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Abstract

This paper presents a generalisation of the Condorcet Jury Theorem.
All results to date assume a fixed value for the competence of jurors,
or alternatively, a fixed probability distribution over the possible com-
petences of jurors. In this paper we develop the idea that we can learn
the competence of the jurors by the jury vote. We assume a uniform
prior probability assignment over the competence parameter, and we
adapt this assignment in the light of the jury vote. We then compute
the posterior probability, conditional on the jury vote, of the hypothe-
sis voted over. We thereby retain the central results of Condorcet, but
we also show that the posterior probability depends on the size of the
jury as well as on the absolute margin of the majority.

1 Introduction

In its classical formulation, the Condorcet Jury Theorem concerns collective

judgement by majority voting. For example, a jury might have to decide

whether it thinks that Jack is guilty or innocent of killing Jill. Every member

of the voting body, in this case the jury, votes between two alternatives, of

which only one is correct. The collective chooses the alternative that receives

most votes. In the example each juror votes for guilt or innocence, and the

verdict that receives most votes is chosen. It is assumed that consulting

a single voter gives a better chance of a correct result than flipping a fair
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coin: the chance that a juror correctly chooses between guilt and innocence

is larger than a half. The Condorcet Jury Theorem then states that if we

include ever more voters in the collective, then the chance that the collective

chooses the correct alternative tends to one. Put simply, the Condorcet Jury

Theorem reflects the wisdom of the crowd.

The classical formulation of the theorem concerns the chances of a correct

decision only. In the example, it concerns the chance of a majority vote for

guilt if in actual fact Jack is guilty. As such, it does not say anything about

the probability of the alternatives being true or false after all the votes

have been tallied. However, under fairly general conditions we can deduce

that with increasing size of the voting body, the probability associated with

the true alternative tends to one as well. We can even derive a simple

formula for the probability of the two alternatives, the so-called Condorcet

formula. If we assume that the alternatives get equal probability before

voting has taken place, and if we further assume that the chance that a

voter chooses correctly is independent of which alternative happens to be

true, often referred to as the symmetry of the juror competence, then the

probability of the alternatives is a function only of the absolute margin

between the voters for each of the alternatives: the larger the numerical

difference between those who voted for Jack’s guilt against those who voted

innocent, the stronger the support for Jack’s guilt. The size of the jury does

not come into this equation.

Despite possible appearances to the contrary, the fact that the support

according to the Condorcet formula is independent of the jury size is in

keeping with the Condorcet Jury Theorem itself. On the assumption of

either alternative being true, and using the fact that the chance for voters of

choosing that alternative is larger than a half, we can derive that the absolute

margin will increase at the same rate as the size of the voting body. The

Condorcet formula thus yields the correct results also if we consider ever

larger voting bodies. However, the absence of jury size in the Condorcet

formula is not entirely uncontroversial. Say that we compare two juries, a

very large one of 1000 voters which has a comparatively narrow margin of

10 in favour of guilt, and a small jury of 10 which is unanimous in its verdict

of guilt. According to the Condorcet formula, both juries convey the same
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probability onto the alternatives of guilt and innocence. But this is often

considered to be counterintuitive.

The present paper presents a generalisation of the Condorcet Jury The-

orem, in which jury size plays a more prominent role. The key idea is that

the relative majority of the jury, i.e., the proportion of jurors that makes up

the majority, reveals something about the competence of the jurors. Effec-

tively, the symmetry of competence is thereby dropped, and replaced by an

assumption on how we may learn about competence. Most consequences of

the Condorcet Jury Theorem will hold true under the generalised theorem

as well. The main departures are the following.

• The probability that the jury majority verdict is incorrect is monoton-

ically increasing in the jury size, n, if the absolute margin, ∆, remains

constant.

• The probability that the jury majority verdict is incorrect tends to

one-half as n tends to infinity, if ∆ remains constant in this limit.

• The probability that the jury majority verdict is incorrect tends to

zero as n tends to infinity, if the fractional majority, f = ∆/n, tends

to a nonzero positive constant in this limit.

The exclusive dependence on the absolute margin, as revealed by the Con-

dorcet formula, is thus seen to be an artefact of idealising assumptions, and

not something inherent to jury verdicts.

2 Condorcet revisited

In this section we introduce Condorcet’s jury theorem; see Ladha [1992], List

and Goodin [2001], List [2008], and Dietrich [2008]. We specifically present

the results of List [2004], according to which the posterior probability of the

hypothesis voted over, conditional on the jury vote, only depends on the

absolute margin of votes in favour and against the hypothesis.

2.1 Condorcet’s theorem

Let H1 be the hypothesis that Jack murdered Jill and H0 the hypothesis

that he did not, so {H0, H1} is a partition. Suppose that of a jury of n
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members trying Jack, a number n1 vote that H1 is true, while the remaining

n0 = n − n1 members vote that H0 is true. For both j = 0 and j = 1, we

assume that if Hj is in fact true, the eventuality that jury member i votes for

Hj being true, denoted by V j
i , has some fixed chance qj , which we will call

the competence of the jurors on the hypothesis Hj . For all i, i′ = 1, . . . , n

and j, j′ = 0, 1, if i′ 6= i, we set

p(V j
i |H

j ∩ V j′

i′ ) = p(V j
i |H

j) = qj . (1)

The left equality says that the jurors all vote independently, and the right

one that they vote with fixed competences qj , for both j = 0, 1. Note that

the competences of the jurors with respect to H0 and H1 do not refer to

a general ability to judge. They are specific for the hypotheses, and the

competences for the hypotheses H0 and H1 can differ: jurors might be

more accurate if H0 is true than if H1 is so. Finally, we assume that the

competences will be greater than one half, qj > 1/2, so the judgment of jury

members is better than the result of tossing a fair coin.

We can now introduce Condorcet’s jury theorem. Say that Jack is indeed

guilty, H1, so that the probability for any jury member to vote in favour

of Jack’s guilt, V 1
i , namely q1, is greater than one-half. Now for an ever

larger jury size n, consider the relative frequency of voters in favour, f1 =
n1
n = 1− f0. By the law of large numbers, the difference f1 − q1 tends to 0.

Because q1 > 1/2, we have that the probability of a correct majority vote,

n1 > n0, tends to 1 in the limit. We refer to Ladha [1993], Berend and

Paroush [1998] and Dietrich [2008] for proofs of more general versions of

this theorem. All these versions concern cases where the competences are

sampled from a fixed distribution, thus modeling the heterogeneity of the

jury.

2.2 Inverse probability

List [2004] emphasizes the importance of an inverted version of this result.

Rather than calculating the probability of a majority of votes V j
i given

the truth of Hj , we want to know the probability of the correctness of the

hypothesis Hj , given a majority of votes V j
i . For convenience we denote the

difference between votes for H1 and H0, also called the absolute margin of

the majority, by ∆ = n1 − n0. We denote the entire jury vote by Vn∆ =
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∩ni=1V
u(i)
i . Here u(i) = 1 if jury member i voted for H1 and u(i) = 0 if she

voted for H0, so that n1 =
∑

i u(i). By Bayes’ theorem we have

p(H1|Vn∆) =
p(∩iV u(i)

i |H1)p(H1)
p(Vn∆)

=
∏
i p(V

u(i)
i |H1)p(H1)
p(Vn∆)

=
qn1

1 (1− q1)n0p(H1)
p(Vn∆)

,

where p(H1) is the prior probability of the hypothesis H1. For H0 we can

derive a similar expression, replacing q1 by q0 and swapping the roles of

n0 and n1. The denominator p(Vn∆) = p(∩iV u(i)
i ) is the same in both

equations.

