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Abstract 

Researchers often have expectations about the research outcomes in regard to inequality 

constraints between group means. Consider the example of researchers who investigated the 

effects of inducing a negative emotional state in aggressive boys. It was expected that highly 

aggressive boys would, on average, score higher on aggressive responses towards other peers 

than moderately aggressive boys, who in turn score higher than non-aggressive boys. In most 

cases, null hypothesis testing is used to evaluate such hypotheses. We will show, however, that 

hypotheses formulated using inequality constraints between the group means cannot be 

evaluated properly by means of classical null hypothesis testing nor by using one-sided 

hypotheses tests together with planned comparisons. These analyses test the wrong hypotheses 

and the testing procedure itself suffers from complications. In this paper, we propose an 

innovative solution to these above-mentioned issues using Bayesian model selection, which we 

illustrate using a case study. 

 

Keywords: Bayesian model selection, informative hypothesis, power, planned comparison, 

one-sided hypothesis testing, aggression, emotional state 
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Evaluating Expectations about Negative Emotional States of Aggressive Boys using Bayesian 

Model Selection 

Many psychology researchers rely on regression analysis, analysis of variance or 

repeated measures analysis to answer their research questions. The default approach in these 

procedures is to test the classical null hypothesis that ‘nothing is going on’, regression 

coefficients are zero, or there are no group differences, etc. We argue that many researchers 

have expectations about various components of the analysis, for instance the ordering of 

means, and are not particularly interested in testing a classical null hypothesis (see also Cohen 

1990, 1994). For example, a researcher might expect that highly aggressive boys would, on 

average, score higher on aggressive responses towards other peers than moderately aggressive 

boys, who in turn would score higher than non-aggressive boys. This expectation is clearly not 

the same as the classical null hypothesis: all scores for the boys are equal. We refer to such 

expectations as informative hypotheses.  

In this paper we describe, by means of a case study, what can happen if a researcher has 

such informative hypotheses, and uses either classical null hypothesis testing or one-sided 

hypothesis testing together with planned comparisons. Subsequently, we will elaborate on 

alternative strategies. We briefly highlight one alternative: possibilities in the field of structural 

equation modelling, in particular Bayesian model selection. Furthermore, we use one of our 

own studies in the area of experimental psychology to illustrate that our aim is not to disregard 

any specific study, but to discuss a problem very common to psychological research, a problem 

encountered in our own research as well.  

Example 

Emotional State in Aggressive Boys 

Orobio De Castro, Slot, Bosch, Koops, and Veerman (2003) investigated the effects of 

inducing a negative emotional state in aggressive boys. It was questioned whether inducing 
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negative emotions would make boys with aggressive behavior problems attribute more 

aggressive responses and hostile intentions to their peers in comparison to the group of non-

aggressive boys. The authors examined three levels of aggression: high, moderate, and no 

aggression. Mild negative emotions were induced by manipulating participants’ performance in 

a computer game. Each participant completed two conditions: a neutral-emotion condition prior 

to playing a computer game (neutral) and a negative-emotion condition following emotional 

manipulation after unjustly losing the game (negative). Hostile intent attributions and 

aggressive responses to other peers were assessed by presenting the boys with eight vignettes 

concerning ambiguous provocation by peers, for example: 

Imagine: You and a boy in your class are taking turns at a computer game. Now it’s your turn, and you 

are doing great. You are reaching the highest level, but you only have one life left. You never came this 

far before, so you are trying very hard. The boy you are playing with watches the game over your 

shoulder. He sees how far you have come. Then he shouts “Watch out! You’ve got to be fast now!” and 

he pushes a button. But it was the wrong button, and now you have lost the game! 

 

Two open-ended questions were asked directly after listening to each vignette: (1) why 

the provocateur in the vignette acted the way he did; (2) how the participants would respond if 

they were to actually experience the events portrayed in the vignette. Answers to the first 

question were coded as benign, accidental, ambiguous, or hostile. The reactions of the boys to 

the second question were coded as aggressive, coercive, solution attempt, or avoidant. By 

counting the number of vignettes in each condition with a hostile or an aggressive response to 

the questions, respective scores for hostile intentions and responses were calculated. 

Expectations 

The first expectation (A) was that negative emotion manipulation would invoke more 

hostile intentions and aggressive responses at all levels of aggression. This expectation was 

based on Dodge (1985), who hypothesized that a negative emotional state makes children more 
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prone to attribute hostile intentions to other children they interact with. The constraints 

corresponding to the informative hypothesis HA,host in relation to hostile attribution are 

displayed in Table 1. It can be seen, for example, that the mean score for non-aggressive boys 

in the neutral condition is expected to be lower than the mean score for non-aggressive boys in 

the negative condition, Mneu, non < Mneg, non. Note that the same constraints hold for aggressive 

responses (HA,aggr). 

