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Abstract

Gelman:Shalizi:inpress criticize what they call the “usual story” in
Bayesian statistics: that the distribution over hypotheses or models is the
sole means of statistical inference, thus excluding model checking and revi-
sion, and that inference is inductivist rather than deductivist. They present
an alternative hypothetico-deductive approach to remedy both shortcom-
ings. We agree with ?’s criticism of the usual story, but disagree on whether
Bayesian confirmation theory should be abandoned. We advocate a hum-
ble Bayesian approach, in which Bayesian confirmation theory is the cen-
tral inferential method. A humble Bayesian checks her models and criti-
cally assesses whether the Bayesian statistical inferences can reasonably be
called upon to support real-world inferences.
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Modern statistics is a diverse field with disagreements even about the most basic
and foundational issues. Savage:1972 noted 60 years ago that there were scarcely any
accepted facts about the foundations of statistics, and ?’s ((?)) article (hereafter G&S)
is proof that disagreements exist even today. But G&S also reveal that in spite of these
disagreements, or perhaps rather because of them, statisticians continue to develop useful
ways of learning from data.

Comparison with G&S

We agree with G&S’s critique of what they call the “usual story” in Bayesian statis-
tics, and also acknowledge the usefulness of the procedures they advocate. But rather
than abandon the traditional Bayesian framework, we promote a perspective on Bayesian
statistics that is strengthened through the use of model checking procedures.

Overconfidence is wrong, but Bayes is right

G&S introduce the usual story of Bayesian data analysis: that all information nec-
essary for inference is contained in Bayesian quantities such as posterior distributions or
model posteriors. In this story, model checking is not performed at all; posterior quan-
tities tell us the relative plausibilities of parameter values or models. A Bayesian of this
stripe is what we refer to as an “overconfident” Bayesian. To our mind, the overconfident
Bayesian is an extreme point in the spectrum of Bayesians. We ourselves routinely per-
form model checks in our own work Morey:etal:2009,Morey:etal:2008a,Rouder:etal:2008d
and we believe that most practicing Bayesian statisticians worry about the appropriate-
ness of their models and hence engage in model checking.

One reason for the impression that overconfident Bayes features prominently
in the philosophy of statistics may be that, in philosophy, Bayesian inference is of-
ten considered as part of a logic DeFinetti:1995,Howson:2001,Romeijn:2011. Philoso-
phers of statistics focus on the correctness of the inferential step rather than on the
truth or falsity of the premises. In other words, the focus lies on the Bayesian
data analysis and not on the appropriateness of the model. However, as indi-
cated by the parallel interest in model selection among philosophers of statistics
Kieseppa:2001,Forster:Sober:1994,Romeijn:vandeSchoot:2008,Romeijn:etal:2012, the focus
on correctness should not be taken to indicate that, according to philosophers of statistics,
valid inference is all there is to good statistical practice.

In contrast to overconfident Bayesianism, the scheme that G&S propose for model
checking is not Bayesian. Their view is what they call hypothetico-deductive or, in other
places, falsificationist: models are judged by how well they accommodate the data and
then retained or discarded. The core of the view seems to be that model checking is not
regulated by an inductive, but rather by a deductive mode of inference. Statistical models
entail probabilistic empirical consequences, and they do so deductively, as a matter of
mathematical fact. These probabilistic consequences can then be compared to data to
arrive at a judgment on the model.

We accept that model checking is an integral part of good statistical practice. The
overconfident Bayesian is wrong. But we believe that if model checking is to become
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a primary method of statistical inference, more detail is needed on how it is supposed
to be done. In other words, we require a theory of inference using model checking.
Although G&S offer a number of tools and procedures and a general philosophy, they
do not offer a theory of inference. But a suitable theory of inference already exists:
the Bayesian confirmatory framework. A reasonable Bayesian can use model checking
alongside traditional Bayesian analyses, casting the model checking itself in a Bayesian
light.

Conceptual issues for G&S

G&S briefly discuss arguments for the Bayesian consistency and rationality but they
do not seem pursuaded. To our mind, it is a major advantage of a Bayesian approach to
model checking that it inherits the conceptual clarity and coherence of Bayesian theory
generally. We provide some detail on Bayesian model checking below. Here we note two
conceptual issues for G&S.

