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Abstract

This chapter1 concerns the relation between statistics and inductive
logic. I start by describing induction in formal terms, and I introduce
a general notion of probabilistic inductive inference. This provides a
setting in which statistical procedures and inductive logics can be cap-
tured. Specifically, I discuss three statistical procedures (hypotheses
testing, parameter estimation, and Bayesian statistics) and I show to
what extend they can be captured by certain inductive logics. I end
with some suggestions on how inductive logic can be developed so that
its ties with statistics are strengthened.

1 Statistical procedures as inductive logics

An inductive logic is a system of inference that describes the relation be-
tween propositions on data, and propositions that extend beyond the data,
such as predictions over future data, and general conclusions on all possible
data. Statistics, on the other hand, is a mathematical discipline that de-
scribes procedures for deriving results about a population from sample data.
These results include predictions on future samples, decisions on rejecting
or accepting a hypothesis about the population, the determination of prob-
ability assignments over such hypotheses, the selection of a statistical model
for studying the population, and so on. Both inductive logic and statistics
are calculi for getting from the given data to propositions or results that
transcend the data.

1This chapter was written in parallel with my chapter for the Handbook for the History

of Logic: Inductive Logic (Volume 10), edited by Hartmann et al. (2009). The two chapters

show a considerable overlap. The present chapter aims at a reconstruction of statistical

procedures in terms of inductive logics. The other chapter approaches the same material

from the other end, and considers how inductive logic can be developed to encompass the

statistical procedures.
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This suggests that there is a strong parallel between statistics and in-
ductive logic. In fact, it does not take much imagination to view statistical
procedures as inferences: the input components, primarily the data, are the
premises, and the result of the procedure is the conclusion. In this rough
and ready way, statistical procedures can be understood as defining par-
ticular inductive logics. However, the two disciplines have evolved more
or less separately. In part this is because there are objections to viewing
classical statistics as inferential, although this is not true for all statistical
procedures. For another part, it may be because inductive logic has been
dominated by the Carnapian programme. Perhaps statisticians have not
recognised inductive logic as a discipline that is much like their own.

However this may be, I think it is time for a rapprochement. There are, to
my mind, good reasons for investigating the parallel between inductive logic
and statistics along the lines suggested above. First, framing the statistical
procedures as inferences in a logic may clarify the presuppositions of these
procedures. Second, by relating statistics to inductive logic, techniques and
insights from inductive logic may be used to enrich statistics. And finally,
showing the parallels between inductive logic and statistics may show the
relevance, also to inductive logicians themselves, of their discipline to the
sciences, and thereby direct further research in this field.

With this aim in mind, I consider a number of statistical procedures
in this chapter, and I investigate whether they can be seen as part of an
inductive logic, or otherwise whether they can, at least partly, be translated
into such a logic. I start by describing induction in formal terms, and I
introduce a general notion of probabilistic inductive inference. This provides
a setting in which both statistical procedures and inductive logics may be
captured. I subsequently discuss a number of statistical procedures, and
show how they can, and cannot, be captured by certain inductive logics.

The first statistical procedure is Neyman-Pearson hypotheses testing.
This procedure was introduced as explicitly non-inferential, and so it should
strictly speaking not be captured by an inductive logic. On the other hand,
power and significance are often interpreted inferentially. At the end of the
chapter I devise an inductive logic that may be used to warrant such an
interpretation. The second statistical procedure is parameter estimation.
I briefly discuss Fisher’s theory of maximum likelihood estimators, and I
show that there is a certain relation with the inductive logic developed by
Carnap. A third statistical procedure is Bayesian statistics. I show that it
can be captured in a probabilistic inductive logic that relates to Carnapian
inductive logic via the representation theorem of de Finetti. This leads to a
discussion of Bayesian statistics in relation to Bayesian inductive logic.
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Given the nature of the chapter, the discussion of statistical procedures is
relatively short. Many procedures cannot be dealt with. Similarly, I cannot
discuss in detail the many inductive logics devised within Carnapian induc-
tive logic. For the former, the reader may consult other chapters in this
volume, in particular the chapter by Festa. For the latter, I refer to Hart-
mann et al. (2009), specifically the discussions of inductive logic contained
therein.

2 Observational data

As indicated, inductive inference starts from propositions on data, and ends
in propositions that extend beyond the data. An example of an inductive
inference is that, from the proposition that up until now all observed pears
were green, we conclude that the next few pears will be green as well. An-
other example is that from the green pears we have seen we conclude that
all pears are green, period. The key characteristic is that the conclusion
says more than what is classically entailed by the premises.

Let me straighten these inferences out a bit. First, I restrict attention to
propositions on empirical facts, thus leaving aside such propositions as that
pears are healthy, or that God made them. Second, I focus on the results of
observations of particular kinds of empirical fact. For example, the empirical
fact at issue is the colour of pears, and the results of the observations are
therefore colours of individual pears. There can in principle be an infinity
of such observation results, but what I call data is always a finite sequence
of them. Third, the result of an observation is always one from a designated
partition of properties, usually finite but always countable. In the pear case,
it may be {red, green, yellow}. I leave aside observations that cannot be
classified in terms of a mutually exclusive set of properties.

I now make these ideas on what counts as data a bit more formal. The
concept I want to get across is that of a sample space, in which single
observations and sequences of observations can be represented as sets, called
events. After introducing the observations in terms of a language, I define
sample space. All the probabilities in this chapter will be defined over sample
space because, probability is axiomatized as a measure function over sets.
However, the expressions may be taken as sentences from a logical language
just as well.

We denote the observation of individual i by Qi. This is a propositional
variable, and we denote assignments or valuations of this variable by qki ,
which represents the sentence that the result of observing individual i is
the property k. A sequence of such results of length t, starting at 1, is
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denoted with the propositional variable St, and its assignment with sk1...kt ,
often abbreviated as st. In order to simplify notation, I denote properties
with natural numbers, so k ∈ K = {0, 1, . . . , n − 1}. For example, if the
observations are the aforementioned colours of pears, then n = 3. I write
red as 0, green as 1, and yellow as 2, so s012 says that the first three pairs
were red, green, and yellow respectively. Note further that there are logical
relations among the sentences, like s012 → q1

2. Together, the expressions st
and qki form the observation language.

Now we develop a set-theoretical representation of the observations, a
so-called sample space, otherwise known as an observation algebra. To this
aim, consider the set of all infinitely long sequences Kω, that is, all sequences
like 012002010211112 . . ., each encoding the observations of infinitely many
pears. Denote such sequences with u, and write u(i) for the i-th element in
the sequence u. Every sentence qki can then be associated with a particular
set of such sequences, namely the set of u whose i-th element is k:

qki = {u ∈ Kω : u(i) = k}.