A second expectation (B) was that emotion manipulation would influence aggressive 

boys more than less aggressive boys. Consequently, the tendency to attribute more hostile 

intentions to peers in ambiguous situations was expected to increase more in highly aggressive 

boys than in moderately aggressive and non-aggressive boys. As was argued by Orobio de 

Castro et al. (2003), this hypothesis seems plausible, given the fact that many children with 

aggressive behavior problems have histories of abuse, neglect, and rejection (Coie & Dodge, 

1998). As a result, these highly aggressive boys exhibit a greater tendency to attribute hostile 

intentions to peers in ambiguous situations than non-aggressive boys do (see also, Orobio de 

Castro, Veerman, Koops, Bosch, & Monshouwer, 2002). The constraints corresponding to the 

informative hypothesis for hostile attribution (HB,host) are displayed in the middle of Table 1. 

These constraints imply, for example, that the difference between the negative and neutral 

conditions is smaller for the non-aggressive group than for the moderately aggressive group, 

[Mneu,non - Mneg,non] < [Mneu,mod - Mneg,mod]. The same constraints also hold for aggressive 

responses (HB,aggr). 

A third expectation (C) was a combination of expectation A and B. The authors 

expected that negative emotion manipulation would invoke more hostile intentions and 

aggressive responses at all levels of aggression and at the same time that emotion manipulation 

would influence aggressive boys more than less aggressive boys (Orobio de Castro et al. 2003). 

The difference between the neutral and the negative condition would become larger if boys are 
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more aggressive. The hypotheses HC,host and HC,aggr combine the constraints presented in the 

upper part of Table 1 with the constraints presented in the middle of Table 1.  

 The research question investigated throughout the current paper is which of these three 

informative hypotheses, HA, HB, or HC, are best supported by the data. We try to answer this 

research question using classical null hypothesis testing, one-sided hypothesis testing, planned 

comparisons, structural equation modelling and finally Bayesian model selection. The latter 

procedure will be more thoroughly introduced below. 

Results from the Null Hypothesis Testing 

An often used strategy to analyse data like ours is classical null hypothesis testing. In 

our example, aggressive responses and hostile intentions were used as dependent variables in 

two 3 × 2 analyses of variance with level of aggression (high, moderate, and no aggression) as 

a between-participants factor and the condition (neutral/negative) as a within-participants 

factor. Three hypotheses were tested for both hostile intentions and aggressive responses: 

H0,1:  There is no difference between levels of aggression; 

H0,2: There is no difference between the condition means; 

 H0,1x2: There is no interaction between levels of aggression and the condition.  

From the results, it can be seen that the only significant interaction is found for hostile 

attribution (level of aggression × condition); see Table 2. There were no differences between 

condition means for both aggressive responses and hostile intentions. However, for both 

aggressive responses and hostile intentions there appear to be significant differences between 

aggression level means (see Table 2).  

Many researchers would now perform a follow-up analysis, which we also doin the 

section entitled ‘The Evaluation of Informative Hypotheses’. However, we first show what 

happens if the informative hypotheses HA, HB, and HC are analysed using the null hypotheses 

H0,1 H0,2 and H0, 1x2.  

What Can Happen? 
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Although classical null hypothesis testing has been the dominant research tool for the 

latter half of the past century it suffers from serious complications (e.g., Wagenmakers, 2007), 

particularly when evaluating informative hypotheses like HA, HB, and HC. In this section, we 

discuss what can happen when the null hypotheses H0,1 H0,2 and H0, 1x2 are tested to answer the  

question which informative hypothesis (HA, HB, or HC) is best supported by the data.  

The Null and Alternative Hypothesis 

The first problem that arises is that there is no straightforward relationship between the 

informative hypotheses under investigation, HA, HB, and HC, and the null hypotheses that are 

actually being tested. De Castro et al. (2003) were not interested in testing the hypotheses H0,1 

H0,2 and H0, 1x2 that were tested in the previous section. Although Wainer (1999) argues in “One 

Cheer for Null Hypothesis Significance Testing” that the null hypothesis can be useful in some 

cases, many researchers have no particular interest in the null hypothesis (see also Cohen 1990, 

1994). So why test the null hypothesis if one is not interested in it?  

Furthermore, the informative hypotheses HA, HB and HC differ from the traditional 

alternative hypotheses: ‘not H0,1’, ‘not H0,2’ and ‘not H0, 1x2’. As can be seen in Table 2, some 

of the null hypotheses are rejected in favor of the alternative hypothesis (significant results in 

bold), but what does this tell us? For example, for hostile attribution there is a main level of 

aggression difference and an interaction between level of aggression and condition. Does this 

provide any evidence that one of these informative hypotheses is more likely than the other? 

Clearly, the answer is ‘no’, because neither the null hypotheses nor the alternative hypotheses 

resemble any of the informative hypotheses under investigation.  