We can avoid calculating the denominator p(Vn∆) by using the posterior

odds instead of the posterior probability:

p(H1|Vn∆)
p(H0|Vn∆)

=
qn1

1 (1− q1)n0p(H1)
qn0

0 (1− q0)n1p(H0)
. (2)

These are the odds that Jack is guilty, given the jury verdict. Since n0 =
(n−∆)/2 and n1 = (n+∆)/2, the posterior odds depends both on the absolute

margin ∆ and on the jury size n.

For the posterior odds we can derive an inverse variant of Condorcet’s

theorem. If we let the jury size n go to infinity, and assume a fixed relative

frequency f1 > 1/2, we can derive the exact conditions under which the

posterior odds for H1 will tend to infinity as well. We can write

p(H1|Vn∆)
p(H0|Vn∆)

=

(
qf1

1 (1− q1)(1−f1)

q
(1−f1)
0 (1− q0)f1

)n
p(H1)
p(H0)

= Ln
p(H1)
p(H0)

.

For n going to infinity, these odds will tend to infinity on the condition that

L > 1, independently of the prior odds for H1. Now if 1
2 < q1 ≤ q0 < 1, i.e.,

the jurors are at least as competent at acquitting an innocent Jack as they

are at condemning a guilty one, then this condition is satisfied. If, however,
1
2 < q0 < q1 < 1, i.e., the jurors are less competent at acquitting an innocent

Jack than they are at condemning a guilty one, then the odds of a correct

verdict tend to infinity in the infinite n limit only if f1 is large enough.1

1The exact condition is obtained by solving f1 for log L > 0. This yields the solution

that f1 > 1
1+x

, in which x = log
q1

1−q0/log
q0

1−q1
. We are not aware of earlier formulations of
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2.3 Condorcet’s formula

By making two further assumptions we can arrive at the result that is central

to List [2004], the so-called Condorcet formula. First, we assume that the

priors of H0 and H1 are equal, p(H1) = p(H0), although this is not a crucial

assumption. It means that initially we judge it equally probable that Jack

committed the murder as that he did not. Second, and this is crucial for

List’s result, we assume that the competences of jury members with respect

to H0 and H1 are equal, q0 = q1 = q, meaning that all jury members are

precisely as reliable in condemning a murderer as they are in acquitting an

innocent suspect. With these two assumptions Equation (2) simplifies to

the Condorcet formula

p(H1|Vn∆)
p(H0|Vn∆)

=
(

q

1− q

)∆

. (3)

Because of the requirement q > 1/2, we have that q
1−q > 1 so that the

posterior odds that Jack killed Jill is larger than 1 if ∆ > 0 and smaller than

1 if ∆ < 0. The posterior odds depends only on the absolute margin between

the numbers of correct and incorrect votes brought out by the jury members,

and not on their total number. Note that this is perfectly consistent with

both the Condorcet theorem and its inverse version for posterior odds: for

increasing jury size n and fixed competence q1, the expected value of ∆

increases with n, and for increasing jury size n and fixed relative frequency

f1, the value of ∆ increases with n.

Now focus on the fact that, for a given ∆, the posterior odds do not

depend on the jury size. Imagine there are two juries, one with 10 members

and one with 100 members. Suppose that both juries vote on the guilt of

Jack, and that the 10-member jury unanimously votes for guilt while the 100-

member jury votes by 56 in favour, and 44 against Jack’s guilt. Which of the

two juries then makes the guilt of Jack more probable? Well, the majority in

the former is less than the majority in the latter, i.e. ∆10 = 10 < 12 = ∆100,

so that, according to Equation (3), the probability of Jack’s guilt is greater

for the larger than for the smaller of the two juries. Hence, if we want

to have as much certainty as we can get, apparently we should prefer the

verdict of the larger jury.

this result but since it is fairly straightforward we will not provide a more detailed proof

of the condition.
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As has been observed in Bovens and Hartmann [2003] and in Goodin

and Estlund [2004], and as we will further argue below, there is something

suspect in this conclusion. Indeed, we surmise that Equation (3) is too strong

an idealization: it is based on the unwarranted assumption of a symmetrical

and fixed competence. In the following we provide a model in which both of

these assumptions are dropped. Notably, a similar approach was taken by

Goodin and Estlund, who developed a model in which the jury vote is first

used to estimate the competence of the jurors, after which the estimated

jury vote is employed to determine the support that the vote lends to the

alternatives voted over. However, as we will explain in more detail in Section

4, their approach has some serious shortcomings.

3 A counterintuitive consequence

In this section we argue, by means of a classical statistical analysis, that

there is indeed something suspect about the Condorcet formula (3), ac-

cording to which only the absolute margin matters when one assesses the

probability that a jury vote lends to the hypothesis voted over. The prob-

lem is that no account has been taken of how probable the jury votes are to

begin with.

3.1 Intuitive characterisation

We first present the problem with the Condorcet formula in non-technical

terms. As was noted in the foregoing, if two juries reach a verdict on the case

of Jack and Jill, then the Condorcet formula tells us that the support each

of these juries lend to their verdict is determined by the difference in the

number of voters for the two alternatives voted over. Of course, if the one

jury consisted of jurors who are better informed and more confident in their

individual judgement than the other jury, then this might well influence the

support that each of the juries confers. In particular, it may so happen that

the competence of members of the one jury is higher than the competence

of members of the other jury.

Now we turn to the example of the two juries presented in the foregoing.

We might already feel that the smaller but unanimous jury somehow has an

edge over the large and divided one. We can advance a variety of reasons
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for that intuition. In this paper we will develop the view that a jury vote

tells us something more than just how the members in the jury think about

the alternatives put to them, and that it also reveals how difficult it was

for them to reach their judgement. This is relevant because, as suggested

before, we should prefer a jury that is highly competent with respect to the

case in question over a jury that does only marginally better than tossing a

coin.

The discussion of the present section shows, by means of a classical sta-

tistical analysis, that we can in fact learn something about the competence

of the jurors from the jury vote. In this section we only learn something

negative, namely that the supposition that the competence of the jurors in

the two juries of the example are equal cannot reasonably be maintained.

This is most easily understood by looking at Figure 1, which is further ex-

plained in the caption. In the following sections, we set up a model in which

we learn much more than just that.

3.2 A confidence interval for juror competence

We now make this intuitive problem with the Condorcet formula mathe-

matically precise by constructing a so-called confidence interval for juror

competence that depends on both majority and jury size. As in the previ-

ous section we assume that H1 is true and that the competence parameter is

q. Each juror votes independently and with identical probability, so that the

number of votes n1 has a binomial probability distribution. Its expectation

is E[n1] = nq, and the standard deviation is SD[n1] =
√
nq(1− q). So the

mean and standard deviation of the majority ∆ are

E[∆] = E[n1]− E[n0] = 2E[n1]− n = n(2q − 1) ,

SD[∆] = 2
√
nq(1− q) .

