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Abstract 

Cognitive neuroscience involves the simultaneous analysis of behavioral and 

neurological data. Common practice in cognitive neuroscience, however, is to limit 

analyses to the inspection of descriptive measures of association (e.g., correlation 

coefficients). This practice, often combined with little more than an implicit theoretical 

stance, fails to address the relationship between neurological and behavioral measures 

explicitly. This paper argues that the reduction problem, in essence, is a measurement 

problem. As such, it should be solved by using psychometric techniques and models. 

We show that two influential philosophical theories on this relationship, identity theory 

and supervenience theory, can be easily translated into psychometric models. Upon 

such translation, they make explicit hypotheses based on sound theoretical and 

statistical foundations, which renders them empirically testable. We examine these 

models, show how they can elucidate our conceptual framework and examine how they 

may be used to study foundational questions in cognitive neuroscience. We illustrate 

these principles by applying them to the relation between personality test scores, 

intelligence tests and neurological measures.  

 

Keywords:  

Cognitive neuroscience, Measurement theory, Philosophy of mind, Reductionism, 
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Mind the gap: A psychometric approach to the reduction problem 

 “There is nothing more practical than a good theory” 

 (Lewin, 1951) 

 One of the hallmark neuroscientific findings on the 20th century is the 

discovery of the retinotopic representation of early visual areas (e.g. Hubel & Wiesel, 

1968; Tootell, Switkes, Silverman & Hamilton, 1988). That is, activation patterns in 

the occipital lobe show striking structural similarity to visually presented geometric 

patterns. Such findings, originally only possible in animal research, have been 

replicated in humans in more indirect form. For instance, Miyawaki et al. (2008) show 

how basic visual stimuli (including letters) can be decoded from brain activity with 

high accuracy (>90%), based upon weighted linear combinations of voxel activation 

patterns. For such low-level perceptual processes, it seems plausible to consider the 

observation of activity patterns in early visual areas as a measurement of what 

particular stimulus is presented to a particular subject. However, the measurement 

theoretical relationship is not always so clear. Consider the following example: you are 

invited to a job interview for a high-status position. Shortly after being seated, the 

interviewer takes out a tape measure and starts measuring your skull. Upon enquiring 

what is going on, the interviewer tells you he just “measured your intelligence”. In 

response to your protesting that such a procedure does nothing of the sort, the 

interviewer shows you a list of high profile journal articles that report a moderate but 

consistent correlation between brain volume and IQ (e.g. McDaniel, 2005; Posthuma et 

al., 2002). You may believe that such a procedure does not measure intelligence, but 

this appears to run counter to the view in cognitive neuroscience1 that physiological 

measures may serve as measures of psychological attributes. We will later return to the 

empirical formalization of this question. 
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 What is the essential difference between these two situations? Both take 

information about the brain to predict a certain (psychological) property, and both are 

based on statistically significant measures of association, but at the same time they 

seem quite distinct. It seems thoroughly unclear how to resolve this issue. This raises 

the question of how cognitive neuroscientists actually represent the relationship 

between the two classes of measures, and what presentation would justify the 

interpretation of neurological measures as representing psychological attributes.  

The general practice in cognitive neuroscience is to limit statistical analyses to 

the study of descriptive measures of association (e.g., correlation coefficients). In fact, 

some authors have argued that cognitive neuroscience is by its very nature 

correlational (e.g. Jung & Haier, 2007, p. 148). However, this would leave open 

important questions: What is the precise relationship between these two classes of 

measurement? Does one measured property cause the other? Or is it the other way 

around? Do the different kinds of data really represent measurements of the same 

thing? Many papers implicitly embrace one of these options, possibly because there 

simply is no “value-free” way in which to describe the relationship between behavioral 

measurements and neurological measurements - unless, perhaps, if one is satisfied with 

the conclusion that “they both just happened”. Certainly it is desirable (if not tempting) 

to attach some theoretical interpretation to the established empirical relationship 

between psychological-behavioral and neurological measures. However, the mere 

inspection of correlation coefficients provides no sound basis for deciding between 

different theoretical interpretations.  

The suggestive nature of correlations between neurological and behavioral or 

psychological variables has thus led the literature to become densely populated with 

euphemisms, metaphors, and just-so stories regarding their precise relation. 
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Psychological processes and mental concepts can be “associated with” (Mobbs, Hagan, 

Azim, Menon, & Reiss, 2005, p. 16502), “recruit” (Morris & Mason, 2009, p. 59) 

“located in” (Hadjikhani, Liu, Dale, Cavanagh, & Tootell, 1998, p. 237), “instantiated 

in” (Davidson, 2004, p. 222), “subserved by” (Luna et al., 1998, p. 40), “related to” 

(McGregor, 2006, p. 304), “generated by” (DeYoung & Gray, 2009, p. 2) “served by” 

(Demetriou & Mouyi, 2007, p. 157), “implicated in” (Grossman & Blake, 2002, p. 

1167), “correlated with” (Canli et al., 2001, p. 33), or “caused by” (Levine, 1999, p. 

352) a dizzying array of cortical areas, process loops, frequency activation patterns, 

activation systems, structural differences and neurotransmitter levels. The conceptual 

elephant in the room is how such varied measures and concepts relate to each other, 

what they are indicators of, what the causal relationships between them are, and how 

we should structure our empirical studies so as to maximize the theoretical payoff of 

cognitive neuroscientific research.  

Conceptual problems in reductive psychological science have not gone 

unnoticed. Several researchers have taken on theoretical, statistical and scientific issues 

concerning reductionism and reductive psychological science. For instance, Bennett 

and Hacker suggested that the vocabulary employed in neuroscientific studies is 

conceptually flawed. One of the issues they raised is the “mereological fallacy”, or 

“assigning to a part what can only be assigned to a whole” (Bennett & Hacker, 2003, p. 

68). They identified this fallacy in statements such as “the frontal lobe engages in 

executive functioning”. They argue that this practice is philosophically misguided, and 

reflects a conceptual problem within reductive neurological science. Ross and Spurrett 

(2004) argued that functionalist cognitive psychology requires a solid metaphysical 

underpinning of its the conceptual and scientific foundations, if it is to function as an 

autonomous field of scientific inquiry. Other researchers (Fodor, 1974; Gold & Stoljar, 
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1999; Nagel, 1961) have examined the philosophical foundations of reductionism, and 

explicated the requirements necessary for reductionist claims. Recent efforts have 

examined whether the ontology of psychological categories is suitable for reductive 

analysis, and argued that an approach in terms of psychological primitives may be 

more appropriate (Feldman Barrett, 2009). Criticism of reductive studies has not been 

purely philosophical. In a controversial paper, Vul, Harris, Winkielman, and Pashler 

(2009) argued that a large number of claims in social neuroscience studies are 

overstated, and that overly liberal methodology has resulted in unrealistically high 

correlations between physiological and behavioral measurements (but see also 

associated comments to Vul et al., 2009).  

These papers have focused largely on what conclusions that are not 

permissible, methodologies that should not be used and philosophical claims that can 

not be made. The aim of the current paper is to address the criticisms raised by the 

above authors by providing conceptual and statistical tools that may elucidate the type 

of claims that we can make in reductive science, and developing the requirements such 

claims should satisfy. 

Cognitive neuroscience typically attempts to establish the relationships between 

at least two distinct explanatory levels, namely the neurological and psychological 

level (Oppenheim & Putnam, 1958). As such, it has drawn much attention from 

philosophers, who have articulated and analyzed many theoretical positions regarding 

the relations between the two levels of analysis (e.g. Churchland, 1981, 1985; Kim, 

1984; Lewis, 1966; Putnam, 1973). Several recently developed perspectives on 

reduction, seeking to integrate certain developments in, for example, molecular 

neuroscience (e.g., the ‘New Wave Reductionism’ promoted by Bickle, 1998). It 

would seem that if such positions could be translated into statistical models that are 
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testable given the data that cognitive neuroscientists commonly have at their disposal, 

the theories articulated in the philosophy of mind could serve as a means to 

conceptually organize and guide the analysis of neurological and behavioral data. That 

is, if it were possible to find a statistical model representation of, say, the basic 

assumption that the property measured by means of fMRI recordings actually is the 

same as the property measured through a set of cognitive tasks or questionnaire items 

(i.e., identity theory; Lewis, 1966), then both the philosopher of mind and the empirical 

researcher in cognitive neuroscience would benefit: The philosopher of mind, because 

there would exist a means to empirically test theories that have hitherto been regarded 

as being speculative metaphysics at best. The empirical researcher, as this could 

provide statistical tests of interpretations of the data that go well beyond the 

speculative interpretations of correlations that currently pervade the literature. 

How could statistical models be of help to the empirical researcher in cognitive 

neuroscience? Recall that, in this area of research, one typically aims to build 

connections between measures related to behavior, psychological attributes and 

processes on the one hand, and the (relative) activity and physiological characteristics 

of the brain on the other hand. In psychometrics, we can represent such diverging 

classes of measurement in a single measurement model. The central idea of this paper 

is that by varying the way in which a theoretical attribute relates to the observations, 

models can be built that allow for a more detailed investigation of the relation between 

neurological and psychological measurements than are in use to date. This paper 

proposes that modeling techniques suited to this purpose need not be developed for this 

purpose, because they already exist. These mathematically tractable models with 

known statistical properties, developed largely in the discipline of psychometrics, can 

map theoretical positions about the relationship between brain and behavioral 
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measurements as developed in the philosophy of mind in impressive detail. We argue 

that the statistical formalization of theoretical positions is both possible and desirable 

and we offer the empirical and conceptual tools to do so. Perhaps most importantly, 

such formalizations make clear that the reduction problem is, in essence, not just a 

substantive or philosophical problem, but a standard measurement problem that can be 

attacked by using standard measurement models of psychometrics. However, such 

models have been scarcely applied in cognitive neuroscience. From this perspective, 

therefore, it seems as if most empirical work has, instead of solving the measurement 

problem, largely circumvented it. 