In conclusion, using classical null hypothesis testing does not result in a direct answer 

to the research question at hand. This issue is usually solved by a visual inspection of the 

sample means. Inspecting Table 3, it appears there is a violation of expectation A with regard 

to hostile attribution: the mean of the non-aggressive group is lower in the negative condition 
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than in the neutral condition, rather than higher. Does this imply that expectation A is not 

supported by the data? Or is this a random deviation? The mean differences between the 

neutral and negative condition for non-, moderate- and high-aggressive boys, presented in the 

lower part of Table 3, are in agreement with the constraints of hypothesis B. However, does 

this imply that HB is preferred over HA? What if there would have been a small deviance of the 

constraints imposed on the mean differences: -.45, -.46, .45? Or what if there would have been 

a larger deviance between the mean differences: -.45, -.55, .45? When would the difference be 

large enough to conclude that the informative hypothesis holds?  

Multiple Hypothesis Testing and Power 

Alongside the complication of testing the wrong hypotheses, the procedure of classical 

null hypothesis testing suffers from a number of complications itself. Two important issues will 

be discussed here: an increase of type I errors due to multiple analyses and the loss of power 

that results from the adjustment often used to correct for these errors.  

Multiple tests are typically needed to evaluate the informative hypotheses at hand and 

this can be problematic (e.g., Maxwell, 2004). In our example, six F-tests were performed. 

Multiple testing increases the family-wise error rate, which is the probability of incorrectly 

rejecting at least one null hypothesis of all hypotheses tested. For example, for two independent 

tests and an alpha level of .05 per test, the probability of correctly concluding that both H0’s are 

true is .95 x .95 = .90 and for six tests this is .956 = .74. In the latter case, the probability of 

incorrectly rejecting at least one null hypothesis is 1 -.74 = .26. Note that the six tests in Table 

2 are not independent, but in this situation the overall alpha level is higher than .05 as well.  

A solution to the problem of type I error inflation is to control the overall alpha level by 

using, for example, the Bonferroni correction. For this procedure, the overall alpha level is 

divided by the number of tests performed. The price for using such a correction is a severe 

reduction in power (see Cohen 1992). If the alpha level is corrected, this also requires a larger 
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sample size to maintain sufficient power, which may not always be realistic. In this example, 

ethical and clinical considerations urge us to limit, to an absolute minimum, the number of 

boys with severe behavior problems who can be asked to participate in such a taxing 

manipulation. These sample size restrictions are evident in many studies in our field. 

Moreover, the Bonferroni correction is not unproblematic, the procedure is rather 

conservative, meaning that the smaller the alpha level, the lower the power. Improvements of 

the Bonferroni procedure have been developed, including the false discovery rate (Benjamini, 

& Hochberg, 1995) or the Holm-Bonferroni method (Holm, 1979; for an overview see 

Hsu1996). However, larger sample sizes are still needed in these cases, and for it remain 

difficult to determine how the overall alpha level should be corrected with all of these methods. 

For example, when using the Bonferroni correction, should the overall alpha be corrected 

separately for each dependent variable, so α/3? Or should the overall alpha be corrected by 

using the total number of tests, so α/6? The answers to these questions are not clear and similar 

complications hold for the false discovery rate and the Holm-Bonferroni method.  

If we were to use the Bonferroni correction (α/3) for our example, then the significant 

results for hostile attribution disappear and the conclusion should be that there are no group 

main differences and that there is no interaction between group and condition. The null 

hypothesis cannot be rejected, but what does this say about the informative hypotheses HA, HB, 

or HC? For aggressive responses, aggression level differences remain significant when using 

α/3, implying that (Mnon,neg + Mnon,neu) ≠ (Mmod, neg + Mmod, neu) ≠ (Mneg,high + Mneu,high), where M 

is the mean score of a group within a condition. A significant result would indicate that (0.52 + 

0.47 = 0.99) ≠ (1.02 + 1.08 = 1.10) ≠ (1.12 + 0.93 = 2.05), but what can we learn from this with 

respect to HA, HB and HC? Clearly, the answer is ‘not much’. Even if we pursue this significant 

result further using post-hoc comparisons, these comparisons do not provide information about 

the informative hypotheses A, B, or C.  
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The Evaluation of Informative Hypotheses 

What have we learned so far? Testing the null hypotheses H0,1 H0,2 and H0, 1x2  followed 

by a visual inspection of the data is not the appropriate tool for evaluating the informative 

hypotheses HA, HB, and HC. If a researcher has expectations in the form of inequality 

constraints between means, he or she might be better off by using alternative procedures. In 

this section, we use a combination of one-sided hypothesis testing and planned comparisons to 

evaluate HA, HB, and HC. We then take a side trip to structural equation modelling. Structural 

equation modelling is a flexible tool that can deal with many types of constraints, making it a 

useful tool in this situation. Finally, we will present a Bayesian method that is, as of yet, the 

only method that allows a direct evaluation of HA, HB, and HC. 