As G&S indicate, model checking typically proceeds by finding out that the model
under scrutiny is false, as its empirical consequences do not match the data. Strictly
speaking statistical models can of course not be falsified, since probabilistic consequences
cannot be contradicted by data. Much like Mayo:1996,Mayo:Spanos:2011, it seems that
G&S speak of falsificationism and deductivism by proxy: highly improbable data are
somehow considered close enough to impossible data to effect a form of falsification. For
philosophers and statisticians who champion the validity of the inferences this attitude
is somewhat puzzling, especially since a valid inferential framework is already available
in Bayesian theory. Now it may be that G&S are simply not bothered by these concerns,
but we think they should be, and that the broad strokes in which G&S’s deductivism is
painted need to be revisited with a finer brush.

Furthermore, G&S’s abandonment of the Bayesian framework has consequences for
their proposed method of model checking. G&S imply that they have abandoned the
Bayesian framework even to the extent of rejecting a probabilistic interpretation of the
Bayesian prior, which to them is “more like a regularization device, akin to the penal-
ization terms added to the sum of squared errors when doing ridge regression and the
lasso or spline smoothing.” This rejection, however, has consequences. The probabilis-
tic interpretation of the posterior arises from the probabilistic interpretation of the prior.
Abandoning the probabilistic interpretation of the prior threatens the interpretation of the
corresponding posterior, and thus the interpretation of the posterior predictive p values1.
Since posterior predictive p values are one of the primary methods G&S have advocated
for model checking, it is important that these p values be interpretable.

Summing up, we largely agree with G&S in their dislike of overconfident Bayes
and on the importance of model checking. But we feel that G&S need to provide a

1One could argue that the use of improper priors also threatens the interpretation of Bayesian quan-
tities as well, since they don’t have a ready probability interpretation. However, many improper priors
are limits of proper priors. The interpretation of the prior in this case is quite different from a nonprob-
abilistic “regularization device”. The debate over the use of improper priors is ongoing and interesting
Berger:2006,Goldstein:2006, but we do not wish to engage it here.
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theory. G&S’s approach compares unfavourably to the coherence and conceptual clarity
of Bayesianism.

Departing from G&S

Apart from being Bayesian, our perspective differs from G&S in two ways: one
pragmatic, and the other philosophical. Pragmatically, we believe that although G&S’s
approach is likely to be successful for the types of problems they encounter, it is not ideal
for questions we commonly encounter. Philosophically, we disagree with G&S that all
models are wrong.

The importance of invariances

Statistics is such a diverse field in part because of the wide variety of questions
that statistics is required to address. Differences in goals and applications lead to im-
mediate differences in statistical philosophy. G&S state, “The statistician begins with
a model that stochastically generates all the data y, whose joint distribution is speci-
fied as a function of a vector of parameters θ from a space Θ (which may, in the case
of some so-called non-parametric models, be infinite dimensional).” In contrast, we
start from a theoretical question about a scientific phenomena of interest. We almost
always interested in assessing invariances: those elements of structure or constancy in
a complex relationship among variables. A classic example of invariances are Kepler’s
laws of planetary motion. Although the trajectories of the planets seem complicated
when viewed from Earth, Kepler was able to deduce a set of three simple constraints
that governed the relationship among the observables. The search for simplifying struc-
ture is ubiquitous in the the natural sciences, and in many experimental social sciences
Morey:Rouder:2011,Rouder:Morey:2011a,Rouder:etal:2008a. Theoretical differences over
models amount to different constraints on data.

For problems like the ones G&S handle, which are often involve linear models (or
generalized linear models) of varying complexity, the model checking approach is feasi-
ble. However, for many of the questions we encounter, it is difficult to imagine how model
checking could serve as the primary mode of inference. If two theoretical positions are
represented by radically different stochastic models (as will often be the case in psychol-
ogy), both models will likely misfit in different ways, and it may not be obvious how to
compare the two. We seek methods for either moving toward less-complex models em-
bedding more invariances, or across classes of models embedding different invariances.
The traditional Bayesian framework offers a natural way of answering the questions we
face, with the benefit that it comes with a formal inferential framework.

