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Abstract

In many types of statistical modeling inequality constraints are im-
posed between the parameters of interest. As we will show in this
paper, the DIC (i.e., posterior Deviance Information Criterium as pro-
posed as a Bayesian model selection tool by Spiegelhalter et al., 2002)
fails when comparing inequality constrained hypotheses. In this paper
we will derive the prior DIC and show that it also fails when comparing
inequality constrained hypotheses. However, it will be shown that a
modification of the prior predictive loss function that is minimized by
the prior DIC renders a criterion that does have the properties needed
in order to be able to compare inequality constrained hypotheses. This
new criterion will be called the Prior Information Criterion (PIC) and
will be illustrated and evaluated using simulated data and examples.
The PIC has a close connection with the marginal likelihood in com-
bination with the encompassing prior approach and both methods will
be compared. All in all, the main message of the current paper is: (1)
do not use the classical DIC when evaluating inequality constrained
hypotheses, better use the PIC; and (2) the PIC is considered a proper
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Abstract5

In many types of statistical modeling inequality constraints are im-6

posed between the parameters of interest. As we will show in this7

paper, the DIC (i.e., posterior Deviance Information Criterium as pro-8

posed as a Bayesian model selection tool by Spiegelhalter, Best, Carlin,9

& Van Der Linde, 2002) fails when comparing inequality constrained10

hypotheses. In this paper we will derive the prior DIC and show that it11

also fails when comparing inequality constrained hypotheses. However,12

it will be shown that a modification of the prior predictive loss func-13

tion that is minimized by the prior DIC renders a criterion that does14

have the properties needed in order to be able to compare inequality15

constrained hypotheses. This new criterion will be called the Prior In-16

formation Criterion (PIC) and will be illustrated and evaluated using17

simulated data and examples. The PIC has a close connection with18

the marginal likelihood in combination with the encompassing prior19

approach and both methods will be compared. All in all, the main20

message of the current paper is: (1) do not use the classical DIC when21

evaluating inequality constrained hypotheses, better use the PIC; and22

(2) the PIC is considered a proper model selection tool in the context23

of evaluating inequality constrained hypotheses.24

keywords: Bayesian Model Selection, Inequality Constrained Hy-25

pothesis, Deviance Information Criterion, DIC.26

1 Introduction27

In many types of statistical modeling inequality constraints are imposed be-28

tween the parameters of interest (Barlow, Bartholomew, Bremner, & Brunk,29

1972; Hoijtink, Klugkist, & Boelen, 2008; Robertson, Wright, & Dykstra,30

1988; Silvapulle & Sen, 2004; Van de Schoot, Hoijtink, & Deković, 2010).31

For an overview of literature about inequality constrained hypotheses see32
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Van de Schoot, Romeijn, and Hoijtink (2011). More specifically, the current33

paper considers model parameters such as means or regression coefficients34

that can be constrained to being greater or smaller than either a fixed value35

or other means or regression coefficients. Phrases like “The mean outcome36

in both experimental groups is expected to be larger than in the control37

group” and “women score higher than men in each condition” can be found38

in many applied papers. These specific expectations may be derived from39

theories, or empirical evidence, and are translated into statistical hypotheses40

formulated with inequality constraints. For applications, see, for example41

Kammers, Mulder, De Vignemont, and Dijkerman (2009); Meeus, Van de42

Schoot, Keijsers, Schwartz, and Branje (2010); Van de Schoot and Wong43

(2010); Van Well, Kolk, and Klugkist (2009). Evaluating such inequality44

constrained hypotheses can be done using model selection procedures. For45

an overview of literature about inequality constrained hypotheses see Van46

de Schoot et al. (2011). There is a variety of such model selection tools47

commonly used in practical applications, most notably Akaike’s Informa-48

tion Criterium (AIC; Akaike, 1973), the Bayesian Information Criterium49

(BIC; Schwarz, 1978), minimal description length (MDL, see, for exam-50

ple Grnwald, Myung, & Pitt, 2005), Bayes factors (BF; see, e.g., Kass &51

Raftery, 1995) and the recently developed Deviance Information Criterium52

(DIC; Spiegelhalter et al., 2002).53

However, all these tools are not equipped to properly deal with inequality54

constrained hypotheses. Klugkist, Laudy, and Hoijtink (2005) showed that55

the Bayes factor can only be used in combination with an encompassing prior56

approach (see also, Mulder, Hoijtink, & Klugkist, 2009). Both the AIC and57

BIC fail when evaluating inequality constrained hypotheses because these58

criteria are not equipped to deal with inequality constraints between the59

parameters of a model. Alternatives are the order restricted information60

criterion (ORIC; Anraku, 1999; Kuiper & Hoijtink, 2010) which is limited61

to analysis of variance, and the prior-adapted-BIC (Romeijn, Van de Schoot,62

& Hoijtink, 2011), respectively. The MDL in relation to a reduction of the63

parameter space is discussed in Balasubramanian (2005). The DIC is up till64

now not discussed in relation to its behavior in the context of evaluating65

inequality constraints and this is exactly what we do in the current paper.66

The DIC has an important role in statistical model comparison, see67

for example its availability in software like WinBUGS (Lunn, Thomas,68

Best, & Spiegelhalter, 2000), MlwiN (Rasbash, Charlton, Browne, Healy,69

& Cameron, 2009) or Mplus (Muthen & Muthen, 2010). However, as we70

will show, the DIC fails when evaluating inequality constraint hypotheses.71

The plan of this paper is as follow. After introducing some examples in Sec-72
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tion 2, we introduce in Section 3 the original DIC and we show that, it can73

not be used to choose between a set of inequality constrained hypotheses. In74

Section 4 we provide an alternative for the classical DIC, namely the prior75

Deviance Information Criterium (prior DIC). Unfortunately, also the prior76

DIC does not work well in the context of inequality constrained hypotheses.77

To accommodate for this, we propose a new loss function in Section 5, which78

is minimized by the Prior Information Criterion (PIC). The PIC can be used79

to evaluate a set of inequality constrained hypothesis. We evaluate its per-80

formance, see Section 6, and we show that it is connected to the marginal81

likelihood and thus to the Bayes factor approach of, for example, Klugkist82

et al. (2005).83

2 Examples84

In this section we provide three different situations where inequality con-85

strained hypotheses can be of interest and we describe two real-life examples86

where the hypotheses of interest are specified using inequality constraints.87

We will use Example 1 as a case study throughout the paper to investigate88

the performance of the posterior DIC, prior DIC and the PIC. In Section 689

we briefly reconsider all other examples. Note that the scope of our proposed90

method is limited to the multivariate normal linear model.91

2.1 Example 192

First, consider an example of a univariate model with where persons from93

two groups receive a score on one dependent variable, yi (i = 1, . . . , N):94

yi = µ1di1 + µ2di2 + ǫi , (2.1)

where µ1 and µ2 denote the mean score on y for group 1 and 2 respectively95

and where the residuals ǫi are assumed to be normally distributed N(0, σ2).96

The group membership of a person is denoted by dig ∈ 0, 1, where 1 and97

0 denote that a person is either a member or not a member of group g.98

Suppose we want to evaluate two hypotheses: H0 : µ1, µ2 and H1 : µ1 < µ2.99

This example has its counterparts in applied papers, see, for example,100

Van Well et al. (2009) about the relationship between sex, gender role iden-101

tification, and the gender relevance of a stressor. The authors examined102

mean scores for eight groups on the dependent variable stress responses,103

to investigate sex and gender (mis)match effects. They formulated several104

hypotheses by imposing inequality constraints upon group means (i.e., one105

3



or more group means are expected to be larger or smaller than one or more106

other group means).107

2.2 Example 2108

Next, consider a second example of a multivariate model with two dependent109

variables (denoted by y1i and y2i for i = 1, . . . , N),110

y1i = µ1 + ǫi1
y2i = µ2 + ǫi2 ,

(2.2)

where the residuals are assumed to be normally distributed111

[ ǫi1
ǫi2

]