One-sided Hypothesis Testing and Planned Comparisons  

If two means (or difference between means) are ordered, hypothesis testing can be made 

directional by dividing the p-value for the corresponding test by 2. In our example of Orobio de 

Castro et al. (2003), two sets (one for each dependent variable) of three one-sided t-tests can be 

performed for HA,:  

‐ Mneu,non < Mneg,non (phostile = .22/2; paggr = .60/2);  

‐ Mneu,mod < Mneg,mod (phostile = .88/2; paggr = .60/2);  

‐ Mneu, high < Mneg,high (phostile = .02/2; paggr = .06/2).  

To evaluate HB, three difference scores can be computed [Mneu,non - Mneg,non], [Mneu,mod - 

Mneg,mod], and [Mneu,high - Mneg,high]. An approximation of HB can be obtained by using a linear 

contrast built with these scores. A good primer of using planned comparisons is presented in 

Rosenthal, Rosnow, and Rubin (2000), where several types of contrasts are introduced. In our 

example, HB can be evaluated using the linear contrast -1 x [Mneu,non - Mneg,non] + 0 x [Mneu,mod - 

Mneg,mod] + 1 x [Mneu,high - Mneg,high]. Since this hypothesis is also directional, we expect an 

increase in the difference between conditions; the resulting p-value can be divided by two 
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(phostile = .008/2; paggr = .32/2). Both pieces of information (i.e. the results of the one-sided t-

tests and planned comparison) need to be combined to evaluate HC.  

Although the above procedure generates better results than the naïve procedure 

presented in the previous section, there are still some problems related to one-sided hypothesis 

testing and planned comparisons. Recall that we wanted to evaluate HA, HB and HC. One-sided 

hypothesis testing and planned comparisons results in four p-values per dependent variable. 

The first concern is that once again, null hypotheses are being tested, for example Mneu,non = 

Mneg,non versus Mneu,non < Mneg,non. Although these tests are an improvement over the hypothesis 

testing shown in the previous section, these tests are not the same as evaluating HA versus HB 

versus HC. Suppose all null hypotheses are rejected, what information do we now have to 

evaluate HA, HB, and HC? 

Secondly, what do we do with contradictory results? For instance, there are no 

significant differences between Mneu,non and Mneg,non and between Mneu,mod and Mneg,mod , but there 

is a significant difference between Mneu, high and Mneg,high. Should HA be rejected? What if the p-

values were .051, .051 and .051, respectively? These issues arise because once again, the 

wrong hypotheses are being tested.  

Thirdly, there is still the issue of multiple hypothesis testing: there are four p-values per 

dependent variable. Should we divide all p-values by four or by eight? A researcher must 

decide which p-values to include in the family of hypotheses which they are attempting to 

correct. 

Finally, the planned contrast assumes a linear relationship, whereas Hb only assumes a 

monotone relationship: [Mneu,non - Mneg,non] < [Mneu,mod - Mneg,mod] < [Mneu,high - Mneg,high]. 

Although the linear contrast is an approximation of this monotone relationship, the assumption 

of linearity is maybe too much to ask for in this example. It could be argued that it is more 

likely that there is a large difference between non-aggressive boys versus aggressive boys, but 
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that the difference between moderate and highly aggressive boys is much smaller. In sum, 

although an improvement over the evaluation of main and interaction effects, even one-sided 

testing and the evaluation of well chosen contrasts are not perfectly suited for the evaluation of 

HA versus HB versus HC. 

Structural Equation Modelling 

Structural equation modelling can be a useful tool for evaluating a set of competitive 

hypotheses. Researchers who fit structural equation models can impose many simultaneous 

hypothesized relationships between variables. Moreover, various constraints such as nonlinear, 

equality, and inequality constraints can be imposed upon the model parameters.  

When using structural equation modelling, researchers often specify a set of structural 

models to evaluate their hypotheses, for example by constraining regression coefficients to be 

equal between groups in one model, and relaxing these constraints in a second model. This 

approach works well when equality constraints are used, however, when inequality constraints 

are used, comparisons between structural equation models become problematic. Problems arise 

because default model comparison tools, for example AIC (Akaike, 1981) and BIC (Schwartz, 

1978), are not equipped to deal with inequality constraints (Mulder et al. 2009b). It is currently 

not known how to quantify the number of parameters if these are restricted using inequality 

constraints. Therefore, the penalty term is undetermined in this case and AIC and BIC cannot 

be used as a comparison tool between inequality constraint models.  

Applicable tools for evaluating inequality constraint hypotheses in structural equation 

modelling need to be developed further (Gonzalez & Griffin, 2001; Stoel, Galindo-Garre, 

Dolan, & Van den Wittenboer, 2006; Van de Schoot, Hoijtink & Deković, in press). Note, 

however, that our example of Orobio de Castro et al. (2003) is not a structural equation model 

and as we will show below, tools for evaluating analysis of variance models are available. 