For any given competence q and jury size n, we have a probability of roughly

95% that ∆ lies within the specific bounds of two standard deviations around

the mean, E[∆]− 2SD[∆] < ∆ < E[∆] + 2SD[∆].

On this basis we can construct a confidence interval for q. Suppose ∆

lies at the edge of the interval indicated above. Then we would have one or

other of the following:

∆ = n(2q − 1)± 4
√
nq(1− q) ,
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which can be solved for q as a function of ∆, yielding the two roots

qmin , qmax =
1

2(n+ 4)

(
n+ 4 + ∆±

√
n+ 4− ∆2

n

)
.

By way of interpretation, we say that any competence q inside the interval

[qmin , qmax] entails that the given majority ∆ and jury size n are not so

improbable that they are a cause for worry. If the qmin of a jury characterised

by n and ∆ is greater than the qmax of a jury with n′ and ∆′,

qmin(n,∆) > qmax(n′,∆′) ,

then we can say that something very improbable has occurred: at least

one of the two juries has in that case voted oddly. And this should give

us cause to reconsider the assumptions of the statistical model at issue.

Specifically, such a result would invite us to reconsider the assumption that

the competences of the jurors from the two juries are the same.

3.3 Application to the example

Now let us have a second look at the example provided in Section 2. In Fig-

ure 1 the extremal values of the competence, qmin and qmax respectively, are

plotted against the majority ∆ for the two juries of 10 and of 100 members.

For n = 10 and ∆ = 10 it turns out that qmin(10, 10) = 0.786, while for and

n = 100 and ∆ = 12 we find qmax(100, 12) = 0.606. With the given votes, we

must therefore conclude that something highly improbable did occur. Since

qmax(100, 50) = 0.783 and qmax(100, 52) = 0.792, we need a majority of at

least 76 against 24 in the jury of 100 to feel that there is no cause for worry.

Now perhaps we simply know the numerical value of the juror compe-

tence. Or perhaps we know that all jurors have equal competence without

knowing its value, in which case we might say that the competence of the jury

is larger than what is suggested by the larger jury, or that the competence

of the jurors is much smaller than what is suggested by the smaller jury, or

possibly both. However, in any such case the result of List is applicable,

and we must simply conclude that we have witnessed a freak accident.

Alternatively, we might conjecture that the two juries have different val-

ues for the juror competence. In order to sort this out, we can formulate the

hypothesis that the jurors from the smaller jury are in fact more competent,
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Figure 1: A graph of the bandwidth of reasonable values of the competence q against

the size of the jury majority ∆, for both jury sizes n = 10 and n = 100. For each jury

separately, the areas within the ellipses indicate which values of the competence can be

considered reasonable, depending on the size of the majority, i.e., the absolute difference

between the number of voters for the two alternatives. Along the vertical line at ∆ = 10,

we find that the reasonable values for the competence of jurors from the jury with size 10

are all above 0.783, whereas the reasonable values for the competence of the jurors from

the jury with size 100 are all below 0.606. In other words, we cannot reasonably suppose

that jurors from the two juries have equal competence.

and perform a statistical test on this. But the idea that the jury vote tells

us something about the competence of the jurors can also be taken a step

further. We can say that the vote of the jury indicates something about

the competence of the jury directly, and this knowledge may be used with

advantage in the choice between jury verdicts. Specifically, the unanimous

vote of the jury of 10 should perhaps weigh more heavily, despite the rule

of Equation (3), simply because the unanimity suggests that the jurors are

competent.

In other words, the suggestion here is that a jury vote reflects more

than just the truth or falsity of the hypothesis voted over. It also conveys

information on how easy it is for jurors to vote correctly. A close call in the

jury, such as the small majority of 12 in the jury of 100 members, indicates

that the jurors find it hard to tell whether Jack murdered Jill, while the

unanimous vote of the small jury seems to suggest that the jurors find Jack’s

guilt fairly clear. The main contribution of this paper is in making precise

what the size of the majority tells us about the competence of the jurors,

and what the consequences are for assessing the jury vote.
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4 Alternative explanations

Before starting on this, however, we briefly consider some alternative expla-

nations for the jury votes considered above.

4.1 Asymmetry or heterogeneity of competence

List [2004] shows that if we do not make the assumption of symmetric com-

petence, q0 = q1, but instead let these competences vary independently, the

posterior odds do depend on the jury size. Depending on which of the two

competences is larger, a larger jury with equal absolute margin will have

smaller or larger posterior odds for the hypothesis. By choosing the com-

petences in the right way, this effect may even cause the posterior odds

to lean towards the minority vote. However, the model with differing but

fixed competences q0 and q1 fails to capture the intuitions on jury verdicts

voiced above. It introduces a dependence on jury size of an entirely different

nature, one that is not related to our present concerns.

It may seem possible to provide a partial explanation for the above jury

votes by including the heterogeneity of the jurors in the model, e.g., Ladha

[1993], Berend and Paroush [1998] and Dietrich [2008]. Intuitively, if we

assume a certain spread in the competence of jurors, as expressed in an

assumed probability distribution over the competence parameter, then the

vote from a larger jury will have added value. Just as in the case of the

fixed single competence, mistakes of jury members are washed out by larger

numbers. But in addition, the uncertainty stemming from randomly sam-

pling the jurors is also diminished. Because of this added effect, it is to be

expected that both the absolute majority and the jury size play a role in

the eventual trust we put in the jury vote.

The exact effects of this on the confidence we have in a jury are cer-

tainly worth exploring, and in our concluding remarks we shall indicate how

that might be done. However, for present purposes it is more important to

emphasise that, whatever the modeling details, the inclusion of competence

heterogeneity is not going to accommodate the intuitions voiced in Section

3. At first glance, there may be a striking similarity between the probabil-

ity distribution over competences that expresses this heterogeneity, and the

distribution over competences that we shall be using in this paper. How-
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ever, the latter distribution expresses our ignorance over the value of the

competence of a homogeneous jury, and this is very different from the real

variability of competences within a heterogeneous jury. Accordingly, in this

paper we adapt the distribution over competences in the light of the jury

vote, whereas it is a fixed distribution in the models that concern hetero-

geneity. In this respect, the model of the present paper differs from almost

all earlier models.

4.2 Uncertainty concerning competence

Goodin and Estlund [2004] are an exception. They notice a dependence

between the jury vote and the competence very similar to what we noted

in Section 3, and they argue that the competence of the jurors can be de-

termined from the jury vote itself. However, the way they determine the

competence is markedly different.

We describe the proposal of Goodin and Estlund in some detail. As

before, it is assumed that the jury members choose between two alternatives,

H0 and H1, that a total number n0 chooses H0 while a number n1 chooses

H1, and that n1 > n0. According to Goodin and Estlund, the competence

of jurors can be estimated by

q̂j =
nj
n
.

That is, the proportion of voters that chooses a particular option is an

estimate of how competent the voters are on that particular alternative.