∼ N
(

0,Σ
)

,Σ =
[ σ2

y1
ρσy1σy2

ρσy1σy2 σ2
y2

]

. (2.3)

Suppose we want to evaluate two hypotheses: H0 : µ1, µ2 and H1 : µ1 >112

0; µ2 > 0.113

Also this multivariate model has its counterparts in applied papers, see,114

for example Kammers et al. (2009) about the number of body representa-115

tions in the brain. The authors examined the main problems that are en-116

countered when trying to dissociate multiple body representations in healthy117

individuals with the use of bodily illusions. Several models were specified118

within a multivariate normal model using (in)equality constraints between119

five repeated measurements.120

2.3 Example 3121

Finally, consider an example of a non-linear regression model with one de-122

pendent variable, yi (i = 1, . . . , N) with a linear, i.e. Xi, and a non-linear123

predictor, i.e. X2
i :124

yi = β0 + β1Xi + β2X
2
i + ǫi , (2.4)

where β0 denote the intercept and where the residuals ǫi are assumed to be125

normally distributed with N(0, σ2).126

Suppose we want to evaluate two hypotheses: H0 : β2 and H1 : β2 > 0.127

Such expectations are of interest in, for example, the research of retention128

memory (see, e.g., Myung, 2003). See Section 2.5 for a real life example.129

2.4 Real-life Example 1: Moral Judgment Competence130

Leenders and Brugman (2005) investigated whether moral judgment com-131

petence and attitude towards delinquent behavior create a domain shift in132
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young adolescents. That is, a certain behavior which in society as a whole133

is considered to be not moral (e.g. aggression, violence), might be a group134

convention in certain adolescent groups. In total 135 pupils of intermedi-135

ate secondary schools in the Netherlands were asked to report whether the136

respondent had committed such behaviour (never, once, more than once).137

They were also asked to judge aggressive acts and vandalistic acts in hypo-138

thetical situations on how moral they thought the behavior was. For each139

hypothetical situation, questions were asked (on a 4-point scale) about the140

acceptability (Is it wrong or right to do such a thing?’), the seriousness (How141

bad is it to do such a thing?), the generalizability (If everybody were doing142

such things, would they then be wrong or right?) and the rule/authority143

contingency (If nobody saw it, would it then be wrong or right?) of the144

transgression. Just like in the original article, for each category the sum145

scores were computed in a way that a high criterion score indicated a more146

non-moral (conventional/personal) judgment. The researchers had specific147

ideas about differences in the level of morality in these hypothetical situa-148

tions between pupils that did or did not report to conduct aggressive acts149

themselves.150

The model under investigation is given by151

y1i = µ11dig1 + µ12dig2 + ǫ1i
y2i = µ21dig1 + µ22dig2 + ǫ2i ,

(2.5)

where µ1· and µ2· denote the mean score on the hypothetical construct van-152

dalism (denoted by y1) and the hypothetical construct aggression (denoted153

by y2) and where µ·1 and µ·2 denote the mean for the group reported not154

to conduct aggressive acts and the group that did report to conduct aggres-155

sive acts, respectively. Again, group membership of a person is denoted by156

dig ∈ 0, 1 and the residuals are assumed to be normally distributed with157

[ ǫi1
ǫi2

]

∼ N
(

0,Σ
)

,Σ =
[ σ2

y1
ρσy1σy2

ρσy1σy2 σ2
y2

]

. (2.6)

Note that this example is a combination of (2.2) and (2.4).158

There are three hypotheses of interest:159

H0 : µ12, µ11 and µ22, µ21

H1 : µ12 > µ11 and µ22 > µ21

H2 : µ12 = µ11 and µ22 > µ21 .
(2.7)

The first hypothesis, is an unconstrained hypothesis (H0). A second hy-160

pothesis, H1, postulates that the aggressive group (µ·2) also judge the same161
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behavior in all hypothetical situations to be more conventional and as such162

morally more appropriate than their peers who do not report such behavior163

(µ·1). The third hypothesis, H2, is that there is a domain shift in the judge-164

ment about hypothetical situations. That is, for pupils that reported to have165

conducted some delinquent behavior (i.e. aggression), in the same hypothet-166

ical situation, they will judge it to be more morally accepted compared to167

adolescents that did not report to conduct the same behavior. However, in168

hypothetical situations concerning other delinquent behavior that was not169

reported by these same adolescents (i.e. vandalism), they will judge the hy-170

pothetical situation to be equally morally condemnable as adolescents that171

did not report any antisocial behavior. In Section 6.3 the data of Leenders172

and Brugman (2005) will be used to re-evaluate these hypotheses.173

2.5 Real-life Example 2: Ph.D. delays174

Sonneveld, Yerkes, and Van de Schoot (2009) report on Ph.D. trajectories175

and employment outcomes of recent Dutch Ph.D. recipients at four uni-176

versities in the Netherlands. The report provides detailed information on177

the background of Ph.D. candidates, their Ph.D. trajectory, including su-178

pervision and the performance of Ph.D. candidates, as well as their initial179

employment after obtaining their Ph.D.180

In the Netherlands it is possible to differentiate between three different181

types of Ph.D. status, including: (a) a Ph.D. candidate that is employed by182

the university, (b) scholarship recipients and (c) external and/or dual Ph.D.183

candidates. Full employment contracts for Ph.D. candidates are the excep-184

tion and not the rule throughout Europe. Only the Netherlands, Finland185

and Turkey have doctoral educational structures in which different types of186

Ph.D. status exist simultaneously. The majority of respondents surveyed187

(71.1%) reported that their main formal status was ’employee’. In the cur-188

rent paper we will only focus on employees (n = 304).189

Among many other questions, the researchers asked the Ph.D. recipients190

how long it took them to finish their Ph.D thesis. It appeared that Ph.D.191

recipients took an average of 59.8 months (five years and four months) to192

complete their Ph.D. trajectory. In the current paper we will answer the193

question why some Ph.D. recipients took longer than other by using age as a194

predictor (M = 30.7, SD = 4.48, min-max = 26-69 ). The relation between195

completion time and age is expected to be non-linear. This might be due196

to the fact that at a certain point in your life (i.e., mid-thirties), family life197

takes up more of your time than when you are in your twenties or when you198

are older.199
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However, we expect that if you are in your mid-thirties and you are200

doing a Ph.D. you also take this extra time into account. The researchers201

asked to Ph.D. candidates about their planned graduation day according202

to the original contract and their actual graduation day. The average gap203

between the two data appeared to be 9.6 months (SD = 14.4, min-max =204

-3 − 69). We expect that the lag between planned and actual time spent205

on the trajectory is less prone to non-linearity compared to actual project206

time.207

If y1i denotes actual project time and y2i denotes the lag between actual208

and planned project time, the model under investigation is given by209

y1i = β01 + β1Agei + β2Age
2
i + ǫ1i ,

y2i = β02 + β3Agei + β4Age
2
i + ǫ2i .