Generalisation of these procedures is feasible but as of yet, are not available.  
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Bayesian Methods 

As put forward by Walker, Gustafson, and Frimer (2007, p. 366) “the Bayesian 

approach offers innovative solutions to some challenging analytical problems that plague 

research in [...] psychology” (see also Lee & Pope, 2006; Lee & Wagenmakers, 2005). The 

core idea of Bayesian inferences is that a priori beliefs are updated with observed evidence and 

both are combined in a so-called posterior distribution. In the social sciences, however, only 

few applications of Bayesian methods can be found; one good example is presented in Walker, 

Gustafson, and Hennig (2001). The authors used standard statistical techniques as well as a 

Bayesian approach to investigate consolidation and transition models in the domain of moral 

reasoning. The posterior distribution of reasoning across stages of moral reasoning was used to 

predict subsequent development. Another example is the study of Schulz, Bonawitz, and 

Griffiths (2007) about causal learning processes in pre-schoolers. Bayesian inference was used 

in this article to provide a rationale for updating children’s beliefs in light of new evidence and 

was used to explore how children solve problems.  

An important contribution Bayesian methods can offer to the social sciences is the 

evaluation of informative hypotheses formulated with inequality constraints using Bayesian 

model selection. Many technical papers have been published about this method in statistical 

journals (Hoijtink, 1998, 2001; Hoijtink, Klugkist, &, Boelen, 2008; Klugkist, Laudy, &, 

Hoijtink, 2005, Kuiper & Hoijtink, 2009; Laudy, Boom, & Hoijtink, 2005; Laudy & Hoijtink, 

2007; Mulder, Hoijtink, & Klugkist, 2009a; Mulder et al., 2009b). Applied psychology/social 

science articles that use this method to evaluate hypotheses have been published as well.  

For example, in a study by Van Well, Kolk, and Klugkist (2008), the authors 

investigated whether a possible match between sex or gender role identification on the one 

hand and gender relevance of a stressor on the other hand would increase physiological and 

subjective stress responses. A first expectation represented a sex match effect; participants 
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were expected to be most reactive in the condition that matches their sex. In a similar way, 

gender match, sex mismatch, and gender mismatch effects were evaluated using Bayesian 

model selection software.  

Another example is the study by Meeus, Van de Schoot, Keijsers, Schwartz, and Branje 

(in press). In this study, Bayesian model selection was used to evaluate the plausibility of 

certain patterns of increases and decreases in identity status membership on the progression and 

stability of adolescent identity formation. Moreover, expected differences in prevalence of 

identity statuses between early-to-middle and middle-to-late adolescents and males and females 

were evaluated. In sum, Bayesian model selection as described in, for example Hoijtink et al. 

(2008), is gaining attention and is a flexible tool that can deal with several types of informative 

hypothesis.  

The major advantage of evaluating a set of informative hypothesis using Bayesian 

model selection is that prior information can be incorporated into an analysis. As was argued 

by Howard, Maxwell, and Fleming (2000), replication is an important and indispensible tool in 

the social sciences. Evaluating informative hypotheses fits within this framework because 

results from different research papers can be translated into different informative hypotheses. 

The method of Bayesian model selection can provide each informative hypothesis with the 

degree of support provided by the data. As a result, the plausibility of previous findings can be 

evaluated in relation to new data, which makes the method described in this paper an 

interesting tool for replication of research results.  

Another advantage of evaluating informative hypotheses is that more power is 

generated with the same sample size. An increase in power is achieved because using the data 

to directly evaluate HA, HB and HC by directly evaluating HA versus HB versus HC is more 

straightforward than testing several null hypotheses that are not directly related to the 

hypotheses of interest. Besides, when HA versus HB versus HC is directly evaluated, there is no 
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need to deal with contradictory results or problems arising as a result of multiple testing. 

Bayesian Model Selection 

In this section we provide a brief introduction to the evaluation of informative 

hypotheses formulated with inequality constraints using Bayesian model selection. The main 

ideas are introduced below, and we refer interested readers to Gelman, Carlin, Stern, and Rubin 

(1995) for a general introduction to Bayesian analysis. For incorporating inequality constraints 

in the context of Bayesian model selection, we refer interested readers to Hoijtink et al. (2008).  

Returning to our example of Orobio de Castro et al. (2003), the informative hypotheses 

HA, HB and HC can be evaluated using Bayesian model selection. To do so, we first compare 

these informative hypotheses to a so-called unconstrained hypothesis, denoted by Hunc. A 

hypothesis is unconstrained if no constraints are imposed on the means. The comparison with 

Hunc is made because it is possible that all informative hypotheses under investigation do not 

provide an adequate description of the population from which the data were sampled. In that 

case, the unconstrained hypothesis will be favored by Bayesian model selection. Hence, 

Bayesian model selection protects a researcher against incorrectly choosing such a ‘bad’ 

hypothesis.  

Bayesian model selection provides the degree of support for each hypothesis under 

consideration and combines model fit and model complexity. It has a close link with classical 

model selection criterion such as AIC (Akaike, 1981) and BIC (Schwartz, 1978) that also 

combine fit and complexity to determine the support for a particular model. However, in 

contrast to Bayesian model selection these classical criteria are as of yet unable to deal with 

hypotheses specified using inequality constraints (Mulder et al., 2009b). In the specific 

application of Bayesian model selection used in this paper, the Bayes factors selection criteria 

also combine model fit and complexity, but are able to account for inequality constraints. Note, 
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however, that the interpretation of fit and complexity is somewhat different than the 

interpretation of fit and complexity when using AIC and BIC. Let us elaborate on this. 