Clearly, we can build up all finite sequences of results sk1...kt as intersections
of such sets:

sk1...kt =
t⋂
i=1

qkii .

Note that entailments in the language now come out as set inclusions: we
have s012 ⊂ q1

2. Instead of a language with sentences qki and logical relations
among such sentences, I will in the following employ the algebra Q, built up
by the sets qki and their conjunctions and intersections.

I want to emphasise that the notion of a sample space introduced here is
really quite general. It excludes a continuum of individuals and a continuum
of properties, but apart from that, any data recording that involves individ-
uals and that ranges over a set of properties can serve as input. For example,
instead of pears having colours we may think of subjects having test scores.
Or of companies having certain stock prices. The sample space used in this
chapter follows the basic structure of most applications in statistics, and of
almost all applications in inductive logic.

3 Inductive inference

Now that I have made the notion of data more precise, let me turn to
inductive inference. Consider the case in which I have observed three green
pears: s111. What can I conclude about the next pear? Or about pears in
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general? From the structure of the data itself, it seems that we can conclude
depressingly little. We might say that the next pear is green, q1

4. But as
it stands, each of the sets s111k = s111 ∩ qk4 , for k = 0, 1, 2, is a member of
the sample space, or in terms of the logical language, we cannot derive any
sentence qk4 from the sentence s111. The event of observing three green pears
is consistent with any colour for the next pear. Purely on the basis of the
classical relations among observations, as captured by the language and the
sample space, we cannot draw any inductive conclusion.

Perhaps we can say that given three green pears, the next pear being
green is more probable? This is where we enter the domain of probabilistic
inductive logic. We can describe the complete population of pears by a
probability function over the observational facts,

P : Q 7→ [0, 1].

Every possible pear qkt+1, and also every sequence of such pears sk1...kt , re-
ceives a distinct probability. The probability of the next pear being of a cer-
tain colour, conditional on a given sequence, is expressed as P (qkt+1|sk1...kt).
Similarly, we may wonder about the probability that all pears are green,
which is again determined by the probability assignment, in this case P ({∀i :
q1
i }). All such probabilistic inductive inferences are determined by the full

probability function P .
The central question of any probabilistic inductive inference or procedure

is therefore how to determine the function P , relative to the data that we
already have. What must the probability of the next observation be, given
a sequence of observations gone before? And what is the right, or otherwise
the preferable, distribution over all observations given the sequence? Both
statistics and inductive logic aim to provide an answer to these questions,
but they do so in different ways.

In order to facilitate the view that the statistical procedures are logical
inferences, it will be convenient to keep in mind a particular understanding of
probability assignments P over the sample space, or observation algebra, Q.
Recall that in classical two-valued logic, a model of the premises is a complete
truth valuation over the language, subject to the rules of logic. Because
of the correspondence between language and algebra, the model is also a
complete function over the algebra, taking the values {0, 1}. Accordingly,
the premises of some deductive logical argument are represented as a set
of models over the algebra. By analogy, we may consider a probability
function over an observation algebra as a model too. Just like the truth
value assignment, the probability function is a function over an algebra,
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only it takes values in the interval [0, 1], and it is subject to the axioms of
probability.

Probabilistic inductive logics use probability models for the purpose of
inductive inference. In particular, the premises of a probabilistic inductive
argument can be represented as a set, possibly a singleton, of probability
assignments. But there are widely different ways of understanding the in-
ferential step, i.e., the step running from the premises to the conclusion.
The most straightforward of these, and the one that is closest to classical
statistical practice, is to associate a probability function P , or otherwise a
set of such functions, with each sample st. The inferential step then runs
from the data st and a large set of probability functions P , possibly all con-
ceivable functions, towards a more restricted set, or even towards a single
P . The resulting inductive logic is called ampliative, because the restriction
on the set of probability functions that is effected by the data, i.e. the con-
clusion, is often stronger than what follows from the data and the initial set
of probability functions, i.e. the premises, by deduction.

We can also make the inferential step precise by analogy to a more
classical, non-ampliative notion of entailment. As will become apparent, this
kind of inferential step is more naturally associated with what is traditionally
called inductive logic. It is also associated with a basic kind of probabilistic
logic, as elaborated in Hailperin (1996) and more recently in Haenni et al.
(2009), especially section 2. Finally, this kind of inference is strongly related
to Bayesian logic, as advocated by Howson (2003). It is the kind of inductive
logic favored in this chapter.

An argument is said to be classically valid if and only if the set of mod-
els satisfying the premises is contained in the set of models satisfying the
conclusion. The same idea of classical entailment may now be applied to
the probabilistic models over sample space. In that case, the inferential
step is from one set of probability assignments, characterised by a number
of restrictions associated with premises, towards another set of probability
assignments, characterised by a different restriction that is associated with a
conclusion. The inductive inference is called valid if the former is contained
in the latter, i.e., if every model satisfying the premises is also a model sat-
isfying the conclusions. In such a valid inferential step, the conclusion does
not amplify the premises.

As an example, say that we fix P (q0
1) = 1

2 and P (q1
1) = 1

3 . Both these
probability assignments can be taken as premises in a logical argument, and
the models of these premises are simply all probability functions P overQ for
which these two valuations hold. By the axioms of probability, we can derive
that any such function P will also satisfy P (q2

1) = 1
6 , and hence also that
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P (q2
1) < 1

4 . On its own, the latter expression amounts to a set of probability
functions over the sample space Q in which the probability functions that
satisfy both premises are included. In other words, the latter assignment is
classically entailed by the two premises. Along exactly the same lines, we
may derive a probability assignment for a statistical hypothesis h conditional
on the data st, written as P (h|st), from the input probabilities P (h), P (st),
and P (st|h), using the theorem of Bayes.

The classical, non-ampliative understanding of entailment may thus be
used to reason inductively, towards predictions and statistical hypotheses
that themselves determine a probability assignment over data. In the fol-
lowing I will focus primarily on such non-ampliative inductive logical infer-
ences to investigate statistical procedures. I first discuss Neyman-Pearson
hypothesis testing and Fisher’s maximum likelihood estimation in their own
terms, showing that they are best understood as ampliative inductive infer-
ences. Then I discuss Carnapian inductive logic and show that it can be
viewed as a non-ampliative version of parameter estimation. This leads to a
discussion of Bayesian statistical inference, which is subsequently related to
a generalisation of Carnapian inductive logic, Bayesian inductive logic. The
chapter ends with an application of this logic to Neyman-Pearson hypothesis
testing.

As indicated, Carnapian inductive logic is most easily related to non-
ampliative logic. So, viewing statistical procedures in this perspective makes
the latter more amenable to inductive logical analysis. But I do not want to
claim that I thereby lay bare the real nature of the statistical procedures.
Rather, I hope to show that the investigation of statistics along these specific
logical lines clarifies and enriches statistical procedures. Furthermore, as
indicated, I hope to stimulate research in inductive logic that is directed at
problems in statistics.