(2.8)

To avoid multicollinearity Age will be centered. The residuals are assumed210

to be normally distributed211

[ ǫi1
ǫi2

]

∼ N
(

0,Σ
)

,Σ =
[ σ2

y1
ρσy1σy2

ρσy1σy2 σ2
y2

]

. (2.9)

The following hypotheses are of interest:212

H0 : β2, β4
H1 : β2 > 0 and β4 > 0
H2 : β2 > β4 > 0 .

(2.10)

In Section 6.4 the data of Sonneveld et al. (2009) will be used to evaluate213

these hypotheses.214

3 Posterior DIC215

One way of evaluating hypotheses, is to use a model selection approach.216

This is not a test of the model in the sense of hypothesis testing, rather it217

is an evaluation between models using a trade-off of model fit and model218

complexity. The likelihood of an hypothesis is a measure of model fit, and the219

number of parameters involved in the hypothesis is a measure of complexity.220

The greater the number of parameters, the larger the compensation for221

model complexity becomes. So, adding a parameter should be accompanied222

by an increase in model fit to accommodate for the increase in complexity.223

Several competing statistical models may be ranked according to their value224

on the model selection tool used and the one with the best trade-off is the225

winner of the model selection competition.226
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The Deviance Information Criterion (DIC), is proposed in Spiegelhalter227

et al. (2002) as a Bayesian criterion for minimizing the posterior predic-228

tive loss. In this section we briefly introduce the DIC, thereafter we show229

with our running example that the DIC fails when comparing inequality230

constrained hypotheses.231

Note that from now on, we will use the posterior DIC whenever we refer232

to the DIC of Spiegelhalter et al. (2002) and we will use prior DIC whenever233

we refer to our adjustment of the DIC, that will be introduced in Section 4.234

3.1 Definition235

The posterior DIC minimizes the posterior expectation of the expected loss236

(Gelman, Carlin, Stern, & Rubin, 2004). It is defined as the error that is237

expected when a statistical model estimated by the observed data set y is238

applied to a future data set x. Let f(·) denote the likelihood, then the239

expected loss is given by240

Ef(x|θ∗)[−2 log f(x | θ̄y)] , (3.1)

where −2 log f(·) is the loss function of a future data set x in which θ̄y is241

the expected a-posteriori estimate of the model parameters θ based on the242

observed data set y. If we would know the true parameter value θ∗, the243

expectation in (3.1) could be computed. However, since these are unknown,244

the posterior DIC takes the posterior expectation of (3.1). Let Eg(θ|y) de-245

notes the expectation with respect to the posterior distribution g(θ | y),246

then247

Eg(θ|y)

{

Ef(x|θ)

[

−2 log f(x | θ̄y)
]

}

≈

−2 log f(y | θ̄y) + 2
[

−2log f(y | θ) + 2 log f(y | θ̄y)
]

, (3.2)

where (3.2) is the definition of the posterior DIC. The term −2 log f(y | θ̄y)248

in (3.2) is often interpreted as model (mis)fit and the term
[

−2log f(y | θ)+249

2 log f(y | θ̄y)
]

in (3.2) is often interpreted as the effective number of pa-250

rameters and is considered a penalty term.251

3.2 Estimation252

The posterior DIC can be computed using Monte Carlo simulation and is253

available in several software packages, for example, WinBUGS (Lunn et al.,254

2000), MLwiN (Rasbash et al., 2009) and Mplus (Muthen & Muthen, 2010).255
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Let θ1 . . .θL be L draws from the posterior distribution g(θ | y), then256

−2log f(y | θ) can be estimated by257

L
∑

l=1

−2 log f(y | θl)

L
, (3.3)

and −2 log f(y | θ̄y) can be estimated by258

−2 log f(y |
L

∑

l=1

θl
1

L
, . . . ,

L
∑

l=1

θl
k

L
) , (3.4)

where k is an index for the parameters in θ (k = 1, . . . ,K).259

An important issue when computing the posterior DIC is the specifica-260

tion of the prior distribution. A default approach is to specify a vague or261

low-informational prior distribution. In that case, the computation of the262

posterior DIC is independent of the specified prior because the posterior263

distribution, g(θ | y), is dominated by the data.264

3.3 Behavior of the Posterior DIC in Constrained Model Se-265

lection266

To inspect the behavior of the posterior DIC in the context of evaluating267

inequality constraint hypotheses, we consider Example 1 with H0 : µ1, µ2268

and H1 : µ1 < µ2. According to Mulder, Hoijtink, and Klugkist (2009), the269

prior distribution for Example 1 is given by270

h0(µ1, µ2, σ
2) = N(µ1|µ0, τ

2
0 )×N(µ2|µ0, τ

2
0 )× Invχ2(σ2|υ0, σ2

0), (3.5)

where µ0 is the prior mean and τ20 is the prior variance. Hypothesis H1 is271

nested in H0, therefore h1(·) is proportional to h0(·), with272

h1(·) :
{

c−1h0(·) if(µ1, µ2) ∈ H1

0 otherwise ,
(3.6)

where c is a normalization constant given by273

c =

∫

(µ1,µ2)∈H1

h0(µ1, µ2)d(µ1, µ2) . (3.7)

Using this encompassing prior approach only the prior distribution for H0274

needs to be specified. Note that the encompassing prior approach has been275
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used in computing Bayes factors, which will not be considered in the current276

paper, but see for more information Mulder, Hoijtink, and Klugkist (2009).277

Now let g0(·) denote the posterior distribution of the unconstrained hy-278

potheses and g1(·) the posterior distribution of H1, then g0(·) ∝ f(·)× h0(·)279

and g1(·) ∝ f(·)× h1(·). Then, g1(·) = d−1go(·) where280

d =

∫

(µ1,µ2)∈H1

g0(µ1, µ2)∂(µ1, µ2) . (3.8)

For µ2 − µ1 → ∞, g0(µ1, µ2, σ
2|y) - g1(µ1, µ2, σ

2|y) → 0. That is, if281

the population from which the data are generated is strongly in agreement282

with H1, the difference between the posterior distributions for H0 and H1283

goes to zero. Since the posterior DIC is computed using samples of µ1, µ2284

and σ2 obtained from the posterior distribution, see Equations (3.3) and285

(3.4), for µ2 − µ1 → ∞, samples obtained under H0 and H1 are exchange-286

able. Consequently, DICH0
and DICH1

have the same values. This result287

is counterintuitive and unwanted because H1 is more parsimonious than H0288

and hence it contains more information (cf. Sober, 2006), so it should be289

preferred by the DIC.290

A simulation study was performed to illustrate the failure of the poste-291

rior DIC. You can also derive analytic expressions for the behavior of the292

posterior probability distribution, on which the behavior of the posterior293

DIC hinges. For more details see Romeijn et al. (2011). Here we discuss294

this behavior merely for the purpose of illustration. Seven data sets from295

seven populations were considered. Data were constructed in such a way296

that the sample means and variance are exactly equal to the population pa-297

rameters (with σ2 = 1 and n = 20 for each group). The population means298

for the seven data sets are displayed on the x-axis in Figure 1. Note that299

the first four data sets are in agreement with the constraints of H1, whereas300

the last three data sets are constructed in such a way that they violate the301

constraints of H1. The difference between the seven data sets is that the size302

of the difference between the two group means varies from small to large.303

We also considered an equality constrained hypothesis, H2 : µ1 = µ2, to in-304

vestigate the performance of the posterior DIC. For this hypothesis, µ1 and305

µ2 can be replaced by µ. For each data set we used WinBUGS to compute306

the posterior DIC.307

Next, the hypotheses of interest were evaluated for all seven data sets308

with the posterior DIC. The results are presented in Figure 1. When looking309

at populations 1-5 in Figure 1, it can be seen that the values of the posterior310

