinity. This
is exactly the challenge that Howson takes up in the paper. In the first part of
the paper, the author closely investigates the extent to which Gaifman, Scott
and Krauss succeeded in combining probability and logic. This attempt con-
sisted in adapting the concepts, tools and procedures of model theory in modern
logic—in particular, the notions of consistency and of consquence—to provide
a corresponding model theory for the probability language. Howson shows that
this account isn’t fully successful because expressiveness—i.e., the consideration
of language systems whose expressive power is closer to the σalgebra of mathe-
matical probability—and effectiveness—i.e., the possibility of developing a proof
theory—eventually pull in opposite directions. The pars construens of the paper
develops along the same line of Scott’s and Krauss’ ideas, but it differs in that
it develops a formalism of epistemic probability, based on set theoretic algebras,
that is a generalisation of the classical logical concepts of model, consistency,
and consequence. In particular, for assignments of real-valued probabilities to
elements of a field or σ-field F of sets, Howson shows that three theorems, which
have their analogue (meta)results in first order logic, follow: (i) Absoluteness of
consistency, (ii) Non-ampliativity of consequence, and (iii) Compactness.

Leuridan Bert, Causal Discovery and the Problem of Ignorance
Pfeifer Niki, Gernot Kleiter, Framing human inference by coherence based

probability logic
The paper by Siong Kee and John Lloyd, Probabilistic Reasoning in a Classi-

cal Logic, explores the combination of logical and probabilistic reasoning through
higher-order logics. The paper argues against the view that one must add “spe-
cial” features to classical logic so as to obtain a probabilistic logic—they con-
tend that one can handle probabilistic reasoning within classical logic through
higher-order machinery. See and Lloyd indeed present a language that does
so, by allowing functions to return whole densities over domains of types. See
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and Lloyd comment extensively on expressivity and computational complexity
of higher-order progics, and make connections with recent developments in logic
and artificial intelligence research. The paper also discusses several examples,
and in particular an extended example that mixes individuals, relations, and
Bayesian networks.

Sprenger Jan, Statististics between inductive logic and empirical science

5 Future Directions

Progic 2007 was the third in a series of workshops on combining probability
and logic. The special focus of the Kent workshop was the relationship between
probabilistic logic and probabilistic networks, and a number of proposals to
use network structures to simplify probabilistic calculation were discussed. The
sheer variety of approaches naturally raises the question of which to choose, and
why. In addressing this question at the workshop three themes emerged, which
suggests future directions of research.

The first issue, touched upon in the introduction, concerns the type of un-
certainty to be managed. There is a natural distinction between reasoning
about uncertainty and reasoning under conditions of uncertainty, which have
formal analogues to internal progics and external progics. As we observed, each
asks very different things from a probability logic and some disagreements over
approach trace to different types of representation and reasoning problems to
solve.

Second, there is a familiar trade-off in logic between expressive capacity
of the representational language and inferential power of a logic: an increase
in expressive capacity nearly always accompanies a decrease in capacities for
the logic to effectively draw out consequences. One place this tension appears
within probability logic is when discussing the relative advantages of sharp prob-
abilities versus interval-valued probabilities. A single distribution is an easier
object to compute with than a set of distributions, so there is little surprise
that point-valued approaches are favored from a computational point of view.
But deferring purely to computational considerations without check would yield
ditching probability for propositional logic. The second issue concerns an in-
ventory of advantages and disadvantages for adopting sharp probabilities, and
comparing those to the advantages and disadvantages to using interval-valued
probabilities.

In addition to practical and philosophical reasons for favoring imprecise or
interval valued probabilities to sharp values (e.g., sometimes you don’t have
enough information to construct a full joint distribution; then what?), there
are also strong theoretical reasons for paying attention to results and methods
developed within interval-valued frameworks. One theme of the workshop was to
demonstrate that an interval-valued framework that has as a special case one or
another sharp-valued approach often gives a vivid picture of what is happening
within his representation, and why. The upshot is that even those who are
unmoved by the philosophical reasons for favoring interval-valued probabilities
over sharp probabilities may nevertheless benefit from several mathematical
insights that are gained from the shift.

A third theme concerns how to judge the correctness of a representation
of uncertainty within a probabilistic logic. For many who take de Finetti as
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a starting point, the criteria for the representation of uncertain opinion derive
from the behavioral consequences of opinion, such as buying a bet. One of the
motivations for imprecise probability is that the lowest selling price for a bet
may be and often is higher than the highest buying price, suggesting that the
associated probability can be determined up to an interval. However, this invites
the question whether a probabilistic logic should perhaps be supplemented with
a decision theory, or even designed in conjunction with a decision theory from
scratch. It may be that as a normative theory, a stand-alone probabilistic logic
is without a firm foundation.
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