4 Neyman-Pearson testing

The first statistical application concerns the choice between two statistical
hypotheses, that is, two fully specified probability functions over sample
space. In the above vocabulary, it concerns the choice between two prob-
abilistic models, but we must be careful with our words here, because in
statistics, models often refer to sets of statistical hypotheses. In the follow-
ing, I will therefore refer to complete probability functions over the algebra
as hypotheses.

LetH = {h0, h1} be the set of hypotheses, and letQ be the sample space,
that is, the observation algebra introduced earlier on. We can compare the
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hypotheses h0 and h1 by means of a Neyman-Pearson test function. See
Barnett (1999) and Neyman and Pearson (1967) for the details.

Definition 4.1 (Neyman-Pearson Hypothesis Test) Let F be a func-
tion over the sample space Q,

F (st) =

1 if Ph1
(st)

Ph0
(st)

> r,

0 otherwise,
(1)

where Phj is the probability over the sample space determined by the statis-
tical hypothesis hj. If F = 1 we decide to reject the null hypothesis h0, else
we accept h0 for the time being.

Note that, in this simplified setting, the test function is defined for each set
of sequences st separately. For each sample plan, and associated sample size
t, we must define a separate test function.

The decision to accept or reject a hypothesis is associated with the so-
called significance and power of the test:

SignificanceF = α =
∫
Q

F (st)Ph0(st)dst,

PowerF = 1− β =
∫
Q

F (st)Ph1(st)dst.

The significance is the probability, according to the hypothesis h0, of ob-
taining data that leads us to reject the hypothesis h0, or in short, the type-I
error of falsely rejecting the null hypothesis, denoted α. Similarly, the power
is the probability, according to h1, of obtaining data that leads us to reject
the hypothesis h0, or in short, the probability under h1 of correctly reject-
ing the null hypothesis, so that β = 1− Power is the type-II error of falsely
accepting the null hypothesis. An optimal test is one that minimizes the sig-
nificance level, and maximizes the power. Neyman and Pearson prove that
the decision has optimal significance and power for, and only for, likelihood-
ratio test functions F . That is, an optimal test depends only on a threshold
for the ratio Ph1

(st)

Ph0
(st)

.
Let me illustrate the idea of Neyman-Pearson tests. Say that we have a

pear whose colour is described by qk, and we want to know from what farm
it originates, from farmer Maria (h0) or Lisa (h1). We know that the colour
composition of the pears from the two farms are different:
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Hypothesis \ Data q0 q1 q2

h0 0.00 0.05 0.95
h1 0.40 0.30 0.30

If we want to decide between the two hypotheses, we need to fix a test
function. Say that we choose

F (qk) =

{
0 if k = 2,

1 else.

In the definition above, which uses a threshold for the likelihood ratio, this
comes down to choosing a value for r somewhere between 6

19 and 14, for
example r = 1. The significance level is Ph0(q0 ∪ q1) = 0.05, and the power
is Ph1(q0 ∪ q1) = 0.70. Now say that the pear we have is green, so F = 1
and we reject the null hypothesis, concluding that Maria did not grow the
pear with the aforementioned power and significance.

Note that from the perspective of ampliative inductive logic, it is not too
far-fetched to read an inferential step into the Neyman-Pearson procedure.
The test function F brings us from a sample st and two probability functions,
Phj for j = 0, 1, to a single probability function Ph1 , or Ph0 , over the sample
space Q. So we might say that the test function is the procedural analogue
of an inductive inferential step, as discussed in Section 3. This step is
ampliative because both probability functions Phj are consistent with the
data. Ruling out one of them cannot be done deductively.2

Neyman-Pearson hypothesis testing is sometimes criticised because its
results generally depend on the probability function over the entire sample
space, and not just on the probability of those elements in sample space
corresponding to the actual events, the observed sample for short. That is,
the decision to accept or reject the null hypothesis against some alternative
hypothesis depends not just on the probability of what has actually been
observed, but also on the probability assignment over everything that could
have been observed. A well-known illustration of this problem concerns so-
called optional stopping. But here I want to illustrate the same point with

2There are attempts to make these ampliative inferences more precise, by means of

a form of default reasoning, or a reasoning that employs a preferential ordering over

probability models. Specifically, so-called evidential probability, proposed by Kyburg

(1974) and more recently discussed by Wheeler (2006), is concerned with inferences that

combine statistical hypotheses, which are each accepted with certain significance levels.

However, in this chapter I will not investigate these logics. They are not concerned with

inferences from the data to predictions or to hypotheses, but rather with inferences from

hypotheses to other hypotheses, and from hypotheses to predictions.
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an example that can be traced back to Jeffreys (1931) p. 357, and of which
a variant is discussed in Hacking (1965).3

Instead of the hypotheses h0 and h1 above, say that we compare the
hypotheses h?0 and h1.

Hypothesis \ Data q0 q1 q2

h?0 0.05 0.05 0.90
h1 0.40 0.30 0.30

We determine the test function F (qk) = 1 iff k = 0, by requiring the same
significance level, Ph?0(q0) = 0.05, resulting in the power Ph1(q0) = 0.40.
Now imagine that we observe q1 again. Then we accept h?0. But this is a
bit odd, because the hypotheses h0 and h?0 have the same probability for q1!
So how can the two test procedures react differently to this observation? It
seems that, in contrast to h0, the hypothesis h?0 escapes rejection because
it allocates some probability to s0, an event that does not occur. This
causes a shift in the area within sample space on which the hypothesis h?0 is
rejected. This phenomenon gave rise to the famed complaint of Jeffreys that
“a hypothesis that may be true may be rejected because it has not predicted
observable results that have not occurred”.

This illustrates how the results of a Neyman-Pearson procedure depends
on the whole probability function that a hypothesis defines over the sample
space, and not just on the probability defined for the actual observation.
From the perspective of an inductive logician, it may therefore seem “a re-
markable procedure”, to cite Jeffreys again. But it must be emphasised that
Neyman-Pearson statistics was never intended as an inference in disguise.
It is a procedure that allows us to decide between two hypotheses on the
basis of data, generating error rates associated with that decision. Neyman
and Pearson themselves were very explicit that the procedure must not be
interpreted inferentially. Rather than inquiring into the truth and falsity of
a hypothesis, they were interested in the probability of mistakenly deciding
to reject or accept a hypothesis. The significance and power concern the
probability over data given a hypothesis, not the probability of hypotheses
given the data.4

3I would like to thank Jos Uffink for bringing this example to my attention. As far as

I can see, the exact formulation of the example is his.
4This is not to say that Neyman-Pearson statistics cannot be viewed from an inferential

angle. See Section 9 for an inferential account.
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5 Fisher’s parameter estimation

Let me turn to another important classical statistical procedure, so-called
parameter estimation. I focus in particular on an estimation procedure first
devised by Fisher, estimation by maximum likelihood.