Note, however, that the proportion can be read in two different ways: it

may be that H1 is the correct alternative and that voters are competent,

choosing H1 with a majority so that q1 >
1
2 . But it may also be that H0 is

the correct alternative and that voters are incompetent, choosing H0 with

a minority so that q0 <
1
2 .

After providing these estimates for the competences on the basis of the

vote, Goodin and Estlund discuss the support that a jury lends to the al-

ternatives. Importantly, they show sensitivity to the fact that we do not

know the competence in advance, and they take into consideration that the

proportion of voters indicates this competence. This goes in the same direc-

tion as what we are proposing in the following. However, to our mind the

method of estimation is far too simplistic.
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The problem with their method is that from the jury vote we cannot

conclude with certainty that the jury has one of the two estimated compe-

tences. Estimating the competence in the above way may lead to a good

approximation of the support by a jury, especially when the jury is large.

But a more accurate expression of that support must also incorporate the

epistemic uncertainty that surrounds the competence. An increase in jury

size will lead to more accurate estimations, but in the model of Goodin and

Estlund this fact cannot be taken into account. The analysis of the present

paper fares much better in this respect.

4.3 Coherent voting

We might consider an extension of the model of jury decisions in an entirely

different direction. Arguably, a small jury has a completely different group

dynamics than a larger jury, and the jury verdict may reflect how the jurors

have interacted. For example, it may be that jurors adjust their views to

coincide with those of jurors sitting in close proximity to them. In a jury of

100 the jurors may then still be treated as approximately independent. But

in a jury of 10, all jurors are in close proximity to each other. Therefore

a unanimous vote in a small jury may very well be the result of mindless

groupthink rather than of high juror competence. Such failures of indepen-

dence will generally put the results of a jury vote in a different perspective.

In a similar vein, we may think that the coherence of the jurors in the

smaller jury is indicative of the veracity of the jury verdict. This idea is at

the basis of the discussion that Bovens and Hartmann [2004, section 3.6] give

of the Condorcet formula. They also note its counterintuitive consequences,

adapt the model to include a positive correlation between the votes, and

then show that in this model a smaller unanimous jury lends more credibility

to the jury verdict than a larger jury whose verdict is divided, even when

the absolute margins in both juries are equal. Moreover, by adapting the

parameters in the model they can vary the degree to which the coherence of

jurors adds to the credibility of the verdict.

The coherence model of Bovens and Hartmann provides a successful ex-

plication of some such intuitions concerning jury votes. It sensibly drops

the assumption of the independence of the jurors, and employs the truth-

conduciveness of the coherence of votes to avoid the counterintuitive con-
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sequence of the Condorcet formula. A drawback of this solution is that

it relies on particular parameter values that must be filled in at the start.

Given these parameters, we can deduce the dependence of the posterior

odds on the jury size, but this dependence is in a sense put in by hand. Yet

this drawback does not mean that we should discard the coherence model

completely.

Accordingly, we do not motivate the model of the following sections

by a claim that it captures our intuitions on jury votes better. Rather it

captures another intuition about jury votes, differing from those captured in

the coherence model of Bovens and Hartmann [2004], and similar to those

voiced by Goodin and Estlund [2004]. It is the idea that the competence

of jurors can be partially revealed by the jury vote, as was indicated by

the classical statistical analysis of Section 3. We think that this idea is of

interest in its own right, and that it merits a more extensive treatment than

was given by Goodin and Estlund.

5 Jury vote with unknown competence

In the following we present a model in which the jury vote is indicative of

how competent the jurors are concerning the hypothesis at hand. We re-

tain the assumption that the jurors vote independently and concentrate on

relaxing the assumption of single-valued juror competences. To do this we

employ Bayesian statistical inference. We first compute a posterior probabil-

ity assignment over the competences q0 and q1 for H0 and H1 respectively,

based on the given jury vote and a prior probability over competences and

hypotheses. This inference determines how the jury vote informs us of the

competence: we may derive an expectation value for the juror competences

from it. More importantly, we compute the probability that a jury vote

gives to the hypothesis voted over.

5.1 Learning juror competence

Before we make the model and its consequences formally explicit, we give

an informal characterisation of it. Readers who have no interest in the

mathematical details may skip Subsection 5.2.
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In Section 3 we argued that a jury vote might reflect more than just

the truth or falsity of the hypothesis voted over: the vote also conveys

information on how easy it is for jurors to vote correctly. A close call in the

jury, such as the small majority of 12 in the jury of 100 members, might

indicate that the jurors find it hard to tell whether Jack murdered Jill, while

the unanimous vote of the small jury of 10 seems to suggest that the jurors

find Jack’s guilt all too clear. The model of this paper aims to make precise

what the relative size of the majority tells us about the competence of the

jurors, and what the consequences are for assessing the jury vote.

We consider two alternatives and a jury voting between them, and we

assume that one of them is correct. For each of the alternatives we assume

the voters have some competence, meaning that there is some fixed chance

that, if that alternative is correct, the voter chooses for that alternative. We

assume that jury members are at least as good at choosing correctly as the

toss of a fair coin. The crucial difference with earlier models in the literature

on the Condorcet Jury Theorem is that at the start of the jury vote, we are

ignorant of the juror competence: every value of the competence between
1
2 and 1 is deemed possible, and is assigned some probability. We do not

assume some specific value for the competence.

The use of a probability assignment over possible values of the com-

petence allows us to express the impact of a particular jury vote on our

estimations of juror competence. In fact it allows us much more detail in

what we learn from the jury vote than if we merely produce a best estimate,

as proposed by Goodin and Estlund [2004]. The model that is introduced

below presents us with a probability assignment over possible competences

after the jury vote, telling us what value of the competence is most proba-

ble, and by the shape of the probability assignment over competences, it also

tells us how reliable that estimate is. Moreover, based on this probability as-

signment over the possible values of juror competence we can determine the

support that the jury vote lends to the two alternatives voted over. In sum,

we provide a probability for the two alternatives that takes into account

both the jury vote itself and the fact that the jury vote tells us something

about how competent the jurors are.
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5.2 Mathematical model

Computing the expectation value for the jury competence is a tricky busi-

ness. In the foregoing we had a partition of two hypotheses, H0 and H1.

But since the competence parameter is unknown, we must split these hy-

potheses up into continuous ranges of hypotheses, Hq0 and Hq1 . The ex-

pressions p(Hqj ) should therefore be regarded as probability densities rather

than themselves probabilities. The hypotheses H0 and H1 each consist of

a range of statistical hypotheses, parameterised by q0 and q1 respectively.

These hypotheses have the likelihoods

p(V i
j |Hqj ∩ V i′

j′ ) = qj

for j = 0, 1. The probabilities of the aggregate hypotheses H0 and H1 are

p(H0) =
∫ 1

0
p(Hq0) dq0 ,

p(H1) =
∫ 1

0
p(Hq1) dq1 .