The first component of the Bayes factor is model fit. Loosely formulated, it quantifies 

the amount of agreement of the sample means with the restrictions imposed by a hypothesis. 

Consider the sample means in Table 3. The observed sample means fit perfectly with an 

unconstrained hypothesis because no constraints are imposed on the means. Consequently, Hunc 

always has the best model fit compared to any other informative hypothesis. With respect to the 

informative hypothesis on hostile attribution, it appears that one constraint is violated for HA: 

the sample mean of the non-aggressive group for the neutral condition is higher for the 

negative condition rather than lower. As a result, the model fit of HA is worse than the model fit 

for Hunc. For HB there appear to be no violations of the constraints; consequently, this 

hypothesis has the same model fit as Hunc. Since HC is a combination of the constraints of HA 

and HB, there is one violation of the constraints imposed by this hypothesis. In sum, with 

regard to model fit, Hunc and HB perform better than HA and HC. 

The second component of the Bayes factor is complexity. According to Sober (2002), 

the simplicity of a hypothesis can be seen as an indicator of the amount of information the 

hypothesis provides. A simple hypothesis contains more restrictions and contains more 

information and as such, is more specific. In other words, the more information a researcher is 

able to add to a hypothesis using inequality constraints, the simpler it becomes. Loosely 

formulated, the Bayes factor incorporates the complexity of a hypothesis by determining the 

number of restrictions imposed on the means.  

The most complex hypothesis is always Hunc, in the sense that all combinations of 

means are allowed and no constraints are imposed. Let us consider the hypotheses specified for 

hostile attribution. There are two constraints specified for HB (see Table 1). Consequently, not 

all combinations of means are possible. HB is therefore considered simpler than Hunc. Three 
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constraints are specified for HA and this hypothesis is even simpler than HB. The simplest 

hypothesis is HC because here the most information is added: the constraints of HA in addition 

to the constraints of HB. With respect to complexity, the hypotheses can be ordered from 

simplest to most complex: HC, HB, HA, Hunc. 

Bayes factors combine model fit and complexity and represent the amount of evidence, 

or support from the data, in favor of one hypothesis (say, HA) compared to another hypothesis 

(say, HB). The results may be interpreted as follows: BFA,B = 1 states that the two hypotheses 

are equally supported by the data; BFA,B = 10 states that the support for HA is 10 times stronger 

than the support for HB; BFA,B = 0.25 states that the support for HB is 4 times stronger than the 

support for HA. Note that there is no cut-off value provided; we return to this issue in the next 

section.  

In this paper we analysed the informative hypotheses of our example using the software 

presented in Mulder et al. (2009a). The method described in Mulder et al. can deal with many 

complex types of (in)equality constraints in multivariate linear models, e.g. MANCOVA, 

regression analysis, repeated measure analyses with time varying and time in-varying 

covariates. A typical example of an informative hypothesis in the context of regression analysis 

can be found in Deković, Wissink, and Meijer (2004). It was hypothesized that adolescent 

disclosure is the strongest predictor of antisocial behavior, followed by either a negative or 

positive relation with the parent.  

Software is also available for evaluating informative hypotheses in latent class analysis 

(Hoijtink, 1998, 2001; Laudy et al, 2005) as well as order restricted contingency tables (Laudy 

& Hoijtink, 2007). Readers interested in this software can visit 

www.fss.uu.nl/ms/informativehypothesis. Users of the software need only provide the data and 

the set of constraints; the Bayes factors are computed automatically by the software. A first 

attempt in analysing data can best be made by using the computations executed in the software 
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program ‘confirmatory ANOVA’ (Kuiper, Klugkist, & Hoijtink, 2009). We refer to Klugkist et 

al. (2005), Mulder et al., (2009a, 2009b), Laudy et al, (2005) and Laudy & Hoijtink, (2007) for 

technical details on actual computations.  

Bayes Factors versus p-values 

Recall that a Bayes factor provides a direct quantification of support as evidenced in the 

data for two competing hypotheses. Most researchers would agree that 100 times more support 

seems to be quite a lot and, for example, 1.04 times more support is not that much. However, 

clear guidelines are not provided in the literature and we do not provide these either. We refrain 

from doing so because we want to avoid creating arbitrary decision rules. Remember the 

famous quote about p-values: “[…] surely, God loves the .06 nearly as much as the .05” 

(Rosnow & Rosenthal, 1989, p. 1277).  