The structure of this paper is as follows. We first define the two classes of 

measurement under study. Subsequently, we examine two important theories from the 

philosophy of mind literature that explicitly treat the relationship between these higher 

and lower order properties, namely identity theory and supervenience theory. In 

addition, we introduce two psychometric models that may be used to represent these 

theoretical positions. Finally, we illustrate these ideas by applying both models to a 

dataset that examines the relationship between a personality dimension and 

physiological properties of the brain. 

Two types of data 

In the models we discuss below we distinguish between the two classes of data 

that feature in most cognitive neuroscientific studies. First, we refer to data that pertain 

to psychological attributes or mental processes as P-indicators. These include 

psychological measurements, such as “solving puzzle x”, “choosing answer c” or “the 

number of objects retained in working memory”. Second, we refer to data that pertain 

to neurological processes or characteristics as N-indicators. These may include data 

such as electrical measures of cortical activity (EEG), speed of processing 
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measurements, blood oxygenation level-dependent (BOLD)-signals, as well as 

physiological indicators such as gray matter density, brain volume, or neurotransmitter 

levels. The psychological indicators are indexed to denote either different questions on 

a test (P1 is one question, P2 another) or different types of measurement (P1 is an IQ-

score, P2 a reaction time test). Neurological indicators are indexed to denote, for 

example, different regions of the brain (e.g. N1 is a BOLD measurement of the 

posterior parietal region, N2 of the amygdala), or different types of physiological 

variables (N1 is gray matter density, N2 is neural processing speed).  

For example, in a cognitive neuroscientific study of empathy, psychological 

measurements of empathy could include P-indicators such as questionnaires, self-

reports or behavioral assessments. In contrast, neurological measurements would 

include N-indicators such as the level of BOLD-activation in certain cortical regions in 

response to seeing another person suffer (see Decety and Jackson, 2004, for a review 

of the neurological study of empathy). It is clear that these two classes of data are 

qualitatively distinct (see also Barrett, 2009). Therefore, researchers require a 

conceptual foundation that informs data analytic techniques that can be used to test 

hypothesized relationships between two such sets of data. Two theories in the 

philosophy of mind provide a conceptualization of the relation between psychological 

and neurological properties: identity theory and supervenience theory. Identity theory 

states that psychological and neurological variables depend on the same underlying 

attribute, while supervenience theory states that neurological variables determine the 

psychological attributes. These theories are discussed briefly. 

Philosophy of mind 

Identity theory 
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The thesis of identity theory was proposed in several forms throughout the 

latter half of the 20th century. It has its roots in seminal papers such as those of Place 

(1956) and Smart (1959). In its most commonly accepted interpretation, as described in 

Lewis (1966), identity theory holds that psychological processes and attributes are 

identical to their neurological realizations.  

The attractiveness of identity theory lies in the relatively non-problematic 

assignment of causal powers to mental events. Because a mental event or state is 

identical to a (particular) neural realization at any given time, it has the same causal 

powers as the neurological state that realizes it. This implies that in a cognitive 

neuroscientific study of a particular psychological attribute, one is essentially 

measuring the same attribute using two different measurements. The P and N 

indicators therefore have a common referent. This conceptualization paints a 

thoroughly realist picture of psychological attributes, in which the reality of these 

attributes is grounded in their physical realization.   

Supervenience 

Supervenience provides an alternative way of conceptualizing the relation 

between psychological and neurological measurements. Different interpretations of 

supervenience have been formulated in relation to a wide range of philosophical topics 

(Collier, 1988; Hare, 1952; Horgan, 1993). Historically, the concept arose from 

attempts to ground the properties of higher-level concepts such as beauty, morality and 

consciousness in their lower order realizations. The definition of supervenience is as 

follows: A property X can be said to supervene on lower order properties Y if there 

cannot be X-differences without Y differences. Thus, the presence of Y-differences is a 

necessary (but insufficient) condition for the presence of X-differences. This relation 

of necessity is a sufficient condition for calling the relation one of supervenience. 

Figure 1 
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Consider, for example, the attribute of being morally good. Under supervenience 

theory, two people cannot differ in terms of morality (X) without being different on 

lower order Y attributes (e.g., behavioral ones; not stealing, cheating, donating money 

to charity etc). Equivalently, if there are no differences in the lower order attributes (Y, 

or behavioral attributes) then there are necessarily no differences in the higher order 

attribute (X, or morality). This is the sense in which morality supervenes on its lower 

order attributes. Properties such as morality and beauty are “along for the ride”, so to 

speak: they supervene on lower order properties that do not necessarily share all the 

characteristics that relate to the supervenient property. The atoms that make up the 

Mona Lisa are not beautiful, and neurons are not neurotic: such higher order properties 

supervene on the lower order properties in a causally asymmetric manner.  

The philosophical details of supervenience are still the subject of theoretical 

perspectives and debates. Its most vocal advocate in the realm of psychology has been 

Jaegwon Kim. His supervenience perspective on psychology (Kim, 1982, 1984, 1985) 

defines psychological attributes as supervenient on neurological realizations. That is, 

psychological attributes are completely determined by, or realized in, their 

neurological constituents. Supervenience has been the topic of various recent debates 

on specific alternative interpretations of the concept, varying in terms of modal 

strength and necessity (Horgan, 1993; Howell, 2009). Although these are of interest in 

and of themselves, a comprehensive discussion would lead us too far astray from our 

current aim. For sake of parsimony, we will adopt Kim’s more traditional definition of 

strong supervenience2. Kim defines the supervenient status of higher and lower level 

properties A and B’s, respectively, as follows: “Necessarily, for any x and y, if x and y 

share all properties in B, then x and y share all properties in A – that is, indiscernibility 

in B entails indiscernibility in A” (Kim, 1987, p. 315). The relationship of 
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supervenience is asymmetric, as neurological states or structures can differ while the 

higher order property remains the same (because lower order differences are necessary, 

but not sufficient, for higher order differences).  

This implies that supervenience allows for multiple realizability (Putnam, 

1980); several different combinations of N-realizations may lead to the same (value of 

the) psychological attribute. Because of this asymmetry, authors such as Kim give 

causal priority to the lower order realizations: the neurological indicators are 

considered to determine the causal properties of the system completely. Supervenience 

is consistent with a many-to-one mapping of the lower to the higher order properties, 

but not with an isomorphism (which would hold if all relations between instances of 

the lower order terms are preserved in the higher order relations), and therefore 

precludes identity.  

To illustrate this, consider the following transaction. If John gives Jane five 

dollars (higher order process) then that means that John has either given Jane a five-

dollar bill, has handed her the equivalent sum in coins, or has electronically transferred 

five dollars to Jane’s bank account, etc. (lower order processes). Thus, the entire class 

of these lower order processes maps onto the same higher order process. If we know 

that John gave Jane five dollars, we can therefore infer that he performed one of the 

actions in the corresponding lower order class. However, we cannot determine which 

of these actions he performed (no isomorphism). It is evident that an identity theory 

perspective on such a monetary transaction is questionable: John giving Jane five 

dollars cannot simultaneously be identical to writing a cheque and to handing over a 

five dollar bill. We now show how such restrictions and theoretical considerations can 

be translated to and mapped on psychometric models. To do so, we must first examine 

the basic properties of the models that we shall consider. 
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Psychometrics 

Psychometrics is concerned with the theoretical and technical development of 

measurement procedures and statistical inference techniques. One of the techniques, 

developed in tandem with psychometric theory, is structural equation modeling (SEM). 

SEM consists of both a graphical and a (equivalent) linear mathematical representation 

of the hypothesized causal directions and statistical associations between measured and 

latent variables. Such representations imply a specific covariance structure, which may 

be tested given appropriate data. Specifically, one can evaluate whether the observed 

covariance matrix is consistent with the covariance structure associated with the 

specified linear relationships. For a thorough introduction to structural equation 

modeling with latent variables, see Bollen (1989).  

In SEM, there are two broad classes of model specification that we consider in 

detail, namely formative and reflective models (Bagozzi, 2007; Bollen & Lennox, 

1991; Edwards & Bagozzi, 2000). Both classes model relationships between observed 

variables and latent variables. Here “observed variables” refer to the variables as they 

appear in a data file, and “latent variables” refer to variables that are not directly 

observable, so that their values can only be estimated indirectly (Bollen, 2002; 

Borsboom, 2008). Many of the properties central in psychological science (e.g., 

intelligence, personality, working memory capacity) cannot be determined with 

certainty from the data, and are therefore properly conceived of as latent variables.  