Further, we assume that the prior is equal and uniform over the interval

( 1
2 , 1], for both q0 and q1, meaning that p(Hqj ) = 1 for 1

2 < qj ≤ 1, and

p(Hqj ) = 0 for 0 ≤ qj ≤ 1
2 . Thus the only prior assumption is that the jury

members are not incompetent, but aside from that the prior density is flat,

as an expression of the fact that prima facie we consider each competence

value in the interval (1
2 , 1] equally probable. The above considerations entail

p(H0) =
∫ 1

1/2
1 dq0 =

1
2

=
∫ 1

1/2
1 dq1 = p(H1).

For reasons of simplicity we will not deviate from this assumption in what

follows.

It is convenient to reduce the number of parameters in this statistical

model to a single one by a suitable substitution of the parameters over the

domain. Note that in the above setup, the use of the two parameters q0

and q1 does not mean that the statistical model is two-dimensional. The

likelihoods involve q0 if H0 is true and q1 if H1 is true, but these are mutually

exclusive hypotheses, so there is no overlap in which the likelihoods involve

both parameters. Because of this we can employ a single range of hypotheses
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Hr with the parameter domain r ∈ [0, 1], which is formally equivalent to the

combination of q0 in H0 and q1 in H1.

Let us make this formal equivalence precise.2 First, within the domain

r ∈ [0, 1/2), and setting q0 = 1− r, we have the following equalities:

p(V 0
i |Hq0) = q0 = 1− r = p(V 0

i |Hr)

p(V 1
i |Hq0) = 1− q0 = r = p(V 1

i |Hr) .
(4)

Similarly, in the domain r ∈ (1/2, 1], and setting q1 = r, we have the following

equalities:

p(V 0
i |Hq1) = 1− q1 = 1− r = p(V 0

i |Hr)

p(V 1
i |Hq1) = q1 = r = p(V 1

i |Hr) .
(5)

In words, there is a formal equivalence between the likelihoods of the hy-

potheses Hr for r < 1/2, and those of Hq0 for q0 > 1/2. Similarly, there is

an equivalence between the likelihoods of the hypotheses Hr for r > 1/2 and

those of Hq1 for q1 > 1/2.

Now consider the resulting likelihoods for the hypotheses Hr. From the

right hand side of Equations (4) and (5) we can see that, over the entire

domain r ∈ [0, 1], the hypotheses Hr have the likelihoods

p(V 0
i |Hr) = 1− r ,

p(V 1
i |Hr) = r .

By updating the separate hypotheses Hr according to these likelihoods, we

are effectively updating the hypotheses Hq0 and Hq1 for each of the values

q0 ∈ (1/2, 1] and q1 ∈ (1/2, 1].

Next we consider the priors over the hypotheses Hq0 and Hq1 . Recall

that we assumed a uniform prior probability distribution over both of them.

But we can rewrite these priors in terms of priors over the hypotheses Hr

in the respective domains r ∈ [0, 1/2) and r ∈ (1/2, 1], as follows:

p(H0) =
∫ 1

1/2
p(Hq0) dq0 =

∫ 1/2

0
p(Hr) dr ,

p(H1) =
∫ 1

1/2
p(Hq1) dq1 =

∫ 1

1/2
p(Hr) dr .

2In the following we leave out the value r = 1/2. Since this is a measure zero event, its

omission has no consequences.
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Hence the uniform priors over the hypotheses Hq0 and Hq1 translate into a

single uniform prior over the hypotheses Hr with r ∈ [0, 1]. We can interpret

the probability of Hr with r < 1/2 as the probability of Hq0 by the translation

q0 = 1− r, and similarly, we can interpret the probability of Hr with r > 1/2

as the probability of Hq1 by the translation q1 = r. We note, as an aside,

that it is attractive to start out with uniform priors over the hypotheses Hqj ,

or at least with priors that combine into a Beta distribution over Hr. Priors

over Hqj that have a different shape do not necessarily lead to posterior

distributions that can be expressed in terms of a canonical function.

The substitution above is useful because we have thereby disposed of

a parameter, replacing q0 and q1 by the single parameter r. Moreover, we

can model the impact of the jury vote on the combined uniform probability

assignments over q0 ∈ (1/2, 1] and q1 ∈ [1/2, 1] by modeling its impact on the

uniform probability assignment over r ∈ [0, 1].

We shall condition this distribution on the jury vote Vn∆, characterised

by the numbers of votes n0 for H0 and n1 for H1, or equivalently, by the

size of the jury n = n1 + n0 and the majority ∆ = n1 − n0. Then the

posterior probability distribution over Hr results in a well-known form for

the posterior distribution, the Beta distribution,

p(Hr|Vn∆) =
(n+ 1)!
n0!n1!

rn1(1− r)n0 ,

with r ∈ [0, 1]. For r > 1/2 we are thereby indirectly specifying the posterior

probability distribution over the hypotheses Hq1 according to the transfor-

mation q1 = r, while for r < 1/2 we are indirectly specifying the posterior

for the hypotheses Hq0 , using the transformation q0 = 1− r.
From this expression we can derive the posterior probability of the hy-

potheses H0 and H1:

p(H0|Vn∆) =
(n+ 1)!
n0!n1!

∫ 1/2

0
rn1(1− r)n0 dr = 1− p(H1|Vn∆). (6)

This can be written in terms of the jury size n and the majority ∆, using

n0 = (n−∆)/2 and n1 = (n+∆)/2. The expectation values for the competences
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of the jurors, finally, are given by the following normalised integrals:

E[q0] =
1

p(H0|Vn∆)

∫ 1/2

0
rn1(1− r)n0+1 dr,

E[q1] =
1

p(H1|Vn∆)

∫ 1

1/2
rn1+1(1− r)n0 dr.

If n1 > n0, then we will have that E[q1] > E[q0], because on the assumption

that H0 is true a majority for H1 is more likely if the competence q0 is low.

Before we investigate the expression (6) in the next section, we want

to address a possible criticism of the derivation of the posteriors. It may

be objected that the jury vote is used twice: once for the determination of

the posterior over competences, and then again for the determination of a

posterior for the hypotheses based on some expected competence. But in

the model above there is no such double usage. We only employ the vote to

determine a probability distribution over the parameter r, which summarises

the two competences q0 and q1. All the other probability assignments are

derived from this distribution without using the data again.

6 Calculating the Posterior Probability

In the preceding section we derived a probability assignment for the hy-

potheses concerning Jack’s guilt, under the assumption of the independence

of jurors but without assuming a uniform value for the competences q0 and

q1. The assignment is an expression in which both the size of the majority

and the jury size play a role. In contrast, in Section 2 we presented the

result of List [2004] that, on the assumption of any particular competence

q0 = q1 = q, the probability of the hypotheses only depends on the majority.

In this section we investigate the implications of Equation (6) both an-

alytically and numerically. The implications of the present model are in

accordance with our intuitions on the relation between jury votes and the

hypothesis voted over: if, in a large jury, we have a close call between the

votes for the two alternatives, this is taken as a sign that it is hard to decide

between the hypotheses, i.e. that the competence of the jurors is therefore

probably low, and accordingly it is taken as a reason to put less trust in how

the jury has voted than the trust suggested by the absolute margin alone.
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We thereby provide a more accurate model of an aspect to jury voting that

was initially noticed by Goodin and Estlund [2004].