Models are neither true nor false

G&S focus on the issues of “false” models in statistical inference, but we believe the
idea of “false” models to be unhelpful. As representations, scientific models, including
statistical models, are neither true nor false Bailer-Jones:2003,Hughes:1997,Hutten:1954,
unlike the propositions about the world that they represent. We believe that ?’s ((?))
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Figure 1. ?’s ((?)) DDI model of scientific representation. “World” squares represent phenomena
(dark) or propositions about phenomena (light); “Representation” squares represent models (dark)
or inferences about models (light).

famous dictum, “all models are false but some are useful,” could be shortened to “some
models are useful” without any loss. The main question to us is to what extent the
inferences made using representations can be applied to corresponding inferences about
the world. Useful statistical models and procedures will provide inferences that can be
“interpreted” in such a way as to be useful for inference in the real world.

Hughes:1997 describes a framework which can be used to understand the process
of how scientific models are used, which he called the denotation, demonstration, in-
terpretation (DDI) framework (Figure ??). To help answer the researcher’s question, the
statistician will develop a statistical model. This move from the “real world” into the
model world Hughes calls denotation. The statistical model, by necessity, is an ideal-
ized representation. The researcher’s hypotheses about the real world are not answered
directly; instead, questions about parameters of the statistical model are answered. Infer-
ence about the mean value of a population, for instance, is replaced by inference about
the normal distribution, which is a representation of the population of interest. Hughes
called this process of acting on representations demonstration. Finally, inferences with
respect to the representation must be translated back into the world through interpreta-
tion of the statistical inference. Hughes conception of the role of models is central how
we view Bayesian analysis.

The humble Bayesian

With these differences in perspective in place, we now spell out how the practice of
model checking can be aligned with Bayesian inference, as long as we are suitably humble
in applying our inferences. We call our view “humble Bayes2,” but we make no claims
as to its novelty. We note that G&S’s list of those who advocate some form of model
checking is a veritable who’s-who of 20th century Bayesian statisticians, and we suspect
that most Bayesians adhere to a similar philosophy, without giving it a name.

Open-minded inference

In the foregoing we noted that G&S’s falsificationism is not easily incorporated in a
coherent theory of model checking. But for our Bayesian theory, we borrow from falsifi-
cationism what we take to be its greatest virtue: its open-mindedness. To its credit, there
is no suggestion in the approach of G&S that the models presently under consideration
are in some sense true, and new models can enter the arena at any stage of investigation.
By contrast, a Bayesian who is pondering over a fixed set of models seems ultimately
closed-minded. She has a prior probability over the set which expresses her belief in each

2Readers who have interacted with Bayesians may find the term “humble Bayesian” oxymoronic.
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of the options available, and these priors add up to one, meaning that the disjunction of
the models is believed with absolute certainty [cf.][]Dawid:1982.

If, on the other hand, we decide to employ odds as expressions of relative belief3,
then it is left open whether or not the probabilities of the models under consideration sum
to unity. A Bayesian who employs odds is silent on whether or not she is in possession
of the true model, and, in fact, needn’t acknowledge the existence of a true model at all.
But such a Bayesian is nevertheless able to incorporate prior beliefs into the inference.
With minor interpretative adjustments, it is possible to incorporate openmindedness in
the Bayesian inferential framework.

The primary inferential machinery in humble Bayesianism is thus traditionally
Bayesian, using posterior distributions, model odds, and Bayes factors, the choice of
which is largely driven by the research question. These Bayesian quantities are used
to perform inferences within the statistical models at hand, but also to evaluate models
and compare them to one another. This is unlike the overconfident Bayesian, simply be-
cause the models are questioned. Model checking serves two roles, which we can spell
out in terms of the perspective on models given above: determination of the extent to
which inferences can be carried from the statistical representation into the real world,
and support of the generation of new models for comparison.