Formative and reflective models provide two ways of connecting a theoretical 

attribute, as targeted by a measurement procedure, to the observations. We discuss the 

conceptual difference between these two models in relation to the distinction between 

identity theory and supervenience theory. We present the models using standard SEM 

notation (Jöreskog & Sörbom, 1996). As mentioned, SEM permits the specification of 
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linear relations between the observed and latent variables as implied by theoretical 

considerations, and the evaluation of the degree to which the observed covariance 

structure is consistent with that implied by the theoretical relations. The models can 

either allow for tentative confirmation, in the sense that they fit the data, or rejection, 

in the sense that they can be overspecified or display poor fit. Thus, these models are 

amenable to empirical tests.  

Reflective models 

The most common measurement model in psychology is called the reflective 

model. Instances of the model include Item Response Theory models (Embretson & 

Reise, 2000) such as the models of Rasch (1960) and Birnbaum (1968) , and, most 

relevant to the present paper, the linear factor model (Lawley & Maxwell, 1963; 

Jöreskog, 1971; Mellenbergh, 1994). In reflective models, latent variables are seen as 

the underlying cause of variability on the measurable indicators (Bollen, 2002; Bollen 

& Lennox, 1991; Borsboom, Mellenbergh, & van Heerden, 2003; Edwards & Bagozzi, 

2000). In other words, the hypothesized causal direction runs from the latent attribute 

to the measurable indicators. The various measurable indicators are seen as reflecting 

the underlying attributes. Perhaps the most common example of a reflectively 

measured attribute is intelligence. The conceptualization of intelligence posits a factor 

g that refers to the common cause of variability on intelligence test questions or 

subtests (Glymour, 1998). 
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A reflective model of g is given 

in Figure 1. In the figure, three 

indicators (for example IQ-test items or 

subtest scores) are conceptualized as 

measurements of a single underlying 

attribute (this is a simple, non-

hierarchical model of g, chosen for 

illustrative purposes). Indicators of a 

reflectively measured latent variable 

should (after appropriate recoding) 

intercorrelate positively, capture the 

range of effects the latent variable can have, and be acceptably reliable (i.e., be 

characterized by acceptable levels of measurement error). In addition, in correctly 

specified reflective models, latent variables should be referentially stable. That is to 

say that the addition or deletion of an indicator may alter the accuracy by which the 

attribute is measured, but not the nature of the attribute (latent variable) itself. With 

regard to the measurement of g, Spearman called this characteristic indifference of the 

indicators (Spearman, 1927, p. 197-198, as cited in Jensen, 1998). Thus, the indicators 

are exchangeable in the sense that an exchange possibly affects measurement 

properties such as precision, but not the meaning of the attribute of interest. In a 

reflective model, observables are indicators of a common theoretical attribute, in the 
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same way that a set of differently constructed thermometers are indicators of a 

common attribute, namely temperature. Thus, it is assumed that the indicators measure 

the same thing. This implies that the latent variable or attributes exists independently 

of the model specification, at least with respect to the particular items used to measure 

it (Borsboom, Mellenbergh, & van Heerden, 2003). Of course, positing a reflective 

model does not guarantee the existence of purported latent variables: rather, the 

adoption of such a model generally carries with it a non-trivial ontological stance with 

regards to the latent variable.  

Formative models 

Formative models express the relationship between theoretical attributes and 

observations in terms of a regression function in which the theoretical attribute features 

as the dependent variable, and the observed variables as predictors. This is compatible 

with a conceptualization of the theoretical attribute (latent variable) as being in some 

way causally dependent on its indicators.  

 A common example of a formatively measured latent variable is socio-

economic status (SES), where the SES-score for a given person is conceived of as a 

weighted sumscore of the measured variables, such as income and education level 

(Howell, Breivik, & Wilcox, 2007; Knesebeck, Lüschen, Cockerham, & Siegrist, 

2003). Figure 2 depicts a path diagram of the formative model of SES. The three X 

indicators each contribute, with a certain weight, to the sumscore of the attribute SES. 

The X’s in this example could be income, education, or other variables deemed 

relevant to the estimation of SES. The structure of the model is based on the idea that 

the indicators determine the latent attribute, rather than the other way around. With 

respect to SES, this seems to be a plausible model. For instance, you do not get a raise 
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because your SES level goes up; rather, your SES level goes up because you get a 

raise.  

          It is often argued that 

indicators in formative models 

should capture different aspects of 

the formative attribute, and should 

not be too strongly related 

(Bollen, 1984; Diamantopoulos & 

Siguaw, 2006). The latent 

attribute in such a model is 

represented as the weighted sum 

of different indicators that 

together predict a relevant 

phenomenon. An important 

theoretical characteristic of this 

model is that the latent attribute is defined by the choice of predictors. Thus, in contrast 

to the reflective model, a change of predictors implies a change in the nature of the 

attribute. In addition, in many circumstances the theoretical attribute is referentially 

unstable because the weights of the connections between the observations and latent 

variable are usually constructed to maximize the prediction of external criteria. That is 

to say, the value of the latent variable for a given person may change from one study to 

the next, if the predicted criterion changes (Bollen, 2002, 2007; Burt, 1976; Howell et 

al., 2007).  

Empirical testability of models 
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A crucial property of formative and reflective models is that they are testable, 

that is, they can be empirically corroborated or refuted, because the models impose 

restrictions on the joint probability distribution of the observations. Therefore, the 

support for a given specification of the underlying structure can be assessed by means 

of standard statistical tests and model fitting methods. Many fit indices have been 

developed for the evaluation of the fit of SEM models (Hu & Bentler, 1999; 

Schermelleh-Engel, Moosbrugger, & Müller, 2003). Generally, fit indices are based on 

the discrepancy between the covariance structure implied by the specified model and 

the covariance structure, as observed in the data.  

Commonly used fit-indices are the Chi-square for goodness-of-fit test, the Root 

Mean Square Error of Approximation (RMSEA) and the Comparative Fit Index (CFI). 

See Hu and Bentler (1999) and Schermelleh-Engel et al. (2003) for discussions of 

cutoff criteria for various fit indices for varying sample sizes and model complexity. A 

discussion of the details of model selection is beyond the scope of this paper. The main 

point is that such models can be fitted to empirical data and that this yields well-

developed quantifications of the adequacy of the model. For detailed considerations of 

model specification and fitting procedures, an extensive and active area of 

psychometric literature focuses on the optimal manner in which to examine model fit 

and model selection (Howell, Breivik & Wilcox, 2007; Jarvis, Mackenzie, & 

Podsakoff, 2003; Myung & Pitt, 1997; Pitt, Myung, & Zhang, 2002, Waldorp, 

Grasman & Huizenga, 2006), parameter estimation (Diamantopoulos & Siguaw, 2006; 

Myung, 2006), stability over time (Hamaker, Nesselroade, & Molenaar, 2007; Van 

Buuren, 1997) and issues such as interpretational confounding (Bollen, 2007; Howell 

et al., 2007). Given that we have many tools to determine the (relative) adequacy of 
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our specified models, we now turn to the more relevant issue of how the theoretical 

positions discussed earlier may be mapped onto reflective and formative models.  

Mapping of Psychometrics on Theory of Mind 

We first examine identity theory, the theoretical position that at a given time, 

psychological and neurological properties of measurements reflect the same attribute. 

This implies that both P and N indicators have a common underlying cause, namely the 

true state of the latent variable. This is consistent with the reflective model, because 

that model views variability of the underlying attribute as the cause of variability in 

both P- and N-indicator values3. Therefore, when measuring brain activity and 

psychological behaviors related to a particular phenomenon such as intelligence, one is 

essentially measuring the same thing. Figure 3 shows how variation in the latent 

attribute (for example a subject’s level of intelligence, or g) is the common cause of 

variation in both P-indicators (for example “giving the correct answer to a certain IQ-

test question”) and N-indicators (for example “increased activity in the dorsolateral 

prefrontal cortex”). 
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 If the reflective model of intelligence is correct, then the latent variable 

represents the actual value of g, which can be estimated in the same manner by both P 

and N indicators.  

Therefore, P and N indicators can be said to be on equal empirical footing in 

that they are both assumed to be imperfect reflections of the true state of the underlying 

attribute. Identity theory is concordant with a realist perspective of psychological 

science, in the sense that it considers psychological attributes to be the underlying 

cause of variability of measurable indicators. The reflective model furnishes a 

psychometric implementation of identity theory: both the conceptual and the 

psychometric model assume a singular underlying cause that can be measured by two 

methods. The expected values of measurements within this model can be expressed as 

a function of the value of the latent attribute and the parameter that expresses the 

strength of the relationship between attribute and indicator. As such, it can be tested in 

the same way as psychometric models are usually tested. Thus, the reflective model 

can be used to provide an empirical test of the identity hypothesis. 

The conceptual advantage of the reflective model is that it allows for a 

substantive interpretation of both classes of measurement by equating the psychometric 

status of neurological and psychological indicators. For example, some scientists argue 

that psychological concepts or processes are best measured by psychological 

measurements, while others maintain that neurological measures are more precise or 

insightful (e.g., the process or concept of consciousness, cf. Lamme, 2006). This 

dissension concerning the merits of neurological and psychological measurements in 

measuring a psychological attribute seems coherent only from an identity theoretical 

perspective. A debate on the relative merits of two methods of measurement requires 

that the object of measurement be the same. This allows one to gauge the relative 



Psychometric Modeling of Reductive Psychology     21 of 67 

 21 

measurement precision of neurological and psychological indicators. At the same time, 

it allows for a comprehensible interpretation of both types of psychological research: A 

(non-neuroscientific) psychologist may acknowledge that corroborating evidence can 

be gained by the neurological approach (the same applies to the cognitive 

neuroscientist vis-à-vis psychometric data). Identity theory and reflective models view 

reductive psychological science as an integrated attempt to derive the best measure of 

the underlying attributes of interest. Such mutually insightful scientific interaction is in 

line with Heuristic Identity Theory (McCauley & Bechtel, 2001), which argues that 

simultaneous scientific study of two distinct explanatory levels from an identity 

theoretical perspective can be mutually beneficial. 