The maximum likelihood estimator determines the best among a much
larger, possibly infinite, set of hypotheses. Again it depends entirely on the
probability that the hypotheses assign to points in the sample space. See
Barnett (1999) and Fisher (1956) for more detail.

Definition 5.1 (Maximum Likelihood Estimation) Let H = {hθ : θ ∈
Θ} be a set of hypotheses, labeled by the parameter θ, and let Q be the sample
space. Then the maximum likelihood estimator of θ,

θ̂(st) = {θ : ∀hθ′
(
Phθ′ (st) ≤ Phθ(st)

)
}, (2)

θ̂ for short, is a function over the elements st in the sample space.

So the estimator is a set, typically a singleton, of those values of θ for
which the likelihood of hθ on the data st is maximal. The associated best
hypothesis we denote with hθ̂. Note that this estimator is a function over
the sample space, associating each st with a hypothesis, or a set of them.

Often the estimation is coupled to a so-called confidence interval. Re-
stricting the parameter space to Θ = [0, 1] for convenience, and assuming
that the true value is θ, we can define a region in sample space within which
the estimator function is not too far off the mark. Specifically, we might set
the region in such a way that it covers 1− ε of the probability Phθ :∫ θ+∆

θ−∆
Phθ(θ̂)dθ̂ = 1− ε.

We can provide an unproblematic frequentist interpretation of the interval
θ̂ ∈ [θ −∆, θ + ∆]: in a series of estimations, the fraction of times in which
the estimator θ̂ is further off the mark than ∆ will tend to ε. The smaller
the region, the more reliable the estimate. Note, however, that this interval
is defined in terms of the unknown true value θ.

Some applications allow for the derivation of a region of parameter values
within which the true value θ can be expected to lie.5 The general idea is

5The determination of such regions is similar in nature to the determination of so-called

fiducial probability. Fisher (1930, 1935, 1956) developed the notion of fiducial probability

as a way of capturing parameter estimation in terms of a non-ampliative entailment rela-

tion, basically deriving a probability assignment over hypotheses without assuming a prior
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to define a set of parameter values R within which the data are not too
unlikely, R(st) = {θ : Phθ(st) > ε} for some small value ε > 0. Now in
terms of the integral above, we can swap the roles of θ and θ̂ and define the
so-called central confidence interval:

Conf1−ε(θ̂) =

{
θ : |θ − θ̂| < ∆ , and

∫ θ̂+∆

θ̂−∆
Phθ(θ̂)dθ = 1− ε

}
.

Via the function θ̂(st), every element of the sample space st is assigned a
region Conf1−ε of parameter values, interpreted as the region within which
we may expect to find the true value θ. Note, however, that swapping the
roles of θ and θ̂ in the integral is not unproblematic. We can only interpret
the integral as a probability if Phθ(θ̂ + δ) = Phθ−δ(θ̂) for all values of δ,
or in other words, if for fixed θ̂ the function Phθ(θ̂) is indeed a probability
density over θ. In other cases, the interval cannot be taken as expressing the
expected accuracy of the estimate, or at least not without further critical
reflection.

Let me illustrate parameter estimation in a simple example on pears
again. Say that we are interested in the colour composition of pears from
Emma’s farm, and that her pears are red, q0

i , or green, q1
i . Any ratio between

these two kinds of pears is possible, so we have a set of hypotheses hθ, called
multinomial hypotheses, for which

Phθ(q
1
t |st−1) = θ, Phθ(q

0
t |st−1) = 1− θ (3)

with θ ∈ [0, 1]. The hypothesis hθ fixes the portion of green pears at θ, and
therefore, independently of what pears we saw before, on the assumption of
the hypothesis hθ the probability that a randomly drawn pear from Emma’s
farm is green is θ. The type of distribution over Q that is induced by these
hypotheses is called a Bernoulli distribution, or a multinomial distribution.

The idea of Fisher’s maximum likelihood estimation is that we choose
the value of θ for which the probability that the hypotheses hθ gives to the
data sk1...kt is maximal. Say that we have observed a sequence of pears
s000101. The probability of these data given the hypothesis hθ is

Phθ(s
000101) =

t∏
i=1

Phθ(q
ki
i |si−1) = θ2(1− θ)4. (4)

probability over statistical hypotheses at the outset. The fiducial argument is controver-

sial, however, and its applicability is limited to particular statistical problems. Seidenfeld

(1979) provides a detailed discussion of the restricted applicability of the argument in

cases with multiple parameters. Dawid and Stone (1982) argue that in order to run the

fiducial argument, one has to assume that the statistical problem can be captured in a

functional model that is smoothly invertible. In this chapter, I will not discuss the fiducial

argument and explore another non-ampliative representation instead.
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Note that the probability of the data only depends on the number of 0’s
and the number of 1’s in the sequence. Now the above likelihood function
is maximal at θ = 1

3 , so θ̂ = 1
3 . More generally, defining t1 as the number of

1’s in the sequence st, the maximum likelihood estimator is

θ̂(st) =
t1
t
. (5)

Note finally that for a true value θ, the probability of finding the estimate
in the interval t1t ∈ [θ−∆, θ+∆] increases for larger data sequences. Fixing
the probability at 1− ε, the size of the interval will therefore decrease with
increasing sample size.

This completes the introduction into parameter estimation. The thing to
note is that the statistical procedure can be taken as the procedural analogue
of an ampliative logical inference, running from the data to a probability
assignment over the sample space. We have H as the set of probability
models from which the inference starts, and by means of the data we then
choose a single hθ̂ of these, or a set C95, as our conclusion. In the following
I aim to investigate whether there is a non-ampliative logical representation
of this inductive inference.

6 Carnapian logics

A straightforward way of capturing parameter estimation in a logic is by re-
lating it to the logic of induction developed by Carnap (1950, 1952). Histor-
ically, Carnapian inductive logic can lay most claim to the title of inductive
logic proper. It was the first systematic study into probabilistic predictions
on the basis of data.

The central concept in Carnapian inductive logic is logical probability.
Recall that the sample space Q, also called the observation algebra, cor-
responds to an observation language, comprising of sentences such as “the
second pear is green”, or formally, q1

2. The original idea of Carnap was to
derive a probability assignment over the language on the basis of symme-
tries within the language. In the example, we have three mutually exclusive
properties for each pear, and in the absence of any further knowledge, there
is no reason to think of any of these properties as special or as more, or
less, appropriate than the other two. The symmetry inherent to the lan-
guage suggests that each of the sentences qki for k = 0, 1, 2 should get equal
probability:

P (q0
i ) = P (q1

i ) = P (q2
i ) =

1
3
.
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The idea of logical probability is to fix a unique probability function over the
observation language, or otherwise a strongly restricted set of such functions,
on the basis of symmetries.