DIC for H0 and H1 are equal. Hence, the posterior DIC can not distinguish311
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H0 and H1. This is counterintuitive because the population values satisfy312

the constraints of H1 and H1 is more parsimonious than H0. For population313

4 and 5, the two data sets with the smallest difference in sample means, the314

value of the posterior DIC for H2 is lowest. This result is in line with what315

would be expected because the means are approximately equal. When the316

population means do not fit the constraints imposed by H1 (i.e. populations317

6 and 7) the values for the posterior DIC for H0, H1 and H2 are in line318

with what would be expected: the lowest value for H0 followed by H2 and319

H1, respectively. In sum, the posterior DIC fails to distinguish between320

hypotheses H0 and H1 when the data are strongly in agreement with the321

most constrained hypothesis, H1.322

4 Prior DIC323

Within the Bayesian framework, there are two perspectives on model selec-324

tion: a prior predictive approach (e.g. Box, 1980; Kass & Raftery, 1995) and325

a posterior predictive approach (e.g. Gelman et al., 2004; Gelman, Meng,326

& Stern, 1996). Spiegelhalter, Best, Carlin, and Van Der Linde (2002)327

derived the posterior Deviance Information Criterium (posterior DIC) to328

choose between a set of competing hypotheses. As we have seen in the pre-329

vious section, the posterior DIC failed to choose between a set of inequality330

constrained hypotheses. In this section we will derive the prior Deviance331

Information Criterium (prior DIC).332

4.1 Definition333

The point of departure for the prior DIC is the same as for the posterior334

DIC, namely the expected loss given in (3.1). However, to deal with the335

unknown parameters θ∗, for the prior DIC, we take the expectation of the336

expected loss with respect to the prior distribution, h(θ), instead of the337

posterior distribution, g(θ | y), as was the case for the posterior DIC:338

Eh(θ)

{

Ef(x|θ)

[

−2 log f(x | θ̄y)
]

}

(4.1)

The major difference between (3.2) and (4.1) is that g(θ | y) is replaced by339

h(θ). As will be shown, using h(θ) instead of g(θ | y) is a final step towards340

an IC that does not suffer from the drawbacks discussed in the previous341

section.342

The main problem now, is to find an expression for Eh(θ)

[

c(y,θ, θ̄y)
]

343

and this is what we do in Appendix A resulting in the definition of the prior344
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DIC:345

Eh(θ)

{

Ef(x|θ)

[

−2 log f(x | θ̄y)
]

}

≈
C + 2 log f(y | θ̄y) + Eh(θ)

[

−2 log f(y | θ)
]

, (4.2)

where C = Eh(θ)

{

Ef(x|θ)

[

−2 log f(x | θ)
]

}

is constant when comparing346

inequality constrained hypotheses, see Appendix B, and consequently can347

be ignored.348

Note the two major differences between the prior and posterior DIC:349

the first term of (4.2) (i.e. C) does not have a corresponding part in the350

definition of the posterior DIC, see (3.2) and the third term on the right351

hand side of (4.2) (i.e. Eh(θ)

[

−2 log f(y | θ)
]

) is the expectation with respect352

to the prior distribution whereas the corresponding term in (3.2) is the353

expectation with respect to the posterior distribution.354

4.2 Estimation355

The prior DIC can be computed using Monte Carlo simulation, for example356

using R (R Development Core Team, 2006). Let θ1 . . .θL be L draws from357

the posterior distribution, then 2 log f(y | θ̄y), in Equation (4.2) can be358

estimated by359

2 log f(y | 1
L

L
∑

l=1

θl
1, . . . ,

1

L

L
∑

l=1

θl
k). (4.3)

Furthermore, let θ1 . . .θK be K draws from the prior distribution, then360

Eh(θ)

[

−2 log f(y | θ)
]

in Equation (4.2) can be estimated by361

1

K

K
∑

k=1

-2 logf(y | θk) . (4.4)

Just like for the posterior DIC, the specification of the prior distribution362

is of importance. For the prior DIC it is even essential that the prior distri-363

bution is specified correctly because only then background knowledged in the364

form of inequality constraints between the parameters of interested can be365

incorporated. In order to incorporate the constraints in the prior distribu-366

tion, we use the encompassing prior approach as was discussed before. The367

prior is given in Equation (3.5) and we assume the same prior distribution for368

each parameter that is subjected to constraints, h0(µ1) = h0(µ2). Specifying369

the parameters of the prior distribution in constrained hypotheses selection370
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is further explained in Mulder, Hoijtink, and Klugkist (2009) and Mulder,371

Klugkist, et al. (2009). The actual computation of the second term of the372

prior DIC for H0 and H1 can be done using samples from g0(µ1, µ2, σ
2|y)373

and g1(µ1, µ2, σ
2|y), respectively. These samples can be obtained using the374

Gibbs sampler for g0(·) (see, Gelman et al., 2004) and the constrained Gibbs375

sampler for g1(·) (see, Klugkist et al., 2005). The third term of the prior376

DIC can be computed using a sample from the prior distribution of the377

hypotheses under investigation.378

4.3 Behavior of The prior DIC in Constrained Model Selec-379

tion380

To show that the prior DIC can be used to choose between a set of con-381

strained hypotheses if the population from which the data are generated382

is fully in agreement with the most constrained hypothesis, whereas the383

posterior DIC fails to do so, we reconsider Example 1.384

If we would compare H0 and H1 with the prior DIC, the first term385

of the prior DIC given in Equation (4.2) is constant (see Appendix B).386

Now, consider the same situation as in the beginning of Section 3.3 where387

the population from which the data was generated is strongly in agreement388

with H1. In this case, the second term in Equation (4.2) does also not389

differ between H0 and H1, because for µ1 − µ2 → ∞, µ̄1|H0 → µ̄1|H1390

and µ̄2|H0 → µ̄2|H1. So, the third term, Eh(µ1,µ2,σ2)

[

·], should make the391

difference between H0 and H1.392

Since samples of µ1 and µ2 are taken from the prior distribution h0(µ1, µ2, σ
2)393

and since h0(µ1, µ2, σ
2) 6= h1(µ1, µ2, σ

2) because of the normalization of394

the prior distribution according to Equation (3.6), samples from the prior395

distribution are different for H0 and H1. For µ1 − µ2 → ∞, the third396

term of (4.2) when computed for H0 is based on more large values of397

−2 log f(y | µ1, µ2, σ
2) than when it is computed for H1. Consequently,398

the third term of (4.2) for H1 is smaller than the third term of (4.2) for H0.399

Again, a simulation study was performed where data sets from the seven400

populations of Section 3.3 were considered. The exact specification of the401

parameters of the prior distribution for population 1 with µ1 = −1 and402

µ2 = 1, are µ0 = 0, τ20 = 0.97, υ0 = 2 and σ2
0 = 1.95.403

In contrast to the posterior DIC, the prior DIC is able to correctly distin-404

guish between H0 and H1 when the data are in agreement of the constraints405

of H1, see populations 1-3 in Figure 2, where the prior DIC is lowest for406

H1. For the data with the smallest differences in sample means (population407

4 and 5), the prior DIC is lowest for H2. When the constraints are not sup-408

14



ported by the data, populations 6-7, the value for H0 should be the lowest409

value, but as can be seen in Figure 2, this is not the case! So, when the410

data are fully in agreement with H1 the prior DIC outperforms the posterior411

DIC, but when the data do not support H1, the prior DIC fails to correctly412

distinguish the three hypotheses.413

What goes wrong? Consider the prior expectation of the expected loss414

given in (3.1), which is approximated by the prior DIC as was shown in415

Appendix A:416

Eh(θ)