To gain insight into the interpretation of Bayes factors in comparison to p-values, 

consider the following imaginary example. Suppose there are six means and that the 

informative hypothesis of interest is H: M1 < M2 < M3 < M4 < M5 < M6 . The data were 

generated in such a way that the sample means and variance correspond to the population 

values (see Table 4). We computed the F-test (classical null hypothesis), planned comparisons 

(linear increase: -2.5 x M1 + -1.5 x M2 + -.5 x M3  + .5 x M4 + 1.5 x M5  + 2.5 x M6) and Bayes 

factors (monotone increase: M1 < M2 < M3 < M4 < M5 < M6) for different populations 

(small/medium effect, small/large sample size, 0/1/2 violations of the ordering; see Table 4).  

As can be seen in Table 4, for some of the hypotheses the classical F-test is not 

significant (i.e. population 2, 6, 8), although there are differences between the means within the 

population. This result indicates a power problem that is not shared by the planned comparison 

and the Bayes factor. The results for the planned comparison indicate that for all populations, 

apart from the null population 1, there is a significant linear increase in the six means even with 

1 or 2 violations of the constraints. Inspection of the Bayes factors indicates that its value is 
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dependent on: (i) effect size: compare for example population 2 with population 4, with Bayes 

factors 32 versus 156, respectively; (ii) sample size: compare for example population 2 with 

population 3, with Bayes factors 32 versus 393, respectively; (iii) the number of violations: 

compare for example populations 2, 6 and 8 with 0, 1 and 2 violations and with Bayes factors 

of 32, 6 and 1.94, respectively. In the latter population there is still support for the informative 

hypothesis, but 1.94 is clearly not a great deal of support in comparison to the other, much 

larger, results.  

Note that in this example we only formulated a simple ordered hypothesis that can 

easily be approximated by one single contrast. However, for a more complex informative 

hypothesis, more planned comparisons are needed and as a result, more p-values need to be 

inspected. In contrast, the result of Bayesian model selection always consists of one value for 

each pair of informative hypotheses.  

Example Reconsidered 

To analyse the data of Orobio de Castro et al. (2003) we computed the Bayes factors 

using two analysis of variance models including a within variable (condition) and a between 

variable (aggression level). The results for our example are presented in Table 5.  

For hostile attribution the BFA,unc of HA compared to Hunc is 0.27. This implies that HA 

is not better than the unconstrained hypothesis and is consequently not supported by the data 

(accounting for model fit and complexity). The BFB,unc of HB compared to Hunc is 3.90, 

indicating that support from the data is 3.90 times stronger for HB than for Hunc. The BFC,unc 

indicates that support from the data is 1.39 times stronger for HC than for Hunc. In sum, only HB 

and HC are supported by the data. 

Using these results, one can compute a Bayes factor between two informative 

hypotheses. The resulting Bayes factor is equal to the ratio of the BF for each informative 

hypothesis with the unconstrained hypothesis (Klugkist et al., 2005). For example, the BFA,B 
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between hypothesis HA and HB is 
27.0

90.3
= 14.44, indicating that the support for HB is 14.44 

times stronger than the support for HA. The BFB,C between HB and HC is 
39.1

90.3
= 2.81, which 

means that the support for HB is 2.81 times stronger than the support for HC.  

In conclusion, there is no support for the expectation that an increase in hostile 

intentions takes place for all three groups following emotion manipulation, but there is support 

for the expectation that the increase in hostile intentions becomes larger when the groups 

consist of more aggressive boys. 

Similar computations can be performed for the aggressive response, see Table 5. 

However, none of the hypotheses under investigation are better than an unconstrained 

hypothesis. Consequently, none of the hypotheses give an adequate description of the 

population from which the data were sampled. In conclusion, there is no increase in aggressive 

response following emotion manipulation. There is also no support for the expectation that the 

increase in aggressive response becomes larger when the groups consist of more aggressive 

boys. A combination of both hypotheses, HC, receives even less support. 

As was correctly noticed by one of the reviewers, it can be illustrative to provide more 

information than just the Bayes factors. Information about the posterior distributions of the 

means and their credibility intervals can be found in Figure 1. The interpretation of a Bayesian 

95% credibility interval is that, for example, the posterior probability that Mneu, non for hostile 

lies in the interval from -.32 to .66 is 0.95 (see, e.g., Gelman et al. 2004). These intervals are 

often used in practice to decide whether means differ from zero or from other means. It can for 

example be seen that the posterior mean Mneu, non for aggression is .58 and there is a .95 

probability that it is between .32 and .86. This credibility interval does not include zero and 

consequently the probability that Mneu, non = 0 is very low. Furthermore, it can be seen that the 
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credibility intervals for Mneu, non and Mneg, non for aggression show an overlap, so the constraint 

Mneu, non < Mneg, non  is not very probable.   

Conclusion 

Researchers in developmental psychology often have expectations about their research 

questions, or as Lee and Pope (2006) say “In the real-world much is usually already known 

about a problem before data are collected or observed” (see also Walker et al., 2007). Using 

Bayesian model selection, researchers can use all the knowledge available from previous 

investigations and can learn more from their data using informative hypotheses rather than 

traditional null and alterative hypotheses. Although Frick (1996) and Wainer (1999) argue that 

there are situations where null hypothesis testing is appropriate, we argue that researchers 

should not be satisfied with the conclusion that the observed data either are or are not in 

agreement with the null hypothesis. 