Next to symmetries, the set of probability functions can also be restricted
by certain predictive properties. As an example, we may feel that yellow
pears are more akin to green pears, so that finding a yellow pear decreases
the probability for red pears considerably, while it decreases the probability
for green pears much less dramatically. That is,

P (q1
t+1|st−1 ∩ q2

t )
P (q0

t+1|st−1 ∩ q2
t )

>
P (q1

t+1|st−1)
P (q0

t+1|st−1)
.

How such relations among properties may play a part in determining the
probability assignment P is described in the literature on analogy reason-
ing. See Festa (1996); Maher (2000); Romeijn (2006). Interesting recent
work on relations between predictive properties in the context of analogical
predictions can also be found in Paris and Waterhouse (2008).

Any Carnapian inductive logic is defined by a number of symmetry prin-
ciples and predictive properties, determining a probability function, or a set
of such functions. One very well-known inductive logic, discussed at length
in Carnap (1952), employs a probability assignment characterised by the
following symmetries,

P (qki ) = P (qk
′
i ),

P (sk1...ki...kt) = P (ski...k1...kt), (6)

for all values of i, t, k, and k′, and for all values ki with 1 ≤ i ≤ t. The
latter of these is known as the exchangeability of observations: the order
in the observations does not matter to their probability. The inductive
logic at issue employs a particular version of exchangeability, known as the
requirement of restricted relevance,

P (qkt+1|st) = f(tk, t), (7)

where tk is the number of earlier instances qki in the sequence st and t

the total number of observations. Together these symmetries and predictive
properties determine a particular set of probability assignments P , for which
we can derive the following consequence:

P (qkt+1|st) =
tk + λ

n

t+ λ
, (8)

where n the number of values for k. The parameter 0 ≤ λ ≤ ∞ can be
chosen at will. Predictive probability assignments of this form are called
Carnapian λ-rules.
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The probability distribution in Equation (8) has some striking features.
Most importantly, for any of the probability functions P satisfying the afore-
mentioned symmetries, we have that

P (qkt+1|st−1 ∩ qkt ) > P (qkt+1|st−1).

This predictive property is called instantial relevance: the occurrence of qkt
increases the probability for qkt+1. It was a success for Carnap that this typ-
ically inductive effect is derivable from the symmetries alone. By providing
an independent justification for these symmetries, Carnap effectively pro-
vided a justification for induction, thereby answering the age-old challenge
of Hume.6

Note that the outlook of Carnapian logic is very different from the out-
look of classical statistical procedures, like Fisher’s parameter estimation or
Neyman-Pearson testing. Classical statistics starts with statistical hypothe-
ses, each associated with a probability functions over a sample space, and
then chooses the best fitting one on the basis of the data. By contrast, Car-
napian logic starts with a sample space and a number of symmetry principles
and predictive properties, that together fix a set of probability functions over
the sample space. Just like the truth tables restrict the possible truth valu-
ations, so do these principles restrict the logical probability functions, albeit
not to a singleton, as λ can still be chosen freely. But from the point of
view of statistics, Carnap is thereby motivating, from logical principles, the
choice for a particular set of hypotheses.

Recall that classical statistics was naturally associated with ampliative
inductive inference. By contrast, if we ignore the notion of logical prob-
ability and concentrate on the inferential step, Carnapian inductive logics
fall very neatly within the template for non-ampliative inductive logic that
I laid down at the beginning. By means of a number of symmetry princi-
ples and predictive properties, we fix a set of probability assignments over
the sample space. The conclusions are then reached by working out specific
consequences for probability functions within this set, using the axioms of
probability. In particular, Carnapian inductive logic looks at the probability
assignments conditional on various samples st, deriving that they all satisfy
instantial relevance, for example. Importantly, the symmetries in the lan-

6As recounted in Zabell (1982), earlier work that connects exchangeability to the pre-

dictive properties of probability functions was done by Johnson (1932) and de Finetti

(1937). But the specific relation with Hume’s problem noted here is due to Carnap: he

motivated predictive properties such as Equation (8) independently, by the definition of

logical probability, whereas for the subjectivist de Finetti these properties did not have

any objective grounding.
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guage appear as premises in the inductive logical inference. They restrict
the set of probability assignments that is considered in the inference.

Despite these differences in outlook, ampliative against non-ampliative,
we can identify a strong similarity between parameter estimation, as dis-
cussed in Section 5, and the predictive systems of Carnapian logic. To see
this, note that the procedure of parameter estimation can be used to de-
termine the probability of the next piece of data. In the example on pears,
once we have observed s000101 and thus chosen h 1

3
, we may on the basis of

that predict that the next pear has a probability of 1
3 to be green. In other

words, the function θ̂ is a predictive system, much like any other Carnapian
inductive logic. We can write

P (qkt+1|st) = Phθ̂(st)
(qkt+1).

The estimation function θ̂ by Fisher is thus captured in a single probability
function P . So we can present the latter as a probability assignment over
sample space, from which estimations can be derived by a non-ampliative
inference.

Let me make this concrete by means of the example on red and green
pears. In the Carnapian prediction rule of Equation (8), choosing λ = 0
will yield the observed relative frequency as predictions. And according
to Equation (5) these relative frequencies are also the maximum likelihood
estimators. Thus, for each set of possible observations, {sk1...kt : ki = 0, 1},
the Carnapian rule with λ = 0 predicts according to the Fisherian estimate.7

Unfortunately the alignment of Fisher estimation and Carnapian induc-
tive logic is rather problematic. Already for estimations for multinomial
hypotheses, it is not immediate how we can define the corresponding prob-
ability assignment over sample space, and whether we thereby define a co-
herent probability function at all. For more complicated sets of hypotheses,
and the more complicated estimators associated with it, the corresponding
probability assignment P may be even less natural, or possibly incoher-
ent. Moreover, the principles and predictive properties that may motivate

7Note that the probability function P that describes the estimations is a rather unusual

one. After three green pears for example, s111, the probability for the next pear to be

red will be 0, so that P (s1110) = 0. By the standard axiomatisation and definitions

of probability, the probability of any observation q0
5 conditional on s1110 is not defined.

But if the probability function P is supposed to follow the Fisherian estimations, then

we must have P (q0
5 |s1110) = 1

4
. To accommodate the probability function imposed by

Fisher’s estimations, we may change the axiomatisation of probability. In particular, we

may adopt an axiomatisation in which conditional probability is primitive, as described

in Rényi (1970). Alternatively, we can restrict ourselves to estimations based on the

observation of more than one property.
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the choice of that probability function will be very hard to come by. In
the following I will therefore not discuss the further intricacies of capturing
Fisher’s estimation functions by Carnapian prediction rules. However, Car-
napian rules will make a reappearance in the next two sections, because in
a much more straightforward sense, they are the predictive counterpart to
Bayesian statistics.