{

Ef(x|θ)

[

−2 log f(x | θ̄y)
]

}

(4.5)

≈ 2 log f(y | θ̄y) + Eh(θ)

[

−2 log f(y | θ)
]

. (4.6)

The loss function in Equation (4.5) captures how well replicated data fit417

a certain hypothesis, that is, how good θ̄y is a summary of x. However,418

this loss function does not accommodate ‘bad’ fitting hypotheses, that is, if419

for a hypothesis θ̄y is not a good summary of y, this will not be detected420

by the loss function in (4.5). Note that it might appear the correction for421

‘bad’ fitting hypotheses is done by the first term of the approximation of422

the loss function, see Equation (4.6). However, the second term cancels the423

influence of the first term because the second term can be written as a Taylor424

expansion around the first term, see Appendix A and Equation (A.7).425

Let us return to the loss function in Equation (4.6) and consider the426

situation of Example 1. Suppose that a population is not in agreement with427

the inequality constrained hypothesis, H1 : µ1 < µ2, for example Population428

7 with population means µ1 = 0.5;µ2 = −0.5. In this situation the prior429

DIC choosesH1 as the best hypothesis, see Figure 2. This result is unwanted430

because the means in the data satisfy µ1 > µ2.431

Under the assumption µ1 < µ2 in the data were µ1 = 0.5;µ2 = −0.5,432

the prior mean that fits these constraints will have a mean of zero because433

it is set at the boundary of the admissible parameter space. For the com-434

putation of (4.5), data are replicated based on θ from a prior distribution435

with µ0 = 0. These replicated data are adequately summarized by µ1 and436

µ2. However, what is not accounted for in (4.5) is that the observed data437

y are not adequately summarized by µ1 and µ2. This leads to situations438

where the loss function in (4.5) has a preference for ‘bad’ fitting inequality439

constrained hypotheses.440

In conclusion, neither the prior DIC, nor the posterior DIC are proper441

model selection tools for the evaluation of inequality constrained hypotheses.442

In the next section the prior predictive loss function will be adjusted such443
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that its estimate, the PIC, can be used to select the best of a set of equality444

and inequality constrained hypotheses.445

5 A New Loss Function for the Evaluation of In-446

equality Constrained Hypotheses447

The solution of the aforementioned problem (i.e. that neither the prior DIC,448

nor the posterior DIC are proper model selection tools for the evaluation of449

inequality constrained hypotheses) is to adjust the loss function that is used450

to select the best hypothesis such that it also accounts for the agreement451

between θ̄y and y. The loss function in (4.5) can be rewritten as452

−2 Eh(θ)

{

Ef(x|θ)

[

log f(x | θ̄y)
]

}

+ log f(y | θ̄y) (5.1)

≈ Eh(θ)

[

−2 log f(y | θ)
]

. (5.2)

The new loss function determines not only how well replicated data fit with a453

certain hypothesis (the term between accolades in 5.1), but it also determines454

how well a hypothesis fits the data (the second term between accolades in455

5.1). It is approximated by the third term of the prior DIC and is our final456

model selection tool, to be called Prior Information Criterium (PIC) given457

by (5.2).458

5.1 Behavior of the PIC in Constrained Model Selection459

In Figure 3 the PIC values for populations 1-7 of Example 1 are shown. As460

can be seen, the PIC chooses for H1 as the best hypothesis in situations461

where this hypothesis is true in the population, see populations 1-3. The462

PIC chooses for H2 as the best hypothesis where this hypothesis is strongly463

supported by the population values, see populations 4 and 5. Finally, the464

PIC chooses for the unconstrained hypothesis, H0, where the (in)equality465

constraints for both H1 and H2 are not supported by the data, see popula-466

tions 6 and 7. These results makes the PIC outperform both the posterior467

and prior DIC in all situations.468

5.2 Influence of Prior Specification469

Since the specification of the prior has an impact on the results, we evaluated470

the influence of the prior specifications on the PIC. To do so, we performed471

a simulation study where µ0, τ
2
0 , υ0 and σ0 were varied across populations.472

16



0

2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

Populatio
n1:µ1=-1;µ2=1 Populatio

n2:µ1=-0,5;µ2=0,5
Populatio

n3:µ1=-0,25;µ2=0,25
Populatio

n4:µ1=-0,01;µ2=0,01
Populatio

n5:µ1=0,01;µ2=-0,01
Populatio

n6:µ1=0,25;µ2=-0,25 Populatio
n7:µ1=0,5;µ2=-0,5

DIC 

p
ri
o
r 

D
IC

 H
0
: 
 µ

1
, 
µ
2

p
ri
o
r 

D
IC

 H
1
: 
 µ

1
 <

 µ
2

p
ri
o
r 

D
IC

 H
2
: 
 µ

1
 =

 µ
2

F
ig
u
re

2:
V
al
u
es

of
th
e
P
ri
or

D
IC

fo
r
H

0
,
H

1
an

d
H

2
;
an

d
fo
r
p
op

u
la
ti
on

s
1-
7
of

E
x
am

p
le

1.

17



1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

IC

P
IC

 H
0
: 
µ

1
, 
µ

2

P
IC

 H
1
: 
µ

1
 >

 0
; 
µ

2
 >

 0

P
IC

 H
2
: 
µ

1
 =

 0
; 
µ

2
 =

 0

F
ig
u
re

3:
T
h
e
P
IC

fo
r
p
op

u
la
ti
on

s
1-
7
of

E
x
am

p
le

1.

18



We evaluated H0, H1 and H2 for populations 1, 4, and 7 with: (1) µ0 − 1,473

µ0 + 0 and µ0 + 1; (2) τ0 × .5, τ0 × 1, and τ0 × 5; (3) υ0 = 2 and υ0 = 5; (4)474

σ0 × .5, σ0 × 1, and σ0 × 5.475

The results are presented in Table 1 with in bold the correct conclusions.476

As can be seen, the specification of the prior influences the results. However,477

as can be seen for different prior specifications the influence is mainly on the478

height of PIC and not the relative ordering of PICH0
, PICH1

, and PICH2
.479

5.3 PIC versus Marginal Likelihood480

The PIC is related to the marginal likelihood (ML) which is given by481

ML ≈ −2 log Eht(θ)

[

f(y | θ)
]

(5.3)

The difference between (5.2) and (5.3) is the position of the log: inside482

(PIC) or outside (ML) the expectation. If within the constrained model483

h1(·) = c×h0(·), see Equation (3.7), and under the further assumptions made484

about encompassing and constrained priors made in this paper then the485

relation between the PIC and ML shows a monotone relation. To exemplify486

this relation, we performed a small simulation study. In Figure 4 PIC1−PIC2487

and ML1 −ML2 are displayed for populations 1-7 of Example 1. As can be488

seen, there is a monotone relation between both selection tools. So, the489

PIC is related to the marginal likelihood approach, which is often used for490

inequality constrained model selection (see for example, Klugkist et al., 2005;491