We have shown that Bayesian model selection is suited for the evaluation of 

informative hypotheses and results in a direct quantification of the support available in the data 

for each hypothesis under investigation. All criticisms of null hypothesis testing aside, the best 

argument for evaluating informative hypotheses is probably that, like Orobio De Castro et al. 

(2003), many researchers want to evaluate a set of hypotheses formulated with inequality 

constraints, but have been unable to do so because the statistical tools were not yet available. 

As this paper has illustrated, these tools are now available to any researcher within the social 

sciences.  
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Table 1 

Constraints for Hypotheses A, B and C for Hostile Attribution  

  Aggression level 

 Condition No Agression  Moderate  High 

HA,host Neutral Mneu,non  Mneu,mod  Mneu,high 

  ^  ^  ^ 
 Negative Mneg,non  Mneg,mod  Mneg,high 

HB,host  Mneg,non - Mneu,non < Mneg,mod - Mneu,mod < Mneg,high - Mneu,high 

HC,host Neutral Mneu,non  Mneu,mod  Mneu,high 

  ^  ^  ^ 
 Negative Mneg,non  Mneg,mod  Mneg,high 

  & 
 

  Mneg,non - Mneu,non < Mneg,mod - Mneu,mod < Mneg,high - Mneu,high 

note M indicates a mean score for an aggression level within a condition, e.g., Mneu,non is the mean score for non-

aggressive boys in the neutral condition.  
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Table 2 

Results of the Two 3x2 Univariate Analyses of Variance  

 Hostile  Aggressive 

 F p F p 

Aggressive level (df: 2, 55) 2.91 .047 8.82 <.001 

Condition differences (df: 2, 55) 1.10 .29 0.82 .36 

Interaction (df: 2, 54) 3.18 .049 1.46 .24 
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Table 3 

Emotion Ratings by Aggression Level and Condition 

  Hostile  Aggressive 

 Condition No Agression  Moderate  High  No Agression  Moderate  High 

HA,host Neutral 0.15  0.39  -0.27  0.52  1.02  1.12 

  ^  ^  ^  ^  ^  ^ 

 Negative -0.20  0.43  0.18  0.47  1.08  0.93 

HB,host  -0.45 < 0.04 < 0.45  -0.05 < 0.06 < -0.19 
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Table 4 

Results of the Comparison between a Classical F-Test, Planned Comparison, and Bayes Factors 

Population Small/medium 

effect1 

Small/large sample 

size per group 

0/1/2 

violations2 

Classical F-test Linear increase Bayes factor versus 

unconstrained model 

1 No effect3 100 0 F1,5 = 0; p = 1 Contrast = 0; p = 1/2 BF = 1.05 

2 Small  10 0 F1,5 = 1.40; p = .15 Contrast = 0.84; p = .01/2 BF = 29.51 

3 Small 100 0 F1,5 = 14.0; p < .001 Contrast = 0.84; p < .001 BF = 470.29 

4 Medium  10 0 F1,5 = 3.58; p = .007 Contrast = 1.34 p < .001 BF = 91.55 

5 Medium  100 0 F1,5 = 35.84; p < .001 Contrast = 1.34; p < .001 BF = 694.27 

6 Small  10 1 F1,5 = 1.40; p = .24 Contrast = 0.79; p = .02/2 BF = 20.52 

7 Small 100 1 F1,5 = 14.0; p < .001 Contrast = 0.79; p < .001 BF = 48.22 

8 Small 10 2 F1,5 = 1.40; p = .23 Contrast = 0.74; p = .02/2 BF = 12.74 

9 Small 100 2 F1,5 = 14.0; p < .001 Contrast = 0.74; p < .001 BF = 4.75 

1 Effect size according to definition of Cohen (Cohen, 1992) with population means for the small effect: -.50, -.30,-.10, .10, .30, .50 (SD = 1; effect size = .11) and for the 
medium effect: -.80, -.48, -.16, .16, .48, .80 (SD = 1; effect size = .28) 

2 With 1 violation two means are reversed (e.g. -.50, -.10, -.30, .10, .30,.50) and with 2 violations four means are reversed (e.g. -.50, -.10,-.30, .10, .50, .30). 
3 All means are zero in the population 
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Table 5 

Bayes Factors of HA, HB, and HC against the Unconstrained Hypothesis Hunc. 

 Hostile Aggressive

HA 0.92 0.27 

HB 0.14 3.90 

Hc 0.00 1.39 

Hunc 1 1 
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Figure 1. Posterior distributions for all groups on the dependent variables hostile attribution 

and aggressive responses. Note that ‘mn’ denotes posterior mean and ‘C.I.’ denotes the 

Bayesian credibility interval.  