7 Bayesian statistics

The defining characteristic of Bayesian statistics is that probability assign-
ments do not just range over data, but that they can also take statistical
hypotheses as arguments. As will be seen in the following, Bayesian infer-
ence is naturally represented in terms of a non-ampliative inductive logic,
and it also relates very naturally to Carnapian inductive logic.

Let H be the space of statistical hypotheses hθ, and let Q be the sample
space as before. The functions P are probability assignments over the entire
space H×Q. Since hθ is a member of the combined algebra, it makes sense
to write P (st|hθ) instead of the Phθ(st) written in the context of classical
statistics. We can define Bayesian statistics as follows.

Definition 7.1 (Bayesian Statistical Inference) Assume the prior prob-
ability P (hθ) assigned to hypotheses hθ ∈ H, with θ ∈ Θ, the space of pa-
rameter values. Further assume P (st|hθ), the probability assigned to the
data st conditional on the hypotheses, called the likelihoods. Bayes’ theorem
determines that

P (hθ|st) = P (hθ)
P (st|hθ)
P (st)

. (9)

Bayesian statistics outputs the posterior probability assignment, P (hθ|st).

See Barnett (1999) and Press (2003) for a more detailed discussion. The
further results form a Bayesian inference, such as estimations and measures
for the accuracy of the estimations, can all be derived from the posterior
distribution over the statistical hypotheses.

In this definition the probability of the data P (st) is not presupposed,
because it can be computed from the prior and the likelihoods by the law of
total probability,

P (st) =
∫

Θ
P (hθ)P (st|hθ)dθ.

The result of a Bayesian statistical inference is not always a posterior prob-
ability. Often the interest is only in comparing the ratio of the posteriors of
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two hypotheses. By Bayes’ theorem we have

P (hθ|st)
P (hθ′ |st)

=
P (hθ)P (st|hθ)
P (hθ′)P (st|hθ′)

,

and if we assume equal priors P (hθ) = P (hθ′), we can use the ratio of the
likelihoods of the hypotheses, the so-called Bayes factor, to compare the
hypotheses.

Let me give an example of a Bayesian procedure. Consider the hy-
potheses of Equation (3), concerning the fraction of green pears in Emma’s
orchard. Instead of choosing among them on the basis of the data, assign a
so-called Beta-distribution over the range of hypotheses,

P (hθ) ∝ θλ/2−1(1− θ)λ/2−1 (10)

with θ ∈ Θ = [0, 1]. For λ = 2, this function is uniform over the domain.
Now say that we obtain a certain sequence of pears, s000101. By the likelihood
of the hypotheses as given in Equation (4), we can derive

P (hθ|s000101) = θλ/2+1(1− θ)λ/2+3.

More generally, the likelihood function for the data st with numbers tk of
earlier instances qki is θt1(1− θ)t0 , so that

P (hθ|st) ∝ θλ/2−1+t1(1− θ)λ/2−1+t0 . (11)

is the posterior distribution over the hypotheses. This posterior is derived
by the axioms of probability theory alone, specifically by Bayes’ theorem.

As said, capturing this statistical procedure in a non-ampliative inference
is relatively straightforward. The premises are the prior over the hypotheses,
P (hθ) for θ ∈ Θ, and the likelihood functions, P (st|hθ) over the algebras Q,
which are determined for each hypothesis hθ separately. These premises are
such that only a single probability assignment over the space H×Q remains.
In other words, the premises have a unique probability model. Moreover,
all the conclusions are straightforward consequences of this probability as-
signment. They can be derived from the assignment by applying theorems
of probability theory, primarily Bayes’ theorem.

Before turning to the relation of Bayesian inference with Carnapian logic,
let me compare it to the classical procedures sketched in the foregoing. In
all cases, we consider a set of statistical hypotheses, and in all cases our
choice among these is informed by the probability of the data according
to the hypotheses. The difference is that in the two classical procedures,
this choice is absolute: acceptance, rejection, and the appointment of a best
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estimate. In the Bayesian procedure, by contrast, all this is expressed in a
posterior probability assignment over the set of hypotheses.

Note that this posterior over hypotheses can be used to generate the kind
of choices between hypotheses that classical statistics provides. Consider
Fisherian parameter estimation. We can use the posterior to derive an
expectation for the parameter θ, as follows:

E[θ] =
∫

Θ
θP (hθ|st)dθ. (12)

Clearly, E[θ] is a function that brings us from the hypotheses hθ and the
data st to a preferred value for the parameter. The function depends on
the prior probability over the hypotheses, but it is in a sense analogous to
the maximum likelihood estimator. In analogy to the confidence interval,
we can also define a so-called credal interval from the posterior probability
distribution:

Cred1−ε =

{
θ : |θ − E[θ]| < d and

∫ E[θ]+d

E[θ]−d
P (hθ|st)dθ = 1− ε

}
.

This set of values for θ is such that the posterior probability of the corre-
sponding hθ jointly add up to 1− ε of the total posterior probability.

Most of the controversy over the Bayesian method concerns the deter-
mination and interpretation of the probability assignment over hypotheses.
As for interpretation, classical statistics objects to the whole idea of assign-
ing probabilities to hypotheses. The data have a well-defined probability,
because they consist of repeatable events, and so we can interpret the prob-
abilities as frequencies, or as some other kind of objective probability. But
the probability assigned to a hypothesis cannot be understood in this way,
and instead expresses an epistemic state of uncertainty. One of the distinc-
tive features of classical statistics is that it rejects such epistemic probability
assignments, and that it restricts itself to a straightforward interpretation
of probability as relative frequency.

Even if we buy into this interpretation of probability as epistemic un-
certainty, how do we determine a prior probability? At the outset we do
not have any idea of which hypothesis is right, or even which hypothesis is
a good candidate. So how are we supposed to assign a prior probability to
the hypotheses? The literature proposes several objective criteria for filling
in the priors, for instance by maximum entropy or by other versions of the
principle of indifference, but something of the subjectivity of the starting
point remains. The strength of the classical statistical procedures is that
they do not need any such subjective prior probability.
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8 Bayesian inductive logic

While Bayesian statistics differs strongly from classical statistics, it is much
more closely related to the inductive logic of Carnap. In this section I will
elaborate on this relation, and indicate how Bayesian statistical inference
and inductive logic may have a fruitful common future.