Mulder, Hoijtink, & Klugkist, 2009).492

6 Examples Reconsidered493

After we have evaluated the performance of the posterior DIC, the prior494

DIC, the PIC and the ML for Example 1, it is now time to reconsider the495

other examples. For Examples 2 and 3 we only consider two populations:496

one population in agreement with the inequality constrained hypothesis and497

one population not in agreement with the constraints.498

6.1 Example 2 continued499

Let us return to Example 2 with H0 : µ1, µ2 and H1 : µ2 > 0, µ1 > 0. To500

evaluate H0 and H1, we performed a small simulation study where data501

sets from two different populations were considered. Population 1 satisfy502

the constraints of H1 and population 2 is not in agreement with H1. The503
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Figure 4: The differences between H1 and H2 are displayed for both the
PIC and the ML for populations of Example 1.

two data sets were constructed in such a way that the sample means and504

variance-covariance matrix are exactly equal to the population parameters505

(ρ = .4;σ2
1 = 1;σ2

2 = 1;n = 40). For each of these data sets, we computed506

the posterior DIC, the prior DIC, and the PIC for H0 and H1.507

According to Mulder, Hoijtink, and Klugkist (2009) the prior distri-508

bution, θn) = h0(µ11, µ12, µ21, µ22) h0(Σ), can be given by a multivariate509

normal distribution for the means and an inverse Wishart distribution for510

the variance-covariance matrix511

h0(µ11, µ12, µ21, µ22,Σ) = MVN(µ|µ0, τ
2
0 )×W−1(Σ|υ0,Σ0), (6.1)

where µ = {µ11, µ12, µ21, µ22} and µ0 = {µ0, µ0, µ0, µ0}. For the Inverse512

Wishart, we used υ0 = 3 and for Σ0, which is the scale matrix, we used513

[

σ2
0 0
0 σ2

0

]

, (6.2)

For population 1 with µ1 = 1 and µ2 = 1, the priors are µ0 = 0, τ0 =514

0.98, υ0 = 3 and σ2
0 = 3.95. The results are shown in Table 2. As is515

illustrated in Table 2, the situation for this example is analogous to Example516

1. Analogously to Example 1, the prior DIC does not correctly distinguish517

H0 and H1 because the loss function does not take ‘bad’ fitting hypotheses518

into account.519
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post. DIC prior DIC PIC

Example 2 Population 1: µ1 = 1, µ2 = 1 H0 234 489 428
H1 234 437 364

Population 2: µ1 = −.5, µ2 = −.5 H0 360 296 370
H1 404 294 406

Example 3 Population 1: β2 = 0.2 H0 275 919 820
H1 275 916 754

Population 2: β2 = −0.2 H0 275 922 819
H1 411 924 960

Table 2: Results for Example 2 and 3.

6.2 Example 3 continued520

For Example 3 we compared, H0 : β2 and H1 : β2 > 0. Analogously to Ex-521

ample 1 and 2, the posterior and prior DIC do not correctly distinguish H0522

and H1 for Example 3. We also performed a small simulation study to eval-523

uate H0 and H1. Data sets from two different populations were considered,524

see Table 2, where population 1 satisfy the constraints of H1 and population525

2 is not in agreement with H1. The two data sets were constructed in such526

a way that the sample means and variance-covariance matrix are exactly527

equal to the population parameters (β0 = 1.0;β1 = 0.5;β2 = 0.2;n = 50).528

The prior parameters we used are β1 = 0, β2 = 0, and σ2
0 = 1.95. For each529

of these data sets, we computed the posterior DIC, the prior DIC, and the530

PIC for H0 and H1. The results are shown in Table 2 and it can be seen531

that the PIC outperforms the posterior and prior DIC.532

6.3 Real-life Example 1533

We re-evaluated the hypotheses given in (2.7). In Table 3 group means and534

standard deviations (SD) are provided. We computed the posterior DIC,535

the prior DIC, and the PIC for H0, H1 and H2. The results of the model536

selection procedure are presented in Table 4. As can be seen in this table537

the posterior DIC is indifferent for all hypotheses, whereas both the prior538

DIC and the PIC choose for H2. This result can be confirmed when looking539

at the group means in Table 3 where µ22 is larger than µ21 and µ11 is close540

to µ12.541

The theoretical conclusion is that there is support for a domain shift542

in the judgement about hypothetical situations. That is, for pupils that543
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Table 3: Descriptive Statistics for real-life example 1 (n1 = 38;n2 = 97; ρ =
.52)

Mean SD

µ11 5.37 1.23
µ12 5.68 1.62
µ21 5.27 1.27
µ22 6.71 2.14

Table 4: Model Selection Results for the Real-life data 1.
Hypothesis post. DIC prior DIC PIC

H0 935 1976 1044
H1 935 1952 1023
H2 935 1803 872

reported to have conducted some delinquent behavior (i.e. aggression), in544

the same hypothetical situation, they will judge it to be more morally ac-545

cepted compared to adolescents that did not report to conduct the same546

behavior. However, in hypothetical situations concerning other delinquent547

behavior that was not reported by these same adolescents (i.e. vandalism),548

they will judge the hypothetical situation to be equally morally condemnable549

as adolescents that did not report any antisocial behavior.550

6.4 Real-life Example 2551

We evaluated the hypothesis given in (2.10) using the posterior DIC, the552

prior DIC, and the PIC. The results are shown in Table 5. As can be seen in553

this table the posterior DIC fails to correctly distinguish the hypotheses of554

interest, whereas both the prior DIC and the PIC choose for H2 as the best555

hypothesis. This result can be confirmed when looking at the group means556

in Table 6 where both β2Age2 as well as β4Age
2 are both smaller than zero557

and β2Age2 is smaller than β4Age2 .558

The theoretical conclusion is that the relation between on the one hand559

age, and on the other hand either time to complete a Ph.D. trajectory560

or the gap between planned and actual project time are both non-linear.561

Moreover, this non-linear effect is stronger for time to complete a Ph.D.562

trajectory compared to the gap. This might be due to the fact that Ph.D563

candidates in the middle thirties take more time to finish their Ph.D thesis,564

but they also plan extra time.565
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Table 5: Model Selection Results for the Real-life data 2.
Hypothesis post. DIC prior DIC PIC

H0 4869 1862 1896
H1 4872 1839 1855
H2 4884 1834 1840

Table 6: Descriptive Statistics real-life example 2.
Mean SD

β01 61.58 0.79
β1Age 2.88 0.27
β2Age

2 -0.96 0.01
β02 10.54 0.82
β3Age 1.43 0.29
β2Age

2 -0.04 0.01

7 Conclusion566

The main message of the current paper is: (1) although the DIC (Spiegelhalter567

et al., 2002) is often used in model selection, do not use it when evaluating568

inequality constrained hypotheses, better use the PIC which is derived in569

the current paper; and (2) the PIC is related to the marginal likelihood ap-570

proach, which is often used for inequality constrained model selection (see571

for example, Klugkist et al., 2005; Mulder, Hoijtink, & Klugkist, 2009). We572

showed how to obtain the prior DIC based on the derivation of the poste-573

rior DIC presented in Spiegelhalter et al. (2002). The point of departure574

for the prior DIC is the same as for the posterior DIC, namely the expected575

loss. The derivation of the prior DIC is provided and the choice for the576

prior distribution, which is based on training data is motivated (see also577

Mulder, Hoijtink, & Klugkist, 2009). Its performance is illustrated using578

examples and we showed that the prior DIC can be used to choose between579

a set of constrained hypotheses if the population from which the data are580

generated is fully in agreement with the most constrained hypothesis, where581

the posterior DIC failed to do so. However, the prior DIC fails to choose582

between a set of inequality constrained hypotheses if the population is not583

in agreement with the constrained hypothesis.584

In conclusion, neither the prior DIC, nor the posterior DIC are proper585

model selection tools for the evaluation of inequality constrained hypotheses.586