6.1 Analytic results

We first give an analytic characterisation of how the probability for the

hypotheses depends on jury size and absolute margin. Significantly, we

retain an important consequence of the Condorcet formula, as discussed in

Section 2. On the assumption that n1 > n0, or ∆ > 0, we have the pairwise

inequality

p(Hr|Vn∆) > p(H1−r|Vn∆)

for all r ∈ (1/2, 1]. Hence we also have that∫ 1

1/2
p(Hr|Vn∆) dr >

∫ 1

1/2
p(H1−r|Vn∆) dr .

Via the translation 1− r = q0 and r = q1 within r ∈ (1/2, 1], we thus obtain

the inequality p(H1|Vn∆) > p(H0|Vn∆) on condition that ∆ > 0.

Further, let us look at the so-called marginal likelihoods of the hypothe-

ses Hj on the two votes V 0
n+1∩V 1

n+2. These two votes effectively enlarge the

jury while keeping the absolute margin ∆ fixed. In Appendix A it is shown

that if ∆ = n1 − n0 > 0, we have

p(V 0
n+1 ∩ V 1

n+2|H0 ∩ Vn∆) > p(V 0
n+1 ∩ V 1

n+2|H1 ∩ Vn∆). (7)

Since we also have

p(H1|Vn+2,∆)
p(H0|Vn+2,∆)

=
p(V 0

n+1 ∩ V 1
n+2|H1 ∩ Vn∆)

p(V 0
n+1 ∩ V 1

n+2|H0 ∩ Vn∆)
× p(H1|Vn∆)
p(H0|Vn∆)

,

the inequality of Equation (7) entails that the odds of Jack’s guilt decreases

monotonically as the jury size n is increased if we hold the absolute margin

∆ > 0 fixed. This is in accordance with the intuitions voiced in the pre-

ceding sections, in particular that the jury size affects the probability of the

hypothesis.

Secondly, we investigate the limiting behavior in order to arrive at a

generalisation of Condorcet’s theorem for posterior odds. The mere fact

that p(H0|Vn∆) increases with the jury size for fixed ∆ > 0 does not yet

determine the limiting value for p(H0|Vn∆) as n goes to infinity. However,
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as shown in Appendix B, if the absolute margin ∆ is held constant in the

limit, we find the asymptotic behavior

lim
n→∞

p(H0|Vn∆) =
1
2
.

It is further shown that if the fractional majority, f = ∆/n, is held constant

in the limit, we have instead

lim
n→∞

p(H0|Vn,nf ) = 0.

Finally, we show that for the latter limiting behavior, it is not necessary for

the majority to increase linearly with n. It is enough if ∆ increases more

quickly than
√
n to ensure that p(H0|Vn∆) tends to zero.

6.2 Numerical results

Figure 2: Graphs showing the probability of the alternative H0 after incorporating the

jury vote, p(H0|Vn∆), as a function of the jury size, n, for a range of values of the absolute

difference between the number of voters for the two alternatives, ∆ = 2, 5, 10, and 12. In

all these cases the majority of the jury voted for alternative H1. The salient aspect of the

graphs is that for a fixed value of the absolute majority, the probability of the alternative

supported by the minority, H0, increases with the size of the jury. The intuitive reason

for this is that, for fixed majority size, a larger jury size signals a lower juror competence.

In addition to these qualitative results, we have also done some numerical

calculations with the aid of Mathematicar.

The integral in Equation (6) can be written as a known transcenden-

tal function, the so-called regularized incomplete Beta function. In Fig-

ure 2 we have plotted the relation between the probability p(H0|Vn∆) and
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Figure 3: A graph showing the probability of the alternative H0 after incorporating the

jury vote, p(H0|Vn∆), as a function of the jury size n and the size of the majority ∆. As

in Figure 2, we see that for any majority size, the probability of H0 increases.

the jury size n = n1 + n0, for various values of the size of the majority

∆ = n1 − n0. These calculations illuminate the case of the two juries con-

sidered at the beginning of this paper. With a unanimous verdict of guilt

in a jury of 10, ∆ = 10 and n = 10, for example, we find the probability

p(H1|V10,10) = 0.9995. For a jury of 100 with a majority of 12 for guilt, on

the other hand, we calculate a smaller probability that the jury verdict is

correct, namely p(H1|V100,12) = 0.8839. The important point here is that

the probability depends not only on the majority, as it did when we chose

some fixed competence. It decreases as n is increased, and this effect may

counterbalance a difference in the size of the majority.

In Figure 3 we see the dependence of the probability p(H0|Vn∆) on the

majority size ∆ spelled out in more detail. Note first that for ∆ = 0, this

probability is one-half, as it should be. Furthermore, for any fixed jury size,

the probability of the hypothesis H0 decreases with increasing majority size.

And finally, for fixed majority size ∆ and increasing jury size n, we can see

that the probability p(H0|Vn∆) slowly increases towards a half again. For

very large juries, as also suggested by Figure 2, a small majority does not

carry much weight.
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7 Concluding remarks

Now that we have obtained these results, what can we say of earlier results

in the literature? Recall that the model of Goodin and Estlund [2004] is

motivated by the same intuition as the model of this paper. However, we

claim that the present model is more convincing than the one that Goodin

and Estlund provide, because it takes into account both the learning of

juror competence, and the uncertainty associated with this learning. That

is, unlike Goodin and Estlund, our model accommodates the fact that the

juror competence may not be reflected exactly in the proportion of jurors.

We think this is an improvement over their model.

The main result of List [2004] was that the probability of the hypotheses

voted over only depends on the absolute margin ∆. Of course, this is still

a valid point under the assumption of fixed symmetric competence. But

with the foregoing considerations in mind, we see that if we do not know the

competences q0 and q1, and if we decide to learn about these competences

on the basis of the jury vote, then both the absolute majority and the jury

size matter. The model of this paper thus provides an alternative account

of how the confidence we may have in a jury vote depends on the size of the

jury as well as on the absolute majority, besides the explanation provided

by Bovens and Hartmann [2003].

We conclude with some suggestions on how to develop the results of the

present paper. First, we think that it is important for the practical appli-

cability of Condorcet-style results to relax the assumption of the theorems

concerning the independence of the jurors. As mentioned above, Bovens

and Hartmann successfully model a jury vote with dependent jurors, and

it will be interesting to see if that model can be combined with the model

presented in this paper. Another way to incorporate the jury dynamics into

the analysis is presented by adapting the prior, so as to make it less sensitive

to almost or entirely unanimous voting. As indicated before, we might think

that unanimity in small juries is due to mindless groupthink, and not a sign

of a high juror competence or of truth-conducive coherence. If so, we can

correct for a possible overestimation of the competence by choosing a prior

over competences that is peaked around r = 1/2.
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Perhaps a more accurate way of modeling the interaction between group

members is by dropping the assumption on the likelihoods that is expressed

in the left-hand equality of Equation (1) altogether. In the model presented

in this paper, jury votes Vn∆ are characterised by the numbers n and ∆ only,

because the likelihoods of the hypotheses Hj only depend on these numbers.

But we might also partition the space of possible jury votes differently,

according to other characteristics of the votes, and employ hypotheses that

have more complicated likelihood functions over that space. While this will

no doubt provide interesting new insights, we can scarcely hope to attain

analytic results for a model with these more involved statistical hypotheses.