Given its attractive theoretical properties, we conjecture that identity theory is 

implicitly assumed in most cognitive neuroscientific work. However, the conceptual 

benefits of this application of identity theory come at a price. For example, for both 

types of indicators to have the same underlying cause, the assumption of 

unidimensionality must be met. Unidimensionality has testable consequences such as 

local independence (Hambleton, Swaminathan, & Rogers, 1991) and vanishing tetrads 

(Bollen & Ting, 1993)4. If these tetrads are zero (by reasonable approximation), this is 

an indication that a unidimensional model may be appropriate, or at least, that it cannot 

be rejected. This suggests that the variability in both psychological and neurological 

indicators is attributable to a singular underlying cause. The criterion of 

unidimensionality is strict, and certainly need not be satisfied by purported behavioral 

and neurological measures of a given attribute. Thus, researchers should be clear on 

whether they believe that their neurological and psychological measurements are truly 

measuring the same attribute. To summarize, identity theory represents a strict 

theoretical and statistical position concerning the relationship between the two classes 
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of measurement. It posits that the variability found in both the P and N indicators has 

the same, unitary, underlying cause, and that the covariance between indicators can 

thus be fully explained by the underlying cause. 

We now consider the integration of neurological and behavioral data from the 

perspective of supervenience theory. This theory is statistically less restrictive, 

conceptually distinct from identity theory, and may provide a more realistic alternative 

to the stringent requirements of identity theory. In a supervenience conceptualization 

of psychological processes, the higher order attributes are realized in their neurological 

properties. This is consistent with a specific implementation of the formative model, 

called the MIMIC (for Multiple Indicators, Multiple Causes) model (Jöreskog & 

Goldberger, 1975). To illustrate this, a path diagrammatic representation of the MIMIC 

model of g is displayed 

in Figure 4. In the 

MIMIC model, the 

variability of the 

determining indicators is 

a necessary but 

insufficient condition for 

variability at the level of 

the attribute. This is 

consistent with 

supervenience theory. 
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The essential aspect of this model is that there cannot be variation at the latent 

variable level if there is no variation in the indicators; therefore the theoretical attribute 

supervenes on its neurological constituents. Conversely, if two people have exactly the 

same lower order properties, that is, they have the same constellation of relevant 

neurological activation patterns, they necessarily have the same value on the attribute 

of interest. The restrictions and characteristics of the strong supervenience thesis and 

the formative model are identical in this sense. The insufficiency component implies 

that two people can have different indicator values but the same position at the latent 

attribute level. Therefore the position on the theoretical attribute is multiply realizable. 

Accordingly, the mapping of the observations to the theoretical attribute is many-to-

one mapping, but no isomorphism, between the indicator values and the attribute value. 

Moreover, as is generally the case for supervenient properties (Kim, 1992), in the 

formative model any given position on the theoretical attribute corresponds to a 

disjunction of lower order properties. For example, a given level of SES, may 

correspond to either having a high salary and poor education, or having a low salary 

and high education, or having an average salary and average education, etc. Thus, the 

formative model is an instantiation of the supervenience hypothesis. 

A formative approach seems a natural position to take in considering 

psychological effects of neurological deficits. Consider for example Korsakoff’s 

syndrome. This condition is usually caused by alcohol abuse or malnutrition, which 

results in neuropathological symptoms, such as demyelination, neuronal loss, and 

small-scale hemorrhages (Kopelman, 1995). Psychological manifestations of 

Korsakoff’s syndrome include impairment in the formation of new memories. In a 

reflective perspective on Korsakoff syndrome, the behavioral and neurological 

deficiencies would both be seen as measurement of the presence and severity of the 
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syndrome in a particular patient. This implies a causal direction that runs from the 

latent variable (a persons’ value on a dimension representing the severity of Korsakoffs 

syndrome) to the neurological lesions. This seems counterintuitive. A more plausible 

conceptualization is provided by the formative, or MIMIC model. Under such a 

conceptualization, a person’s Korsakoff “score” is determined by a weighted 

summation of the various lesions, by concurrently measuring and fitting a set of 

psychologically relevant predictors, such as memory tests. In this case, the lesions are 

the (partial) causes of Korsakoffs, not vice versa. 

The theoretical status of the latent psychological attribute under supervenience 

theory is distinct from that under identity theory. A researcher who adheres to 

supervenience theory will represent the latent psychological attribute as being a 

formative attribute, i.e. as being determined by the constellation of neurological 

indicators. The relative influence of these neurological indicators is estimated on the 

basis of the predictive ability of the attribute in a network of psychologically relevant 

predictors.  

The supervenience model, as displayed in Figure 4, has two components. The 

neurological indicators determine the latent psychological attribute. The parameter 

estimates, or the relative weights of the influence of the neurological measurements 

(Bollen, 2007), are estimated by predicting a psychologically relevant set of attributes 

or behaviors. The reflective component of a supervenience model is often required to 

be unidimensional. However, the formative part of the model is not so constrained: the 

indicators may even be uncorrelated (Bollen, 1984; Curtis & Jackson, 1962). This 

model is therefore less restrictive than a reflective, identity theoretical model. To 

summarize: An individual's position on a formative latent attribute, under the theory of 

supervenience, may estimated by fitting the model to a set of behaviorally predictive 
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psychological measurements. The identity of the attribute is determined by the 

neurological attributes included in the model that specifies the strength and direction of 

the neurological indicators. These indicators are assumed to determine variability in 

the latent attribute, which, in turn, determines variability at the psychological process.  

The different empirical planes of the N-indicators and the P- indicators in a 

supervenience conceptualization, as opposed to identity theory, are important to 

neuroscience. The psychological indicators are scores derived from measurement 

instruments that are used to in the model specification. The parameter estimates, that 

relate variability in the latent attribute to variability on the N-indicators, depend on 

which P-indicators are chosen in the model. However, it is possible that the same set of 

N-indicators will fit models with different sets of P-indicators. Thus, the same N-

indicators may realize different latent variables, as specified by different sets of P-

indicators. This is a significant difference with the identity model, in which this is 

impossible.  

This is important because it establishes that, given supervenience, the 

identification of attributes, even if they are neurologically grounded, depends on the 

psychological, not the neurological part of the model. This is consonant with the 

finding that certain neural structures are “implicated” in a wide range of different 

psychological concepts and processes. For example, the dorsolateral prefrontal cortex 

has been found to be differentially active in processes as psychologically diverse as 

response selection response selection (Hadland, Rushworth, Passingham, Jahanshahi, 

& Rothwell, 2001), pain modulation (Lorenz, Minoshima, & Casey, 2003), 

components of working memory (Ranganath, Johnson, & D’Esposito, 2003), voluntary 

willed action (Frith, Friston, Liddle, & Frackowiak, 1991), response inhibition 

(Ridderinkhof, Wildenberg, Segalowitz, & Carter, 2004), mastication (Takahashi, 
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Miyamoto, Terao, & Yokoyama, 2007), schizophrenia (Weinberger, Berman, & Zec, 

1986) and intelligence (Jung & Haier, 2007). For an equally heterogeneous assessment 

of the functions of the anterior cingulate, see Vogt, Finch and Olson (1992) or 

Devinsky, Morrell and Vogt (1995). This functional heterogeneity should not be 

construed as a failure of cognitive neuroscience, but rather as an inherent property of 

brain function and organization. The point is that if certain cortical areas are associated 

with different cognitive functions, then it is unlikely that fMRI activity in such an area 

can be considered, for example, a “measurement of” working memory, as the 

assumption of unidimensionality will probably not be met. 

We cannot think of an a priori reason to prefer either the identity or the 

supervenience model. Instead, we think that appropriateness of either model will 

depend on the attribute that is being studied and on theoretical considerations 

concerning that attribute. However, we note that precisely these theoretical 

considerations may be of great conceptual assistance to reductive psychological 

science, as they force researchers to consider the status of the attribute they are 

interested in, and the most appropriate manner to study it. Our argument here is that 

such choices are not esoteric statistical considerations: they concern unavoidable 

assumptions implicit in any type of reductive research. The goal of this approach is 

twofold: positions from philosophy of mind can be made empirical5, and empirical 

neuroscience is provided with a method to get a grip on some of the more nebulous 

metaphors concerning the relation between psychological and neurological properties.  

Doing so may yield several benefits, most notably the avoidance of ambiguous 

interpretations that may otherwise arise. If the issues mentioned above are not 

addressed explicitly, the questions being studied and the interpretations of the data may 

suffer. Consider, for instance, Jung and Haier (2007), who raised the question "Where 
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in the brain is intelligence?" (p. 135). Jung and Haier examined 37 methodologically 

heterogeneous studies that reported correlations between various measures of 

intelligence and the brain. Their model, called the PFIT (Parieto-Frontal Integration 

Theory) model, is built on the basis of what are, in the words of Norgate and 

Richardson (same paper, p. 162) “…correlations between those correlations”, and 

describes what happens when an individual is involved in intelligent behavior (p. 138). 