To see how Bayesian statistics and Carnapian inductive logic hang to-
gether, note first that the result of a Bayesian statistical inference, namely
a posterior, is naturally translated into the result of a Carnapian inductive
logic, namely a prediction,

P (q1
t+1|st) =

∫ 1

0
P (q1

t+1|hθ ∩ st)P (hθ|st)dθ, (13)

by the law of total probability. Furthermore, consider the posterior prob-
ability over multinomial hypotheses. Recall that the parameter θ is the
probability for the next pear to be green, as defined in Equation (3). By
Equations (12) and (13) we have

E[θ] =
∫

Θ
θP (hθ|st)dθ

=
∫ 1

0
P (q1

t+1|hθ ∩ st)P (hθ|st)dθ

= P (q1
t+1|st),

This shows that in the case of multinomial statistical hypotheses, the ex-
pectation value for the parameter is the same as a predictive probability.

The correspondence between Bayesian statistics and Carnapian induc-
tive logic is in fact even more striking. We can work out the integral of
Equation line (13), using Equation (10) as the prior and the multinomial
hypotheses defined in Equation 3, to obtain

P (q1
t+1|st) =

t1 + λ
2

t+ λ
. (14)

This means that there is a specific correspondence between certain kinds of
predictive probabilities, as described by the Carnapian λ-rules, and certain
kinds of Bayesian statistical inferences, namely with multinomial hypotheses
and priors from the family of Dirichlet distributions, which generalise the
Beta-distributions used in the foregoing.

On top of this, the equivalence between Carnapian inductive logic and
Bayesian statistical inference is more general than is shown in the foregoing.
Instead of the well-behaved priors just considered, we might consider any
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functional form as a prior over the hypotheses hθ, and then wonder what
the resulting predictive probability is. As de Finetti showed in his represen-
tation theorem, the resulting predictive probability will always comply to a
predictive property known as exchangeability, which was given in Equation
(6). Conversely, and more surprisingly, any predictive probability comply-
ing to the property of exchangeability can be written down in terms of a
Bayesian statistical inference with multinomial hypotheses and some prior
over these hypotheses. In sum, de Finetti showed that there is a one-to-one
correspondence between the predictive property of exchangeability on the
one hand, and Bayesian statistical inferences using multinomial hypotheses
on the other.

It is insightful to make this result by de Finetti explicit in terms of
the non-ampliative inductive logic discussed in the foregoing. Recall that
a Bayesian statistical inference takes a prior and likelihoods as premises,
leading to a single probability assignment over the space H×Q as the only
assignment satisfying the premises. We infer probabilistic consequences,
such as the posterior and the predictions, from this probability assignment.
Similarly, a Carnapian inductive logic is characterised by a single probabil-
ity assignment, defined over the space Q, from which the predictions can
be derived. The representation theorem by de Finetti effectively shows an
equivalence between these two probability assignments: when it comes to
predictions, we can reduce the probability assignment over H × Q to an
assignment over Q only.

For de Finetti, this equivalence was very welcome. He had a strictly sub-
jectivist interpretation of probability, believing that probability expresses
uncertain belief only. Moreover, he was eager to rid science of its metaphys-
ical excess baggage to which, in his view, the notion of objective chance
belonged. So de Finetti applied his representation theorem to argue against
the use of multinomial hypotheses, and thereby against the use of statis-
tical hypotheses more generally. Why refer to these obscure chances if we
can achieve the very same statistical ends by employing the unproblematic
notion of exchangeability? The latter is a predictive property, and it can
hence be interpreted as an empirical and as a subjective notion.

The fact is that statistics, as it is used in the sciences, is persistent in
its use of statistical hypotheses. Therefore I want to invite the reader to
consider the inverse application of de Finetti’s theorem. Why does science
use these obscure objective chances? As I argue extensively in Romeijn
(2005), the reason is that statistical hypotheses provide invaluable help by,
indirectly, pinning down the probability assignments over Q that have the
required predictive properties. Rather than reducing the Bayesian inferences
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over statistical hypotheses to inductive predictions over observations, we can
use the representation theorem to capture relations between observations in
an insightful way, namely by citing the statistical hypotheses that may be
true of the data. As further illustrated in Romeijn (2004, 2006), enriching
inductive logic in this way improves the control that we have over predictive
properties.

Finally, it may be noted that this view on inductive logic is compa-
rable to the “presupposition view” in Festa (1993), which takes a similar
line with regards to the choice of λ in Carnapian inductive logic. It is also
strongly related to the views expressed by Hintikka in Auxier and Hahn
(2006), and I want to highlight certain aspects of this latter view in particu-
lar. In response to Kuipers’ overview of inductive logic, Hintikka writes that
“Inductive inference, including rules of probabilistic induction, depends on
tacit assumptions concerning the nature of the world. Once these assump-
tions are spelled out, inductive inference becomes in principle a species of
deductive inference.” Now the symmetry principles and predictive prop-
erties used in Carnapian inductive logic are exactly the tacit assumptions
Hintikka speaks about. As explained in the foregoing, the use of particular
statistical hypotheses in a Bayesian inference comes down to the very same
set of assumptions, but now these assumptions are not tacit anymore: they
have been made explicit as the choice for a particular set of statistical hy-
potheses. Therefore, the use of statistical hypotheses that I have advertised
above may help us to get closer to the ideal of inductive logic envisaged by
Hintikka.

9 Neyman-Pearson test as an inference

In this final section, I investigate whether we can turn the Neyman-Pearson
procedure of Section 4 into an inference within Bayesian inductive logic.
This might come across as a pointless exercise in statistical yoga, trying to
make Neyman and Pearson relax in a position that is far from natural. How-
ever, the exercise will nicely illustrate the use of Bayesian inductive logic.
Moreover, I think that it will bring Neyman-Pearson testing and inductive
logic closer together, and thereby stimulate research on the intersection of
inductive logic and statistics in the sciences.

An additional reason for investigating Neyman-Pearson hypothesis test-
ing in this framework is that in many practical applications, scientists are
tempted to read the probability statements about the hypotheses inversely:
the significance is often taken as the probability that the null hypothesis
is true. Although emphatically wrong, this inferential reading has a strong

22



intuitive appeal to users. The following will make explicit that in this read-
ing, the Neyman-Pearson procedure is effectively taken as a kind of non-
ampliative inductive inference.

First, we construct the space H×Q, and define the probability functions
Phj over the sample spaces 〈hj ,Q〉. For the prior probability assignment over
the two hypotheses, we take P (h0) ∈ (l, u), meaning that l < P (h0) < u.
Finally, we adopt the restriction that P (h0) +P (h1) = 1. This defines a set
of probability functions over the entire space, serving as a starting point of
the inference.