Model checking assures applicability of Bayesian inferences

In scientific settings, the quantities of interest are not quantities in any statistical
model; rather, a researcher has questions about a particular population or process. These
questions, if they are well-formed, can be reframed in terms of propositions about the
world that are either true or false. There are uncountably many statistical models that
could be used to help answer the researcher’s questions, but we emphasize that the orig-
inal question is not itself a question about a statistical parameter or model.

With this understanding, Bayesian confirmation theory still provides meaningful
inferences. The goal of humble Bayesian confirmation theory is not to confirm a “true”
model. Because the model itself is not true (nor is it false), neither confirming it nor
falsifying it can be our goal. However, we can take a confirmation as indicating something
important about the world. G&S mention that Bayes factors and posterior probabilities
can be useful as long as they “are not taken too seriously.” Our reason for not taking
them too seriously is not that the underlying models are false; rather, it is that they are
not the ultimate target for inference. The Bayes factor or posterior probability must be
interpreted. If models are useful, statements about statistical parameters will correspond
to statements about the world, but this correspondence will not be exact.

Overconfident Bayes is problematic because it lacks the necessary humility that ac-
companies understanding that inferences are based on representations. We agree that
there is a certain silliness in computing a posterior odds between model A and model B,
seeing that it is in favor of model A by one-million to one, and then declaring that model A
has a 99.9999% probability of being true. But this silliness arises not from model A being

3“Belief” in this sense may be part of the statistical representation, and may or may not reflect the analysts
belief in the corresponding proposition in the real world.
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false. It arises from the fact that the representation of possibilities is quite likely im-
poverished because there are only two models. This impoverished representation makes
translating the representational statistical inferences into inferences pertaining to the real
world difficult or impossible4. For this reason, we prefer to speak of “model comparison”
rather than “model selection”: Models needn’t ever be selected as true, but they can be
compared in meaningful and informative ways.

The key, then, is to ensure that our statistical inferences can be interpreted in a
useful way into real-world inferences. What must we do to ensure that demonstrations
in the representation realm can be interpreted in such a way that they correspond in a
useful way to statements about the world? This is a difficult question to answer, but at
minimum, we believe it requires that the ancillary assumptions used to generate models
are not unreasonable. Even in a fully Bayesian framework, model checks are necessary.
Model checks help to assure ourselves that interpretation of the results is possible in a
way that is useful for real-world inferences.

Model checking helps generate new models

In addition to helping assure ourselves that our Bayesian quantities are useful,
model checks also spur the creation of new models, which can then be tested within
the standard Bayesian model testing framework. G&S describe model testing as being
outside the scope of Bayesian confirmation theory, and we agree. This should not be seen
as a failure of Bayesian confirmation theory, but rather an admission that Bayesian confir-
mation theory cannot describe all aspects of the data analysis cycle. It would be widely
agreed that the initial generation of models is outside of Bayesian confirmation theory; it
should then be no surprise that subsequent generation of models is also outside its scope.

Generating multiple models in Hughes’ denotation phase allows for a richer repre-
sentation of the world. Because the quality of our inferences are related to the richness of
our representation of the world (or possible worlds), generation of new models is essential
to ensuring that our Bayesian inferences are applicable to real-world scenarios. Statistical
inferences, including Bayesian ones, are only as useful as the underlying representation
admits.

We therefore believe that model checking complements the Bayesian confirmatory
approach to statistical inference. To a humble Bayesian, models are not true or false,
but are representations. The humility in the humble Bayesian approach comes from un-
derstanding that these models are not the ultimate target of inference, and that model
checking helps to ensure that we can bridge the gap between the representational world
and the real world.

Conclusion

The humble Bayesian approach we have sketched out here has the advantage that
it retains the core of the Bayesian confirmatory method with its formal inferential theory,

4On the other hand, in some research scenarios inference from impoverished representations may be
possible. The usefulness of a two-model comparison is highly dependent on the phenomenon and research
question.



RESPONSE TO GELMAN AND SHALIZI 8

something that G&S’s approach lacks. It avoids many of the criticisms of G&S by keeping
an open mind through model checking, and through humility, by understanding that
Bayesian quantities must be interpreted. The applicability of Bayesian quantities will be
determined by the quality of the statistical representation, which can be checked using
the methods G&S advocate.