Although the effort of combining insights from various studies is commendable, the 

conceptual ground for interpreting the correlations between intelligence and brain 

measures in this review is at times unclear, and findings are therefore hard to interpret.  

Firstly, the question asked by Jung and Haier implies the possibility of the 

localization of intelligence. However, as intelligence is an inter-individual construct, 

this is akin to the question 'Where in the body is tallness?', a confusing question at best. 

Tallness is a property of the body; it does not reside in it. Similarly, intelligence is a 

property of the cognitive system, and does not reside in a particular part of the brain. 

Secondly, despite being based on inter-individual differences, the PFIT-model is in 

essence an intra-individual model of intelligent behavior. However, as Borsboom 

(2003) and Molenaar (2004) show, these two domains are quite distinct: results at the 

population level are not necessarily informative about the individuals that make up that 

population. The above illustrates that analyzing and interpreting relations between 

neurological and behavioral measurements can benefit from a sound conceptual basis. 

To illustrate how psychometric models may be able to provide more insight, we 

examine the application of the two previously discussed models to two empirical 

examples, focusing on neurological measurements with respect to personality 

characteristics and general intelligence.  

Intelligence and brain volume 
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To illustrate the issues we discussed above, we return to the question we posed 

in the introduction: Can a measurement of the volume of a person’s brain be 

considered a measurement of their intelligence? One of the more robust findings in the 

literature relating intelligence to physiological characteristics is the relationship 

between skull (or more recently brain) volume and estimates of general intelligence. 

Based on a meta-analysis, this correlation has been estimated at .33 (McDaniel, 2005). 

Given this relatively solid statistical association, can we consider measurements of 

brain volume to be measurements of intelligence, and therefore to conform to the 

identity theoretical perspective? That is, do measurements of brain properties and 

intellectual ability together fit a unidimensional reflective model?  

Methods 

To examine this question empirically, we consider behavioral measures 

(intelligence tests) and physiological (brain mass volume) measures. The sample 

consisted of physiological and behavioral data acquired from 80 healthy participants 

(21.1 years, sd = 2.55, 29 males, 51 males).The measures of intelligence are four 

domain scores of the commonly implemented Wechsler Adult Intelligence Scale 

(WAIS III). The domain score subscales used were Verbal Comprehension (M=117.16, 

SD=9.78), Perceptual Reasoning (M=112.10, SD=11.31), Working Memory 

(M=111.32, SD =13.11) and Processing Speed (M=116.38, SD=14.80). In addition to 

the behavioral measurements, all participants were scanned to estimate white matter, 

grey matter density and cerebrospinal fluid volume. Details of the scanning procedure 

and preprocessing steps are described in the appendix. To determine model fit, we 

examined the chi-square test of model fit, the Root Mean Square Error of 

Approximation (RMSEA, cut-off value 0.05), the comparative fit index, (CFI, cut-off 

value 0.95) the Akaike Information Criterion, or AIC (Akaike, 1974), and the Bayesian 



Psychometric Modeling of Reductive Psychology     29 of 67 

 29 

Information Criterion, or BIC (Schwarz, 1978). For both models, the first reflective 

parameter was scaled to 1 to identify the reflective parameters. For discussions on the 

relative merits of these indicators, see Hu and Bentler (1999), or Schermelleh-Engel, 

Moosbrugger and Muller (2003). 

We consider this experimental setup from the perspective of the two models 

that we discussed above. In fitting both models we use the same data, but impose 

distinct constraints consistent with the two models. In both models we view 

“intelligence” as an attribute that can be studied by psychological and physiological 

measurements, even though it cannot be observed directly. From the perspective of the 

reflective model, we consider both methods of measurement (i.e., VBM and the 

WAIS) as measurements of intelligence, in the same way that an electrical and a 

mercury thermometer may both measure temperature. This conceptualization has been 

represented previously in Figure 3: For this specific implementation, we would have 4 

psychological measures and three neurological measures measuring the same property 

(g). 

Conversely, one may view the neurological measurements as determining the 

latent psychological attribute. For instance, we may conjecture that the brain volume 

determines the level or degree of intelligence, in the same way that that we know that 

physiological damage can affect personality. In this case, we consider the MIMIC 

model to be appropriate. This is the model previously represented in Figure 4, in the 

MIMIC model of general intelligence and brain characteristics, the neurological 

indicators determine the value of the latent attribute (i.e., the g score). This in turn can 

be seen as the underlying cause of the variability of the scores at the WAIS level.  

Model fit comparison 
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 We used Mplus (Muthén & Muthén, 1998-2007) to fit the reflective and the 

formative (MIMIC) models for these seven indicators using maximum likelihood 

estimation. First, we examined the simple reflective model, in line with identity theory. 

The model was rejected by the chi-square test of model fit, χ2 (14, N=80)=51.6, p < 

.01. The other fit indices corroborate this poor fit (CFI=0.88, RMSEA=0.18, 

AIC=3706.39, BIC=3739.74). For this dataset therefore, Identity Theory is rejected, 

and we cannot consider measurements of brain volume to be measurements of 

intelligence. Next, we considered the MIMIC model, in line with supervenience theory. 

This model fits the data well. The model was not rejected by the chi-square test of 

model fit χ2 (11, N=80)=11.20, p >.4. Other fit indices supported the good fit of the 

model (CFI=.996, RMSEA=0.015, AIC=3659.994, BIC=3686.196). Table 1 shows the 

parameter estimates for both models, which quantify the relative strength of the 

relationship between the indicators and the latent attribute “g”.  

 
Variable Reflective model intelligence MIMIC model intelligence 

  Standardized factor loading  Standardized factor loading  

WAIS1 0.273 0.601 

WAIS2 0.236 0.714 

WAIS3 0.301 0.534 

WAIS4 0.246 0.5 

Grey matter 

volume 0.983 0.883 

White matter 

volume 0.967 -0.714 

CSF 0.752 0.304 

 
Table 1. Parameter estimates for Reflective and Formative (MIMIC) models of 

intelligence. 
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For this dataset therefore, a reflective model (identity theory) does not fit the data. The 

MIMIC (supervenience) model on the other hand fits the data quite well, and explains 

.25 of the variance in general intelligence, in line with previous analyses, clearly 

favoring this model for this dataset. However, the distinction in model fit will not be as 

clear-cut for all psychological constructs. Next, we will examine a dataset where the 

distinction is less pronounced.  

Personality and the brain 

Another type of construct traditionally of interest for scientific psychology is 

that of personality. One of the more famous models is the Big Five model of 

personality (McCrae & John, 1992), which describes variation in personality traits 

along five dimensions (Extraversion, Neuroticism, Conscientiousness, Openness and 

Agreeableness). Certain aspects of personality have been shown to correlate with 

differential brain activity and physiology (DeYoung & Gray, 2009; Wright et al., 

2006). In fact, one of psychology’s most famous case studies, i.e. the case of Phineas 

Gage, suggests that brain physiology may be of significance to researchers of 

personality (Damasio, Grabowski, Frank, Galaburda, & Damasio, 1994). We will 

examine the conceptual and statistical relationship between psychological data on a 

common personality subscale, conscientiousness, on the one hand, and a physiological 

measurements, in this case gray matter density, on the other hand.  

Methods 

In this study, physiological and behavioral data were acquired from 110 healthy 

participants (age M=21.4, SD=2.4, 27 males)6. The participants were tested on the 

abbreviated personality questionnaire NEO-PI (McCrae & Costa, 2004). This 

personality questionnaire comprises 60 items, with 12 items for every Big Five 
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personality dimension (i.e., extraversion, neuroticism, conscientiousness, openness and 

agreeableness). For the purpose of this illustration we focus on one subscale, 

conscientiousness. Additionally, we obtained of each subject two 3DT1 scans to study 

voxel based morphometry, or VBM. VBM is a voxel-wise comparison technique that 

uses high-resolution structural scans to estimate gray matter density values at the voxel 

level (Ashburner & Friston, 2000, 2001). Eight participants were excluded due to 

recording problems or the lack of a second scan, leaving 102 participants for 

subsequent analysis. We provide further preprocessing and scanning details in the 

appendix. As with the general intelligence data, we fit two models: a reflective model 

in line with identity theory, and a MIMIC model in line with supervenience theory. 

Model fit comparison 

 We used Mplus (Muthén & Muthén, 1998-2007) to fit the reflective and the 

formative (MIMIC) models using maximum likelihood estimation. Using an iterative 

procedure that excluded parameters if model fit improved significantly by their 

removal, the final models included four brain regions (Left Supramarginal Gyrus, 

Right Middle Frontal Gyrus, Left Cerebellum, Right Cerebellum), and 11 of the 

original 12 conscientiousness questions.  

First, we considered the reflective model, in line with identity theory. The 

reflective model was rejected by the chi-square test, χ2 (90, N=105)= 120.49, p < .05. 

The other fit indices corroborated the poorer fit of the reflective model (RMSEA=0.06, 

CFI=.84, AIC=2129.21, BIC=2207.96). Secondly, we considered the  MIMIC model. 

This was not rejected by the chi-square test of model fit, χ2 (84, N=105)=100.65, p > 

.10. The other fit indices suggest reasonable fit (CFI=0.91), RMSEA (0.04), AIC 

(2101.37), BIC (2169.62). Table 2 shows the parameter estimates for both models, 
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which quantify the relative strength of the relationship between the indicators and the 

latent attribute “conscientiousness”.  