An entirely different line of research concerns the real variation of com-

petences within the jury, as discussed earlier in this paper. For example,

Dietrich [2008] shows that the classical Condorcet jury theorem still holds

if we suppose that the competences of jurors vary, as long as their aver-

age competence is larger than 1/2. This raises the question whether we

can also derive an expression for the posterior odds of the hypothesis on

the assumption of a certain spread in the competences of the respective ju-

rors. A suitable statistical setting for answering this question is hierarchical

Bayesian modeling, in which we may suppose the juror relative competence

qij to be drawn at random from a distribution of possible values for the com-

petence. Again, analytic results may be very hard to come by, but software

packages such as WinBUGSr are well equipped to investigate such models

numerically.

Finally, we expect that much can be gained by applying the present

insights to the discussion over the coherence measures proposed in Bovens

and Hartmann [2004], and continued in Haenni and Hartmann [2006]. The

reliability parameter employed there is formally similar to the competence

parameter employed in the present paper. It will be interesting to see if and

how we can adapt our estimations of the reliability of measurement appa-

ratuses or witnesses from their coherence. Because the well-known impossi-

bility result of Bovens and Hartmann relies on variability in the reliability

parameter, and because in the present paper we have shown how to adapt

the probability assignment over values of this parameter, we expect that

casting their impossibility result in terms of the present findings will lead to

interesting new insights.
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A Relative size of the marginal likelihoods

In this appendix we prove that the marginal likelihood of the hypothesis

H0 for the combined votes V 0
n+1 ∩ V 1

n+2, given an earlier jury vote Vn∆ for

which ∆ > 0, is larger than the corresponding likelihood of the hypothesis

H1. Mathematically,

p(V 0
n+1 ∩ V 1

n+2|H0 ∩ Vn∆) > p(V 0
n+1 ∩ V 1

n+2|H1 ∩ Vn∆). (8)

We will do so by writing out the marginal likelihoods in terms of the likeli-

hoods of the statistical hypotheses Hr for r < 1/2 and r ≥ 1/2 respectively.

We first determine the likelihoods of the hypotheses Hr for the two votes

V 0
n+1 ∩ V 1

n+2:

p(V 0
n+1 ∩ V 1

n+2|Hr ∩ Vn∆) = r(1− r).

Recall that the hypotheses H0 and H1 are composed of the statistical

hypotheses Hr. The likelihood of the hypothesis H0 for the two votes

V 0
n+1 ∩ V 1

n+2 is

p(V 0
n+1 ∩ V 1

n+2|H0 ∩ Vn∆)

=
∫ 1/2

0
p(Hr|H0 ∩ Vn∆)p(V 0

n+1 ∩ V 1
n+2|Hr ∩H0 ∩ Vn∆) dr

=
1

p(H0|Vn∆)
(n+ 1)!
n0!n1!

∫ 1/2

0
rn1(1− r)n0 r(1− r) dr . (9)

25



in which we have used the normalisation p(H0|Vn∆). Following Equation

(6), we have within r ∈ [0, 1/2] that

p(Hr|H0 ∩ Vn∆) =
p(Hr ∩H0|Vn∆)
p(H0|Vn∆)

=
p(Hr|Vn∆)
p(H0|Vn∆)

=
1

p(H0|Vn∆)
(n+ 1)!
n0!n1!

rn1(1− r)n0 . (10)

The marginal likelihood of the hypothesis H1 for the two votes is given by

a similar expression, with the difference that the integration bounds are 1/2

and 1, and that the normalisation is p(H1|Vn∆).

In order to compare the two marginal likelihoods, it will be convenient

to write Equation (10) in terms of the same integration bounds, making use

of the symmetry in the integral expression:

p(V 0
n+1 ∩ V 1

n+2|H1 ∩ Vn∆)

=
1

p(H1|Vn∆)
(n+ 1)!
n0!n1!

∫ 1

1/2
rn1(1− r)n0 r(1− r) dr

=
1

p(H1|Vn∆)
(n+ 1)!
n0!n1!

∫ 1/2

0
rn0(1− r)n1 r(1− r) dr . (11)

We can now compare the two marginal likelihoods by comparing the func-

tions appearing under the integration sign. Specifically, we will investigate

the expression

p(V 0
n+1 ∩ V 1

n+2|H0 ∩ Vn∆)− p(V 0
n+1 ∩ V 1

n+2|H1 ∩ Vn∆)

=
∫ 1/2

0

(
p(Hr|H0 ∩ Vn∆)− p(Hr|H1 ∩ Vn∆)

)
r(1− r) dr

=
(n+ 1)!
n0!n1!

∫ 1/2

0

(
rn1(1− r)n0

p(H0|Vn∆)
− rn0(1− r)n1

p(H1|Vn∆)

)
r(1− r) dr , (12)

the difference between the marginal likelihoods of Equations (9) and (11).

If this function is positive, then the marginal likelihood of H0 is larger than

that of H1, which is what we have set out to prove.

The expression inside the integral of Equation (12) consists of two parts.

We now make some observations on the part between brackets,

g(n0, n1, r) =
rn1(1− r)n0

p(H0|Vn∆)
− rn0(1− r)n1

p(H1|Vn∆)
.

First, because of the normalisations, p(Hj |Vn∆), we have∫ 1/2

0
g(n0, n1, r) dr = 0. (13)
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Next, if we assume that n1 > n0, Equation (7) says that p(H1|Vn∆) >

p(H0|Vn∆), so that we have

g(n0, n1, 1/2) =
(

1
p(H0|Vn∆)

− 1
p(H1|Vn∆)

)
1
2n

> 0 . (14)

Furthermore, the equation g(n0, n1, r) = 0 has two solutions in r. One is

r = 0, the other is

r∗ =
c

1 + c
with c =

(
p(H0|Vn∆)
p(H1|Vn∆)

)1/∆

. (15)

Together with Equations (12) and (14), Equation (15) entails that in the

domain r ∈ (0, r∗) we have that g(n0, n1, r) < 0 while in r ∈ (r∗, 1/2] we

have that g(n0, n1, r) > 0. Finally, with Equation (13) this entails that

−
∫ r∗

0
g(n0, n1, r) dr =

∫ 1/2

r∗
g(n0, n1, r) dr. (16)

In other words, the entire negative contribution to the integral of Equation

(13) lies in r < r∗, while the entire positive contribution to it lies in r > r∗.

All this is illustrated in Figure 4.

r →

  ↑
p(Hr|Hj∩Vn∆)

½

j=0

j=1

r*0

Figure 4: Graphs of the functions p(Hr|Hj ∩ Vn∆) for j = 0, 1 against r ∈ [0, 1/2]. The

values of n and ∆ are kept fixed. As expressed in Equation (16), the two areas in between

the two curves are equal.