To accommodate for this, the loss function that is minimized by the prior587
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DIC was adjusted. The proposed loss function determines not only how well588

replicated data fit with a certain hypothesis, but it also determines how well589

a hypothesis fits the data. It is approximated by a new model selection tool,590

the Prior Information Criterium (PIC). We demonstrated with examples591

that the PIC is able to select the best of a set of (in)equality constrained592

hypotheses. More research is needed to evaluate under what conditions the593

PIC is expected to work well and under what other conditions is it expected594

to fail. However, since we showed that the marginal likelihood is highly595

related to the PIC, we expect that the PIC behaves similar as the marginal596

likelihood approach. The current paper adds to the growing body of evidence597

that classical model selection tools, like AIC, BIC, MDL and now also the598

DIC, are not equipped to deal with inequality constraints and offers a viable599

alternative.600
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A Derivation of Prior Predictive DIC701

In this appendix we show how to obtain the prior DIC based on the deriva-702

tion of the posterior DIC presented in Spiegelhalter et al. (2002). The point703

of departure for the prior DIC is the same as for the posterior DIC, namely704

the expected loss given in (3.1). However, to deal with the unknown pa-705

rameters θ∗, we take the expectation with respect to the prior distribution,706

h(θ), instead of the posterior expectation of the expected loss:707

Eh(θ)

{

Ef(x|θ)

[

−2 log f(x | θ̄y)
]

}

=

−2 log f(y | θ̄y) + Eh(θ)

[

c(y,θ, θ̄y)
]

. (A.1)

The main problem now, is to find an expression for the second term on the708

right hand side in (A.1). Using D(a,b) = −2 log f(a | b), c(y,θ, θ̄y) in709

(A.1) can be rewritten to710

c(y,θ, θ̄y) = Ef(x|θ)

[

D(x, θ̄y)−D(y, θ̄y)
]

= Ef(x|θ)

[

D(x, θ̄y)−D(x,θ)
]

+ Ef(x|θ)

[

D(x,θ)−D(y,θ)
]

+ D(y,θ)−D(y, θ̄y) . (A.2)

Now, D(x, θ̄y) in (A.2) can be approximated by taking a second order Taylor711

expansion about θ,712

D(x, θ̄y) ≈ −2 log f(x | θ)− 2

{

∂ log f(x|θ)
∂θ

}T
(

θ̄y − θ
)

−

−
(

θ̄y − θ)T
{

∂2 log f(x|θ)
∂θ∂θT

}

(

θ̄y − θ
)

. (A.3)

Since −2 log f(x | θ) is equal to D(x,θ) and the expectation of the second713

term on the right hand side of (A.3) with respect to f(x | θ) is zero (p. 604714

Spiegelhalter et al., 2002),715

Ef(x|θ)

[

D(x, θ̄y)−D(x,θ)
]

≈

Ef(x|θ)

[

−
(

θ̄y − θ
)T

{

∂2 log f(x|θ)
∂θ∂θT

}

(

θ̄y − θ
)

]

. (A.4)

The expression on the right hand side of (A.4) can be rewritten as tr
{

I(θ)
(

θ̄y−716

θ
)(

θ̄y − θ
)T}

and since x and y stem from the same data generating mech-717

anism, the Fisher information matrix I(θ) can be approximated by the ob-718

served Fisher information matrix, I(θ̄y) (p. 604 Spiegelhalter et al., 2002),719
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where I(θ̄y) = −∂2 log f(y | θ̄y)/∂θ∂θT . Using E{tr(·)} = tr{E(·)}, the720

prior expectation of c(y,θ, θ̄y) can now be approximated by:721

Eh(θ)

[

c(y,θ, θ̄y)
]

≈ tr
{

I(θ̄y)Λ
}

+

+Eh(θ)

{

Ef(x|θ)

[

D(x,θ)−D(y,θ)
]

}

+ d ,(A.5)

where Λ = Eh(θ)[(θ̄y−θ)(θ̄y−θ)T ] denotes the variation in the prior distri-722

bution around θ̄y. The last term on the right hand side of (A.5) is defined723

as724

d = Eh(θ)

[

D(y,θ)
]

− Eh(θ)

[

D(y, θ̄y)
]

= Eh(θ)

[

D(y,θ)
]

−D(y, θ̄y) . (A.6)

To show that tr
{

I(θ̄y)Λ
}

is approximately equal to d, we use a second order725

Taylor expansion about θ̄y:726

Eh(θ)

[

D(y,θ)
]

≈ D(y, θ̄y) + Eh(θ)

[

−2
{

∂ log f(y | θ̄y)
∂θ

}T
(

θ − θ̄y
)

−

−
(

θ − θ̄y
)T

{

∂2 log f(y | θ̄y)
∂θ∂θT

}

(

θ − θ̄y
)

]

. (A.7)

Since, θ̄y → θ̄ML for n → ∞, −2
{

∂ log f(y|θ̄y)
∂θ

}T

is asymptotically zero727

(Gelman et al., 2004). This way, Eh(θ)

[

D(y,θ)
]

can now be approximated728

by729

Eh(θ)

[

D(y,θ)
]

≈ D(y, θ̄y) + Eh(θ)

[

tr
{

−∂2 log f(y | θ̄y)
∂θ∂θT

(

θ − θ̄y
)(

θ − θ̄y
)T

}

]

≈ D(y, θ̄y) + tr
{

I(θ̄y)Λ
}

(A.8)

To show that tr
{

I(θ̄y)Λ
}

is approximately equal to d, D(y, θ̄y) is subtracted730

from both sides of (A.8)731

tr
{

I(θ̄y)Λ
}

≈ Eh(θ)

[

D(y,θ)
]

−D(y, θ̄y) = d . (A.9)

Equation (A.5) then becomes732

Eh(θ)

[

c(y,θ, θ̄y)
]

≈ Eh(θ)

{

Ef(x|θ)

[

D(x,θ)−D(y,θ)
]

}

+

+2
{

Eh(θ)

[

D(y,θ)
]

−D(y, θ̄y)
}

. (A.10)
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The prior DIC can now be written as733

Eh(θ)

{

Ef(x|θ)

[

−2 log f(x | θ̄y)
]

}

≈

Eh(θ)

{

Ef(x|θ)

[

D(x,θ)
]

}

−D(y, θ̄y) + Eh(θ)

[

D(y,θ)
]

(A.11)

whereas, using the same notation, the posterior DIC can be written as734

Eh(θ)

{

Ef(x|θ)

[

−2 log f(x | θ̄y)
]

}

≈

D(y, θ̄y) + 2
{

Eg(θ|y)

[

D(y,θ)
]

−D(y, θ̄y)
}

. (A.12)

B Simplifying the prior DIC for constrained hy-735

potheses736

Let Ht(t = 1, . . . , T ) denote a hypothesis specified using constraints and let737

H0 denote an unconstrained hypothesis. All hypotheses Ht are nested in738

H0, As we will prove in this section, Eht(θ)

{

Ef(x|θ)

[

D(x,θ)
]

}

in (A.11)739

is constant between constrained hypotheses. In this context the prior DIC740

reduces to741

prior DIC = C + 2 log f(y | θ̄y) + Eht(θ)

[

−2 log f(y | θ)
]

, (B.1)

where C = Eht(θ)

{

Ef(x|θ)