Variable Reflective model Formative (MIMIC) model 

 Standardized factor loading  Standardized factor loading  

C1 0.361 0.359 

C2 0.231 0.23 

C3 0.207 0.208 

C4 0.336 0.337 

C5 0.736 0.738 

C6 0.397 0.398 

C7 -0.204 -0.203 

C8 0.313 0.315 

C9 0.226 0.225 

C10 0.802 0.797 

C11 0.73 0.731 

Left Supramarginal 

Gyrus -0.3 -0.303 

Right Middle Frontal 

Gyrus 0.29 0.311 

Left Cerebellum 0.062 0.124 

Right Cerebellum -0.001 -0.062 

 

Table 2. Standardized parameter estimates for Reflective and Formative 

(MIMIC) models of conscientiousness. 

 

Because these two models are by their nature not nested, a chi-square test to 

compare them directly is not possible (Vuong & Wang, 1993). However, the formative 

(MIMIC) model shows better fit across the board than the unidimensional reflective 

model, with all fit indices outperforming those of the reflective model. Overall then, 

this suggests that the formative model provides a better fit to the data than the 

reflective model. The present study thus provides some support for a supervenience 
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interpretation of the relation between neurological and psychological variables with 

respect to conscientiousness.  

Implications 

As we show above, it is possible to fit such models to conventional 

neuroimaging data. There are several important aspects of the two illustrations. Firstly, 

the reflective, identity theoretical model was rejected for both datasets. Despite the 

adequate sample size and neurological variables known to correlate with the respective 

constructs, we cannot consider such measurements, for these datasets, to be 

measurements of the psychological constructs of interest. This points to an interesting 

conclusion that follows from the identity hypothesis: Researchers who view brain 

measurements as measurements of a latent psychological attribute (which may be 

plausible), must realize that this accords to brain measurements the same status as 

psychological measurements. Consequently, the brain measures may be rejected for the 

same reasons that poorly performing items in a questionnaire are rejected. This 

illustration shows what is required of neurological measurements if they are to figure 

as “measurements of” attributes in the same way that psychological measurements do. 

However, although the reflective model did not fit for the two examples we examined, 

this does not imply it will not fit for any dataset.  

 Firstly, the strength and nature of the relationship between psychological 

construct and neurological properties will vary depending on the construct, as it does in 

our two datasets. Given the variability of the psychological constructs that figure in 

scientific psychology, from early visual perception to complex dispositional constructs, 

it seems likely that the strength and nature of the relationship between neurological and 

behavioral measurements will be also different for such radically different behavioral 

phenomena. Secondly, we think it more likely that more restrictive models, such as the 
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reflective model, will fit for more ‘basic’, and less variable, psychological constructs 

and processes. For instance, whereas personality dimensions are at least partly 

culturally determined, other processes such as retinotopic mapping of early visual 

processing (mentioned in the introduction), depth perception and arousal may be easier 

to identity with unique, unidimensional neurological signatures. Such lower, more 

basic, less culturally dependent constructs, that display less variance across people, 

may be good candidates for identity theoretical models, although at this point this is 

largely speculation. 

For both datasets, especially the brain volume data, the MIMIC  model fit the 

data quite well. This implies that in these datasets, it is sensible to conclude that the 

neurological measurements statistically determine the variability in the psychological 

construct. Most importantly, the current findings show us that the relationship, 

especially for more complex psychological constructs such as intelligence and 

personality dimensions, is not likely to be simple. For this reason above all, we should 

be closely examining the nature of this relationship, and try to gain more insight by 

modeling hypotheses explicitly.  

Summary 

The results of our model fitting and speculations about other constructs brings 

to light an important aspect of the present reformulation of the reduction problem as a 

measurement problem: at the outset of any investigation, we should be impartial with 

respect to the status and quality of psychological and neuroscientific assessments as 

measures. For example, aspects of personality have been called “biologically based 

tendencies” (McCrae et al., 2000, p. 173). It remains to be seen whether certain 

empirical measurements behave in a way that allows for such an interpretation. Despite 

the popular view of neuroscientific measures as being “exact” or “hard”, at least for 
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this dataset our analysis suggests that psychological measures may outperform 

neuroscientific measures. Insofar as such measures are interpreted as relevant to 

psychological attributes or processes, they should be evaluated on precisely the same 

basis as any other measure. This basis is psychometric in character. There is no way 

out of this issue, unless, perhaps, one comes up with an alternative to psychometrics, 

i.e., a practically workable theory of measurement that rests on a different basis. To the 

best of our knowledge, such a theory does not currently exist. 

The above empirical illustrations serves as a proof of principle, in that it 

demonstrates that conceptual positions about the relationship between two classes of 

data can be constructed as statistical models and empirically tested. In this manner 

conceptual ideas about the relation between two levels of measurement can be 

translated into falsifiable models, and allow for theoretical interpretations of empirical 

data that can go beyond the simple observation that two measures are associated. In the 

next sections, we will discuss certain practical issues concerning SEM models, and the 

possibility of more exotic extensions. 

Applying SEM in practice 

Although structural equation models generally require larger sample sizes than 

more conventional analysis methods, this increase is by no means prohibitive. Sample 

sizes for SEM models are, as with other statistical analyses, related to model 

complexity. The models we discuss here are relatively simple, and sample sizes 

required are well within the reach of practicing neuroscientists. For instance, Marsh 

and Hau (1999) show that for models with 6 to 12 indicators per factor (as is the case 

for both our datasets), sample sizes of 50 may be adequate. Bentler (1995) 

recommends an N of at least 5 per free parameter, again within the limits of our 

empirical illustrations (cf. Schermelleh-Engel and Moosbrugger, 2003, for an 
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discussion on this topic). Although it is true that more simple or conventional data-

analytic procedures such as ANOVA’s and correlation tests yield results for very small 

sample sizes, over the long run, such analyses may represent pyrrhic victories over 

issues of inferential validity and replication. 

Luckily, there are signs that the field of neuroimaging has increasingly moved 

towards sample sizes that are more than adequate for treatment with SEM. For 

instance, a quick inspection of the first 8 empirical papers in a recent issue of the 

journal Neuroimage (Volume 51, issue 1, the ‘Anatomy and Physiology’ section) that 

focus on structural anatomy (such as we examine in our paper) reveal sample sizes of 

90, 55, 319, 185, 70, 40, 45 and 280 respectively, all of which would be amenable to 

SEM approaches given the guidelines above. At the same time, it is certainly true that 

lower sample sizes are a common occurrence in neuroimaging, especially in functional 

neuroimaging studies. However, to deal which the inherent complexity of the 

relationship between the brain and psychological constructs, more complex models, 

that require greater sample sizes, will need to be developed. The move towards larger, 

more versatile datasets may be part of a broader development in the field of cognitive 

neuroscience, taking inspiration from how neighboring fields deal with similar 

problems.  

In the field of quantitative genetics, issues of replicability, power and 

interpretation have led to the realization that larger sample sizes are not a luxury but a 

necessity. This realization has lead to large collaborative projects such as the EAGLE 

and the GENEQOL consortium7. Such large-scale collaborative efforts combine the 

knowledge, resources and methodology from various research groups, can lead to 

increase collaboration and understanding, and therefore benefits the scientific 

community as a whole. It is such collaborations that would make the implementation 
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of more insightful models possible, and in our view would benefit the field as a whole. 

An additional advantage of the use of SEM in the context of collaborative projects is 

that there exist a statically and theoretically sound way to deal with group differences 

(i.e., measurement invariance; Meredith, 1993). A similar development in the fields of 

cognitive, affective and social neuroscience would be much welcomed.  

To summarize, the sample sizes required to test conceptually guided SEM 

models are well within the reach of current empirical practice. To the extent that such 

datasets are not yet widely available, larger collaborations are desirable. Such 

collaborations are especially important if we want to tackle some of the most elusive 

and vexing phenomena: dynamic, reciprocal changes over time. In the next section, we 

will show how philosophy of mind and extensions of basic SEM models may help to 

get a grasp on such phenomena.  

Top-down influences and temporal dynamics 

The models that we have discussed represent two core philosophical positions, 

which have well-defined SEM counterparts. So far, we have focused on the most 

conventional method of analysis: the analysis of inter-individual differences in cross-

sectional data. This method is dominant in contemporary psychological science. 

Although this method provided the basis of our proposed structuring of the relationship 

between behavioral and neurological data, other methodological approaches are 

possible. In fact, there are aspects of psychological and neurological phenomena that 

may be better studied by alternative means. In this section, we discuss some 

challenging problems for conceptual and statistical models in cognitive neuroscience. 