Next we include the data in the probability assignments. Crucially, we
coarse-grain the observations to the simple observation f j , with

f j = {st : F (st) = j},

so that the observation simply encodes the value of the test function. It
follows from this coarse-graining that we obtain the type-I and type-II errors
as the likelihoods of the observations,

P (f1|h0) = α,

P (f0|h1) = β.

Finally we use Bayes’ theorem to derive a set of posterior probability distri-
butions over the hypotheses, according to

P (h1|f j)
P (h0|f j)

=
P (f j |h1)P (h1)
P (f j |h0)P (h0)

.

Note that the quality of the test, in terms of size and power, will be reflected
in the posteriors. If, for example, we find an observation st that allows us
to reject the null hypothesis, so f1, then as long as α < 1−β, meaning that
the significance is smaller than the power, we find that P (h0|f1) < P (h0)
and P (h0|f1) < P (h0). The larger the difference between significance and
power, the larger the difference between posteriors and priors.

Note, however, that we have not yet decided on a fully specified prior
probability over the statistical hypotheses. This echoes the fact that classical
statistics does not make use of a prior probability. However, it is only by
restricting the prior probability over hypotheses in some way or other that
we can make the Bayesian rendering of the results of Neyman and Pearson
work. In particular, if we choose (l, u) = (0, 1) for the prior, then we find
(l′, u′) = (0, 1) for the posterior as well. However, if we choose

l ≥ β

β + 1− α
, u ≤ 1− β

1− β + α
,
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we find for all P (h0) ∈ (l, u) that P (h0|f1) < 1
2 < P (h1|f1). Similarly, we

find P (h0|f0) > 1
2 > P (h1|f0). So with this interval prior, an observation

st for which F (st) = 1 tilts the balance towards h1 for all the probability
functions P in the interval, and vice versa.

Let me illustrate the Bayesian inference by means of the above example
on pears. We set up the sample space and hypotheses as before, and we
then coarse-grain the observations to f j , corresponding to the value of the
test function, f1 = q0 ∪ q1 and f0 = q2. We obtain

P (f1|h0) = P (q0 ∪ q1|h0) = α = 0.05

P (f0|h1) = P (q0 ∪ q1|h1) = β = 0.30

Choosing P (h0) ∈ (0.24, 0.93), this results in P (h0|f0) = (0.50, 0.98), and
P (h0|f1) = (0.02, 0.50).

Depending on the choice of prior, one can argue that the resulting
Bayesian inference replicates the Neyman-Pearson procedure: if the prob-
ability over hypotheses expresses our preference over them, then indeed f0

makes us prefer h0 and f1 makes us prefer h1. Importantly, the inference
fits the entailment relation mentioned earlier: we have a set of probabilistic
models on the side of the premises, namely the set of priors over H, cou-
pled to the full probability assignments over 〈hj ,Q〉 for j = 0, 1. And we
have a set of models on the conclusion side, namely the set of posteriors
over H. Because the latter is computed from the former by the axioms of
probability, the two sets include the same probability functions. Therefore
the conclusion is classically entailed by the premises.

The above example shows that we can imitate the workings of a Neyman-
Pearson test in Bayesian inductive logic, and thus in terms of a non-ampliative
inductive inference. But the imitation is far from perfect. For one, the re-
sults of a Bayesian inference will always be a probability function. By con-
trast, Neyman-Pearson statistics ends in a decision to accept or reject, which
is a binary decision instead of some sort of weak or inconclusive preference.
Of course, there are many attempts to weld a binary decision onto the prob-
abilistic end result of a Bayesian inference, for example in Levi (1980) and
in the discussion on rational acceptance, e.g., Douven (2002). In particu-
lar, we might supplement the probabilistic results of a Bayesian inference
with rules for translating the probability assignments into decisions, e.g.,
we choose h0 if we have P (h0|st) > 1

2 , and similarly for h1. However, the
bivalence of Neyman-Pearson statistics cannot be replicated in a Bayesian
inference itself. It will have to result from a decision-theoretic add-on to the
inferential part of Bayesian statistics.
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More generally, the representation in probabilistic logic will probably
not appeal to advocates of classical statistics. Quite apart from the issue of
binary acceptance, the whole idea of assuming a prior probability, however
unspecific, may be objected to on the principled ground that probability
functions express long-term frequencies, and that hypotheses cannot have
such frequencies.

There is one attractive feature, at least to my mind, of the above ren-
dering, that may be of interest in its own right. With the representation
in place, we can ask again how to understand the example by Jeffreys, as
considered in Section 4. Following Edwards (1972), it illustrates that Ney-
man and Pearson tests do not respect the likelihood principle, because they
depend on the probability assignment over the entire sample space and not
just on the probability of the observed sample. However, in the Bayesian
representation we do respect the likelihood principle, but in addition we
condition on f j , not on qk. In fact the whole example hinges on how the
samples are grouped into regions of acceptance and rejection. Instead of
adopting the diagnosis by Hacking concerning the likelihood principle, we
could therefore say that the approach of Neyman and Pearson takes the
observations in terms of a rather coarse-grained partition of information. In
other words, rather than saying that Neyman-Pearson procedures violate
the likelihood principle, we can also say that the procedures crucially de-
pend on how the observed sample is framed, and thus violate the principle
of total evidence.

10 In conclusion

In the foregoing I have discussed three statistical procedures, to wit, Neyman-
Pearson hypotheses testing, Fisher’s maximum likelihood estimation, and
Bayesian statistical inference. These three procedures were seen to relate to
inductive logic in a variety of ways.

The two classical approaches were connected most naturally to amplia-
tive inductive inference, running from a set of probability functions and the
data to a restricted set of such functions. However, I have also related both
procedures to non-ampliative inferences. First I connected parameter esti-
mation to Carnapian inductive logic. Then I related this logic to Bayesian
statistical inference, which was seen to be non-ampliative already. Further,
I have indicated how Carnapian inductive logic can be extended to Bayesian
inductive logic, which accommodates the use of statistical hypotheses and
thus captures Bayesian statistics. Finally, I have illustrated the latter logic
by giving a non-ampliative account of Neyman-Pearson hypothesis testing.
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I hope that portraying statistical procedures in the setting of inductive
logic has been illuminating. In particular, I hope that the relation between
Carnapian inductive logic and Bayesian statistics stimulates research on
the intersection of the two. Certainly, some research in this area has al-
ready been conducted; see for example Skyrms (1991, 1993, 1996) and Festa
(1993). Following these contributions, Romeijn (2005) argues that an in-
ductive logic that includes statistical hypotheses in its language is closely
related to Bayesian statistical inference, and some of these views have been
reiterated in this chapter. However, I believe that there is much room for
improvement. Research on the intersection of inductive logic and statistical
inference can certainly enhance the relevance of inductive logical systems to
scientific method and the philosophy of science. In parallel, I believe that
insights from inductive logic may help to clarify the foundations of statistics.
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