[

−2 log f(x | θ)
]

}

and can be ignored for all Ht.742

B.1 Example 1 Continued743

For Example 1, ht(θc)ht(θu) = ht(µ1, µ2)ht(σ
2) where ht(σ

2) is the same,744

but ht(µ1, µ2) differs across hypotheses because of the normalization of745

the prior distribution in Equation (3.6). In the remainder of this subsec-746

tion we drop the subscript t to simplify the notation. We will prove that747

Eh(σ2)h(µ1,µ2)

{

Ef(x|µ1,µ2,σ2)

[

−2 log f(x | µ1, µ2, σ
2)
]

}

is constant over all748

hypotheses under consideration. When comparing constrained hypotheses749

we have to prove that the term within accolades is independent of µ1, µ2,750

and σ2. First using751

f(x | µ1, µ2, σ
2) =

( 1√
2πσ2

)N

exp
[

−1

2

∑N
i=1(xi − µ1d1 − µ2d2)

2

σ2

]

, (B.2)

the term being constant can be written as752
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∫

σ2

∫

µ1,µ2

∫

x

2N log
√
2πσ2 ∂f(x | µ1, µ2, σ

2)∂h(µ1, µ2)∂h(σ
2)+ (B.3)

+

∫

σ2

∫

µ1,µ2

∫

x

N
∑

i=1

(xi − µ1d1 − µ2d2)
2

σ2
∂f(x | µ1, µ2, σ

2)∂h(µ1, µ2)∂h(σ
2) .

The first term of (B.3) is independent of µ1, µ2, and since h(σ2) is the same753

for each hypothesis, the second term integrated over σ2 in (B.3) should be754

constant for every value for σ2 to render (B.3) constant. Let x = {x1,x2}755

denote subgroups with sample sizes N1 and N2 for x1 and x2, respectively.756

Omitting the integral over σ2, we can now rewrite the second term in (B.3)757

to758

∫

µ1

∫

x1

N1
∑

i=1

(xi − µ1)
2

σ2
∂f(x1 | µ1, σ

2)∂h(µ1)+ (B.4)

+

∫

µ2

∫

x2

N2
∑

i=1

(xi − µ2)
2

σ2
∂f(x2 | µ2, σ

2)∂h(µ2) .

Note, that for the first group in (B.4) xi ∼ N(µ1, σ
2) and for the second759

group xi ∼ N(µ2, σ
2). Using x∗i = xi−µ1

σ2 with x∗i ∼ N(0, 1) in the first760

group, and x∗i = xi−µ2

σ2 with x∗i ∼ N(0, 1) in the second group, the integral761

over µ1 and µ2 drop out of (B.4):762

∫

x
∗

1

N
∑

i=1

(x∗i )
2 ∂f(x∗i | 0, 1) +

∫

x
∗

2

N
∑

i=1

(x∗i )
2 ∂f(x∗i | 0, 1) . (B.5)

Consequently, for every value of σ2, (B.4) is independent of µ1, µ2. That763

is, for this example, Eh(σ2)h(µ1,µ2)

{

Ef(·)

[

−2 log f(·)
]

}

is constant over con-764

strained hypotheses.765

B.2 Example 2 Continued766

For Example 2, ht(θc)ht(θu) = ht(µ1, µ2)ht(Σ) where ht(Σ) is the same, but767

ht(µ1, µ2) differs across hypotheses because of the normalization of the prior768

distribution in Equation (3.6). In the remainder of this subsection we drop769

the subscript t to simplify the notation. We now have to prove that the770

term between accolades in771

Eh(µ1,µ2)h(σx1,σx2,ρ)

{

Ef(·)

[

−2 log f(x1,x2 | µ1, µ2, σx1, σx2, ρ)
]

}

(B.6)
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is constant over hypotheses for µ1, µ2, and Σ. Using772

f(x1,x2 | µ1, µ2, σx1, σx2, ρ) =
( 1

2πσx1
σx2

√

1− ρ2

)N

exp
[

− 1

2(1− ρ2)

{

∑N
i=1(x1i − µ1)

2

σ2
x1

+

∑N
i=1(x2i − µ2)

2

σ2
x2

−

− 2ρ
∑N

i=1(x1i − µ1)(x2i − µ2)

σx1
σx2

}]

, (B.7)

(B.6) can be written as the sum of773

∫

σx1,σx2,ρ

∫

µ1,µ2

∫

x1,x2

2N log 2πσx1
σx2

√

1− ρ2

∂f(x1,x2 | µ1, µ2, σx1, σx2, ρ)∂h(µ1, µ2)∂h(σx1, σx2, ρ) , (B.8)

and774

∫

σx1,σx2,ρ

∫

µ1,µ2

∫

x1,x2

1

(1− ρ2)

{

∑N
i=1(x1i − µ1)

2

σ2
x1

+

∑N
i=1(x2i − µ2)

2

σ2
x2

− 2ρ
∑N

i=1(x1i − µ1)(x2i − µ2)

σx1
σx2

}

∂f(x1,x2 | µ1, µ2, σx1, σx2, ρ)∂h(µ1, µ2)∂h(σx1, σx2, ρ) . (B.9)

Since h(Σ) is the same for each hypothesis, the integrals in (B.9) integrated775

over σx1, σx2, ρ should be constant for every value of h(Σ) to render (B.9)776

constant. Also, in this situation (B.8) is constant over constrained hypothe-777

ses. Using x∗1i =
x1i−µ1

σ
and x∗2i =

x2i−µ2

σ
, (B.9) can be rewritten into778

∫

ρ

∫

x
∗

1
,x∗

2

N
∑

i=1

1

(1− ρ2)

{

(x∗1i)
2 + (x∗2i)

2 − 2ρ2x∗1ix
∗
2i

}

∂f(x∗1,x
∗
2 | 0, 0, 1, 1, ρ)∂(ρ) . (B.10)

Consequently, for every Σ, (B.9) is independent of µ1 and µ2. That is, for779

this example, Eh(µ1,µ2)h(σx1,σx2,ρ)

{

Ef(·)

[

−2 log f(·)
]

}

is constant over con-780

strained hypotheses.781

B.3 Multivariate Models782

Finally, consider a multivariate example with two groups with mean scores783

on two dependent variables:784

y1i = µ11dig1 + µ12dig2 + ǫ1i
y2i = µ21dig1 + µ22dig2 + ǫ2i ,

(B.11)
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where µ1· and µ2· denote the mean score on y1 and y2 respectively and785

where µ·1 and µ·2 denote the mean for group 1 and 2 respectively. Again,786

group membership of a person is denoted by dig ∈ 0, 1 and the residuals are787

assumed to be normally distributed with788

[ ǫi1
ǫi2

]

∼ N
(

0,Σ
)

,Σ =
[ σ2

y1
ρσy1σy2

ρσy1σy2 σ2
y2

]

. (B.12)

Note that this example is a combination of (2.4) and (2.2). Also for con-789

strained hypotheses in this multivariate example it can be proved that790

Eht(µ11,µ12,µ21,µ22)ht(Σ)

{

Ef(·)

[

−2 log f(y1,y2 | µ11, µ12, µ21, µ22,Σ)
]

}

is con-791

stant over constrained hypotheses. Even so, using the same steps as pre-792

sented in Section B.1 and B.2, it can be proved for the general multivari-793

ate normal linear model (Press (2005), pp. 252-257) that Eht(θ)

{

Ef(x|θ)794

[

−2 log f(x | θ)
]

}

is constant over constrained hypotheses.795
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