These concern dynamic, reciprocal changes of behavior and the brain structure and 

function through time. We note that SEM offers various possibilities to address these 

problems. 
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Conventional thought concerning the relationship between lower and higher 

order properties tends to consider (changes in) neurological properties as the source or 

cause of observable difference at the psychological/behavioral level. For instance, 

evidence shows that certain drugs influence cognitive abilities (Maylor & Rabbitt, 

1993), that trauma may influence complex psychological traits, such as personality 

(Damasio, Grabowski, Frank, Galaburda, & Damasio, 1994), and that in Alzheimer 

patients amyloid peptide levels (constituents of amyloid plaques) and cortical activity 

are affected prior to observable cognitive symptoms (Buckner et al., 2005; Moonis et 

al., 2005). These findings all suggest that changes in cortical structure or functioning 

can, and do, affect psychological performance and functioning. However, there is also 

ample evidence for the reverse causal path. For instance, Maguire et al. (2000) showed 

that London taxi-drivers, following intensive training to learn the streets of London to 

the mandatory level of competence, showed structural changes to the hippocampus, 

and these changes were greater for taxi drivers who had served for a longer period of 

time. Also, intense juggling practice has been shown to affect both grey matter density 

(Draganski et al., 2004) and white matter integrity (Scholz, Klein, Behrens & 

Johansen-Berg, 2009). These findings suggest that persistent behavior may affect 

neurological structure and functioning. Finally, processes may even be reciprocal in 

nature, that is, simultaneous influences both from neurophysiological properties to 

behavior and vice versa. For instance, take the influence of hormone levels on 

psychology and behavior. Testosterone, when injected, can directly influence dominant 

or aggressive behavior, and is found to correlate positively with such behaviors (Mazur 

& Booth, 1998). However, Mazur and Booth illustrated that causal relationship may 

also be reversed: certain psychological behaviors may themselves lead to an increase in 

testosterone, and elevated testosterone levels affect behavior.  
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The above suggests that influences may run both from cognitive/psychological 

processes to neurological changes and vice versa. Modeling such dynamic interactions 

over time is a challenging problem, both conceptually and statistically. Philosophers 

have discussed such complex, dynamic systems in various terms, such as emergence, 

dynamic systems, and top-down causation. Emergence has a long philosophical 

tradition, going back to Mill and Broad in the late 19th and early 20th century (for an 

overview, see Kim, 1999). Recently, emergence and dynamic systems have enjoyed 

renewed interest as possible models for dynamic, neurocognitive changes through 

time. For instance, Jost, Bertschinger and Olbrich (2010) discussed the philosophical 

construct of emergence, and the description of a neuro-system as a (non-linear) 

dynamical reciprocal system. Similarly, Walmsley (2010) examined the concept of 

emergence, its relevance for complex systems, and possible manners in which law-like 

properties may emerge at higher (psychological) levels. Craver and Bechtel (2007) on 

the other hand focused on the concept of downward causation, and how this may be 

reconciled philosophically. They concluded that “When interlevel causes can be 

translated into mechanistically mediated effects, the posited relationship is intelligible 

and should raise no special philosophical objections” (p. 547). Furthermore, they stated 

that “There is a different sense in which a cause can be said to be at the top (or bottom) 

and a different sense in which its influence is propagated downward (or upward)” (p. 

548).  

Here we attempt to structure the distinction between such interlevel effects. 

Certain structural equation models offer the means to study such complex, interactive 

processes empirically. The origins of these models can be traced to the thirties and 

forties (e.g. Bartlett, 1946), but specific implementations in the 

behavioral/psychological sciences are relatively new. For instance, Hamaker, 
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Nesselroade, and Molenaar (2007) described a time series model in which two latent 

variables and their respective influences were modeled over time. We discuss how 

such a model may be used to model the time course of complex phenomena, such as 

discussed above. We distinguish two ‘types’ of situations: those in which 

psychological behavior affects, or at least precedes, variation in neurological properties 

(e.g. juggling), and those in which changes in neurophysiology affect (or precede), 

variation in psychological performance (e.g., Alzheimer’s disease). In Figure 5, we 

present a model with two latent variables that evolve over time. Each latent variable 

has three observable indicators. The latent variable at the top represents a 

psychological construct, such as ‘juggling ability’ or ‘cognitive ability’, the latent 

variable at the bottom represents a neurological state of a person, such as ‘neural 

density in motor cortex area x’ or ‘level of amyloid peptides’. We limit ourselves to 

just two latent variables for convenience; the model can be extended to include 

additional psychological or neurological latent variables, with varying numbers of 

indicators. 



Psychometric Modeling of Reductive Psychology     42 of 67 

 42 

 

If we measure the indicators of two (or more) latent variables in a given person 

repeatedly over time, we can relate the indicators to the latent variables, and we can 

model the time series of the latent variables. As mentioned above, we would like to 

differentiate between two scenarios: Those were variability in the psychological 

construct precedes neurological variability, and vice versa. If we were to assess a 

sample of people over time, either improving in juggling or deteriorating in cognitive 

performance, we could model this process by means of psychometric models such as 

the Integrated State-Trait model, described by Hamaker et al. (2007). To ease our 

presentation, we have included in Figure 5, only the most relevant parameters. The 

model parameter φP in Figure 5 represents the influence of the psychological latent 

variable at a given time point on the neurological latent variable at the next time point. 

This parameter should deviate from zero if changes in psychological abilities or 

behavior (e.g., practicing juggling) affect changes in neurological substrate (e.g., grey 

matter density in a motor cortex region). Conversely, the parameter φN reflects the 

influence of the neurological latent variable on the psychological latent variable. This 

parameter should deviate from zero if neural changes  (e.g., amyloid peptide levels) 

affect changes at the psychological level (e.g., psychological performance).  

So given appropriate time series measurements, we can test the hypothesis that 

the variation at the neurological precedes variation at the psychological level, or vice 

versa. In doing so, it is possible to empirically distinguish cases where influence should 

best be represented as ‘bottom up’ or ‘top down’. Note that in this model we purposely 

estimate the relationship, and not assume it a priori: for this reason, a MIMIC model is 

not appropriate. Rather, we want to explore the time course of possibly reciprocal 

influences to gain insight into the nature of the underlying processes. Despite the 
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complex nature of such dynamic processes, SEM models allow researchers to, at least 

in principle, get a grip on the structure of the development over time and reciprocal 

interactions. 

Discussion 

The scientific future of reductive cognitive neuroscientific research rests both 

on advances in brain scanning technology and on the development of a comprehensive 

conceptual framework to link psychological-behavioral measures and neurological 

measures. To do so, a careful consideration of the status of neurological indicators in 

studies that measure both behavioral and neurological variables is required. We have 

shown a road forward in attacking this problem, by demonstrating that at least two 

theoretical stances on the reduction problem can be translated into well-understood 

formal psychometric models. To our knowledge, this is the first demonstration of how 

theoretical positions drawn from analytic philosophy can be translated to empirically 

testable models. Notably, our demonstration did not involve any rocket science; it 

merely used standard statistical models incorporated in widely available software 

packages. In this regard, the suggested models are ready for use, and there is little that 

stops the motivated researcher from utilizing their benefits.  

Several of the issues raised by other authors we discussed in the introduction 

can be ameliorated, if not solved, by our proposed framework. Firstly, by explicitly 

framing the connection between neurological and behavioral variables as a 

measurement theoretical relationship, the mereological fallacy can be largely avoided. 

The models proposed above do not make claims about certain psychological processes 

being ‘in’ or ‘performed by’ a certain brain region any more than the answers of the 

questionnaire are the locus of personality traits. In fact, we would argue that the current 
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perspective offers a way to discuss brain-behavior relationships in a meaningful 

manner without running the risk of making mereological or neophrenological claims.  

Furthermore, the correct application of SEM models (greatly) diminishes the 

problem of non-independence raised by Vul, Harris, Winkielman and Pashler (2009). 

The two-step procedure described in Vul et al. (2009) can be largely avoided by  

properly implementing formal measurement models. As the voxels are not treated as a 

large sets of independent statistical tests, but specified as part of a measurement model 

that implies certain covariance patterns, the multiple comparison issue is much less of 

a problem given the considerable size of datasets within neuroscience.  

Finally, our approach can accommodate some of the ideas put forth by Feldman 

Barrett (2009). She argues that certain psychological processes may be more 

appropriately seen as a ‘mix’ (or ‘recipe’) of several classes or types of brain activity. 

That is, the categorical distinctions we make at the psychological level, e.g. between 

‘thinking’, ‘perceiving’ and ‘remembering’, will probably not be found as categorically 

distinct processes or properties of the brain. For that reason, when studying 

neurological properties in relation to certain psychological properties, it may be more 

natural to think that different combinations of distributed activity in certain regions or 

systems can together be taken to represent distinct brain processes. According to 

Feldman Barrett, this more naturally accommodates the structure of the brain than old-

fashioned perspectives such as positing a ‘perception’ region in contrast to a ‘memory’ 

region. Within the framework currently proposed, such hypotheses (that categorically 

distinct psychological concepts may be best seen as complex combinations of more 

basic processes) may be tested. This is best in line with the supervenience/MIMIC 

model. Given different psychological predictors (i.e. whether the reflective part of the 

model consists of personality items, Raven’s matrices etc.), one would expect to find 
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different parameter estimates of the neurological measurements. The different 

weighting of neurological indicators is conceptually similar to the recipe metaphor 

proposed in Feldman Barrett. This underscores the flexibility of the current approach 

of implementing measurement models to test substantive hypotheses about brain-

behavior relationships.  

Hopefully, the current paper has served to convince the reader that the 

infamous reduction problem is at least partly a measurement problem. More 

specifically, one cannot hope to make true advances in solving the reduction problem 

without solving the associated measurement problems in parallel. This, we think, has 

substantial consequences for how we should evaluate reductionist claims, as well as 

what we can expect from reductionist research strategies. There are several reasons to 

pursue such a strategy. 