We make one further observation on the function r(1−r), namely that it

is monotonically increasing in r over the domain r ∈ [0, 1/2]. Now recall that

in the domain r ∈ [0, r∗], the contribution of the integral is entirely negative.
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The factor with which the function g(n0, n1, r) is multiplied over this domain

is, on average, strictly less than r∗(1−r∗), and the contribution to the whole

integral of Equation (12) therefore has the following lower bound:∫ r∗

0
g(n0, n1, r) r(1− r) dr > r∗(1− r∗)

∫ r∗

0
g(n0, n1, r) dr. (17)

In the domain r ∈ [r∗, 1/2], on the other hand, the integral is entirely posi-

tive, and the factor with which the function g(n0, n1, r) is multiplied is, on

average, strictly more than r∗(1− r∗), thus leading to a contribution with a

lower bound∫ 1/2

r∗
g(n0, n1, r) r(1− r) dr > r∗(1− r∗)

∫ 1/2

r∗
g(n0, n1, r) dr. (18)

Combining these two equations, we have a lower bound of the difference

between the two marginal likelihoods covering the entire domain of r.

Hence we can determine the lower bound of the difference between the

marginal likelihoods, as follows:

p(V 0
n+1 ∩ V 1

n+2|H0 ∩ Vn∆)− p(V 0
n+1 ∩ V 1

n+2|H1 ∩ Vn∆)

=
∫ 1/2

0
g(n0, n1, r) r(1− r) dr

=
∫ r∗

0
g(n0, n1, r) r(1− r) dr +

∫ 1/2

r∗
g(n0, n1, r) r(1− r) dr

> r∗(1− r∗)

(∫ r∗

0
g(n0, n1, r) dr +

∫ 1/2

r∗
g(n0, n1, r) dr

)
= 0.

The crucial step in this derivation is of course the inequality, which is based

on the two lower bounds of Equations (17) and (18). Together they establish

Equation (8).

B Limiting behaviour of the probabilities

The posterior probability for H0 conditional on the jury vote Vn∆ can be

written as a regularized incomplete Beta function; see Abramowitz and Ste-
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gun [1964, p. 263], formulae (6.6.1) and (6.6.2). Specifically,

p(H0|Vn∆) =
(n+ 1)!
n0!n1!

∫ 1
2

0
dr rn1(1− r)n0

=
B 1

2
(n1 + 1, n0 + 1)

B(n1 + 1, n0 + 1)
≡ I 1

2
(n1 + 1, n0 + 1) . (19)

In this appendix we exploit certain asymptotic properties of the regularized

incomplete Beta function to show that p(H0|Vn∆) tends to one-half as n

tends to infinity at constant ∆, but to zero if the fractional majority, f =

∆/n, is held constant in the limit. It is also shown that if ∆ increases more

quickly than
√
n, p(H0|Vn∆) still tends to zero in the limit of n to infinity.

Theorem 1

If ∆ = n1 − n0 ≥ 0 is constant, then I 1
2
(n1 + 1;n0 + 1) tends to 1/2 in the

limit that n = n1 + n0 tends to infinity.

Proof

On changing the integration variable from r to t = (1− 2r)2, we find

I 1
2
(n1 + 1;n0 + 1) = 2−n−2 (n+ 1)!

n0!n1!

∫ 1

0

dt√
t

(1−
√
t)n1(1 +

√
t)n0 . (20)

This expression can be rewritten as

I 1
2
(n1 + 1;n0 + 1) = 2−n−2 (n+ 1)!

n0!n1!

∫ 1

0

dt√
t

(1− t)n0(1−
√
t)∆ . (21)

The last factor in the integrand can be expanded as the finite binomial series

(1−
√
t)∆ =

∆∑
m=0

∆!
m! (∆−m)!

(−1)m t
m
2 ,

and this allows the evaluation of the integral, term for term:

I 1
2
(n1+1;n0+1) = 2−n−2 (n+ 1)!

n0!n1!

∆∑
m=0

∆!
m! (∆−m)!

(−1)m
Γ(m+1

2 )Γ(n0 + 1)
Γ(n0 + m+3

2 )
.

(22)

The Stirling expansion, namely

Γ(n) = (n− 1)! =
√

2πnn−
1
2 e−n[1 +O( 1

n)]
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is now used to give the asymptotic expressions

(n+ 1)!
n0!n1!

∼ 2n+1

√
n

2π

Γ(n0 + 1)
Γ(n0 + m+3

2 )
∼ n

−m+1
2

0 =
(

2
n−∆

)m+1
2

.

On inserting these forms into Equation (22), we find that I 1
2
(n1 + 1;n0 + 1)

is asymptotically equivalent to

1
2
√
π

√
n

n−∆

[
Γ(1/2)−∆Γ(1)

√
2

n−∆
+ . . .+ (−1)∆Γ(∆+1

2 )
(

2
n−∆

)∆
2

]

All the terms in the square braces, except for the first one, vanish in the

limit of large n, and there is only a finite number of these terms. So only the

first term survives, and since Γ(1/2) =
√
π, we have thereby proved indeed

that I 1
2
(n1 + 1;n0 + 1) tends to 1/2 in the limit as n tends to infinity.

Theorem 2

If ∆ ∼ nβ for large n, with 1/2 < β ≤ 1, then I 1
2
(n1 + 1;n0 + 1) tends to 0

in the limit.

Proof

Recall that we can rewrite Equation (19) as Equation (20). The latter can

also be rewritten as

I 1
2
(n1 + 1;n0 + 1) = 2−n−2 (n+ 1)!

n0!n1!

∫ 1

0

dt√
t

(1− t)n1(1 +
√
t)−∆ , (23)

and we now split the integral into two pieces, corresponding to 0 < t < ε2

and ε2 < t < 1, where ε will be specified in a moment. Clearly,∫ ε2

0

dt√
t

(1− t)n1(1 +
√
t)−∆ <

∫ ε2

0

dt√
t

= 2ε

whereas∫ 1

ε2

dt√
t

(1− t)n1(1 +
√
t)−∆ < (1 + ε)−∆

∫ 1

0

dt√
t

(1− t)n1

= (1 + ε)−∆ Γ(1
2)Γ(n1 + 1)
Γ(n1 + 3

2)
.
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We insert the last two inequalities into Equation (23) and also employ the

Stirling expansion, as in the proof of Theorem 1. This yields

I 1
2
(n1 + 1;n0 + 1) <

√
n

2π
ε+

√
n

n+ ∆
(1 + ε)−∆ .

Now choose ε = n−α and put ∆ ∼ nβ, thereby obtaining

I 1
2
(n1 + 1;n0 + 1) <

1√
2π

n
1
2
−α + (1 + n−α)−n

β
.

Now (1 + n−α)n
α

tends to e in the limit of large n, so we obtain

I 1
2
(n1 + 1;n0 + 1) <

1√
2π

n
1
2
−α + exp[−nβ−α]

asymptotically. For any α > 1/2, the first term above vanishes asymptoti-

cally, and for any β > α, so does the second term. Hence for any 1/2 < β ≤ 1

we have shown that I 1
2
(n1 + 1;n0 + 1) tends to 0 in the limit as n tends to

infinity.

Corollary

If f = ∆
n is constant, then I 1

2
(n1 + 1;n0 + 1) tends to 0 in the limit that

n = n1 + n0 tends to infinity.

Proof

This follows immediately by taking the special case β = 1 in Theorem 2.
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