There is a tendency, both in science and society, to view neuroscience as an 

exact area of research - closely related to physics, chemistry, and biology - while 

viewing psychology as a "soft" discipline (cf. Racine, Bar-Ilan, & Illes, 2005). 

However, the exact sciences are not exact because they use machines rather than 

questionnaires, but because they have successfully formalized theories. Such 

formalization is currently lacking at the interface of neuroscience and psychology. 

Thus, insofar as neuroscience has moved into the field of psychology, it has yet to earn 

the predicate of being a ‘hard’ science. Escape from this situation can only be realized 

by formalizing theories into mathematical models, which are likely to be statistical in 

nature; and insofar as these models concern measurement problems, they will likely be 

psychometric ones. For models to function properly, there should be no psychometric 

prejudice as to the quality of the measurements: from a measurement perspective, 
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neurological measurements do not have a privileged position over conventional 

psychological measurements.  

To the researcher with expertise in the intricacies of psychometric modeling, 

the example illustration in this paper may be viewed as quite optimistic, and such an 

evaluation would not be entirely off the mark. For even though we think it is evident 

that psychometrics has much to offer to neuroscience, it should be noted that 

psychometric modeling can be quite complicated. For instance, as discussed before, 

successful modeling generally requires (slightly) larger sample sizes or extensive time 

series, attention to possible problems involving model identification and model 

equivalence (e.g., see Raykov & Penev, 1999), goodness-of-fit, and other general 

issues common to statistical modeling. However, we think that such issues, in general, 

do not pose greater problems for structural equation models than for other techniques, 

and should not detract from substantively guided model implementation. There really 

is no way around these problems; in particular, these issues will not be resolved by 

being ignored, and by proceeding as if one did not have a measurement problem to 

solve.  

The models we have discussed in the present work are illustrative of how clean 

and simple identity and supervenience theories really are. As a result, it is likely that 

the models that we applied to personality measures may be too simplistic. This, 

however, is a benefit rather than a shortcoming of the psychometric representation of 

reductive theories: a psychometric representation makes the hypotheses proposed 

transparent and subject to informed criticism, and it does this to a degree that no verbal 

description could match. Moreover, rejecting these models brings with it the task of 

inventing better ones. And this, we think, is precisely the road to progress. In addition, 

it is likely that alternative models will lead to alternative philosophical views on the 
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relation between psychology and neuroscience. We have provided a proof of principle 

by fitting two models with a single latent variable measured at the inter-individual 

level. However, this approach is certainly not limited to such a design; one of the great 

benefits of structural equation models is their flexibility. Most psychological processes 

involve a complex interplay of more than one attribute. For example, complex 

cognitive processes such as problem solving almost surely involve the interaction of 

separate subsystems such as working memory, attention and intelligence. Structural 

equation models can be extended to include multiple latent variables, thereby testing 

hypotheses about the interactive, inhibitory or excitatory activity of several latent 

variables of psychological attributes within a measurement model. The theoretical 

approach discussed here is especially suited for the implementation of flexible models 

that may address a range of questions of substantive interest to both cognitive 

neuroscientists and philosophers.  

Finally, there are at least two types of homogeneity within cognitive 

neuroscience that are often assumed rather than tested. For instance, one of the vexing 

and largely neglected issues within psychological science is the distinction between 

inter- and intraindividual explanation. This means that a result found at the group level 

is often taken to apply to the individual, despite the fact that this may not be true and is 

rarely tested (cf. Borsboom, Mellenbergh & Van Heerden, 2003; Molenaar, 2004; 

Molenaar, Huizenga & Nesselroade, 2002). This issue holds as much for cognitive 

neuroscience as it does for conventional psychological science. As described 

previously, the current approach can be extended to explicitly test the structure of 

intraindividual activation. For example, the time series model by Hamaker, 

Nesselroade and Molenaar (2007) showed how an intraindividual process can be 

modeled with repeated measurements of the same latent variable. This can be done in 
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much the same way within the current framework by including dynamic intraindividual 

measurements such as EEG or fMRI. In this manner, one can study the extent to which 

a latent variable at the inter-individual level is representative for the individuals that 

make up a population, by assessing the homogeneity of the latent variable at both 

levels. Inter-individual variability is commonly treated as measurement error, but by 

explicitly testing the tenability of this assumption, a more fine-grained understanding 

of psychological attributes may be possible. In fact, the extent to which this holds for 

certain psychological attributes but not for others is likely to yield valuable insights. 

Another largely neglected but potentially insightful area of cognitive neuroscience is 

the question of homogeneity across subpopulations. Within the current framework, it is 

relatively easy to test whether a latent variable representation of, say, working memory 

differs across age groups, gender, or other subpopulations (e.g., see Meredith, 1993). 

For example, Henrich, Hein and Norenzayan (2010) examined to what extent it is 

possible to generalize from the most commonly studied psychological subpopulation, 

namely young, white, highly educated people from industrialized nations, to other 

cultures and demographics. They showed that, even for the most ‘basic’ of cognitive 

phenomena such as the Mueller-Lyer illusion, such untested generalization is often 

unjustified. The assumption of generalization and homogeneity is, arguably, even more 

omnipresent within cognitive neuroscience than in conventional psychology. We 

would venture that the extent to which neuroscientific findings generalize across 

populations and cultures is an open empirical question, and that its premature 

acceptance may close off a considerable amount of potentially insightful empirical 

investigations.  

This paper has served to illustrate both the necessity and the potential for 

conceptual and empirical progress that may be achieved by considering an integrated 
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psychometric perspective on reductive cognitive neuroscience. We have offered the 

conceptual and technical tools to do so, and hope that our efforts will be built on by 

others. The relationship between mind and body has fascinated generations of 

philosophers and scientists, and deserves closer methodological and psychometric 

scrutiny than it has so far enjoyed. If theories developed in the philosophy of mind are 

to escape from their current state of splendid metaphysical isolation, it is essential to 

translate these positions to empirical predictions. With recent advances in 

neuroscientific and psychometric techniques and methods, we finally have the 

opportunity to empirically address questions that were once restricted to the realm of 

speculative metaphysics. It would be a waste to forgo such opportunities. 
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Appendix 

Imaging and preprocessing 

Participants were scanned on a 3-T Philips Intera scanner, and all data were analyzed 

using FSL (Smith et al., 2004), Matlab (Mathworks Inc.) and Mplus (Muthén & 

Muthén, 1998-2007). A structural MRI scan of each participants was acquired using a 

T1-weighted 3D sequence (Turbo Field Echo, TE 4.6 ms, TR 9.6 ms, FA 8°, 182 

sagittal slices of 1.2 mm, FOV 2502 mm, reconstruction matrix 2562).  

For the study on intelligence we first extracted the brains from the structural images 

(Smith, 2002) and subsequently segmented the white and gray matter and CSF using 

FAST4 (Zhang, 2001). The resulting volume counts on these compartments were 

directly used for the analysis. 

For the study on personality we performed voxel based morphometry (VBM) 

carried out with FSL (Smith et al., 2004). For this study the structural images were 

brain-extracted (Smith, 2002). Next, tissue-type segmentation was carried out using 

FAST4 (Zhang, 2001). The so obtained gray-matter partial volumes were then aligned 

to MNI152 standard space using the affine registration. The resulting images were 

averaged to create a study-specific template, to which the native gray matter images 

were then non-linearly re-registered with a method that uses a b-spline representation 

of the registration warp field (Andersson, Jenkins & Smith, 2007, Rueckert et al. 

1999). The registered partial volume images were modulated (to correct for local 

expansion or contraction) by dividing by the Jacobian of the warp field. The modulated 

segmentated images were smoothed with an isotropic Gaussian kernel with a sigma of 

4 mm. The above procedure was applied to the first and second T1 scans separately, 

creating to independent datasets. The dataset was used to identify regions of interest 

that explained variance in the overall NEO-PI questionnaire (f-test over the demeaned 
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5 factors) using voxelwise permutation-based non-parametric testing. From this we 

obtained 12 regions of interest (ROI) that we used to extract values in these ROIs from 

the second (independent) dataset. ROIs were extracted if at least 200 connected voxels 

surpassed a threshold of p<0.01).   
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Footnotes 

 1 We refer to the discpline here as cognitive neuroscience as it is the broadest 

and most common name for the concurrent study of psychological behavior and 

physiological properties. However, we do not aim to restrict our perspective to merely 

cognitive phenomena such as attention, memory or intelligence: The issues we raise are 

equally of interest for fields such as social neuroscience or affective neuroscience. 

Wherever we state cognitive neuroscience, we mean to encompass such more specific 

branches.  

2A similar position can be found in Davidson (1980, p. 111) 

3Given the exact formulation as a SEM, one should construe this to mean that 

variability in the underlying attribute causes variability in both the P- and the N-

indicators. 

4A tetrad is the difference of the products of the covariances of four measured 

indicators. 

5 The idea that epistemological speculation can gradually be replaced by 

empirical science, sometimes termed naturalism or naturalized epistemology, has a 

long history. See for instance Quine (1969) for a philosophical motivation. 

680 of the participants in the personality dataset were also analyzed in the 

intelligence dataset, albeit on different behavioral and neurological measurements. 

7http://wiki.genepi.org.au/display/EAGLE/EAGLE and 

http://ideas.repec.org/p/rsw/rswwps/rswwps47.html 

 

 

 

 


