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Abstract

This paper discusses the role of theoretical notions in making predic-
tions and evaluating statistical models. The core idea of the paper is
that such theoretical notions can be spelled out in terms of priors over
statistical models, and that such priors can themselves be assigned
probabilities. The discussion substantiates the claim that the use of
theoretical notions may offer specific empirical advantages. Moreover,
I argue that this use of theoretical notions explicates a particular kind
of abductive inference. The paper thus contributes to the discussion
over Bayesian models of abductive inference.

1 Introduction

In this section I introduce theoretical notions in a statistical context. Against
this background I specify the two central claims of this paper.

1.1 Theoretical notions and empirical content

In what follows I adopt the view that the empirical content of a statistical
hypothesis H is given by its likelihoods, that is, by the probabilities of data
E conditional on the hypothesis, written as P (E|H) (cf. Douven [2008]). If
two hypotheses H and H? have identical likelihoods, that is,

P (E|H) = P (E|H?)
∗The author is simultaneously a research fellow at the Philosophy Department of the

University of Johannesburg.
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for all possible observations E, then they have the same empirical content.1

We will say that a distinction between hypotheses is based on a theoret-
ical notion, or theoretical for short, if it distinguishes two hypotheses H
and H? while these hypotheses have identical likelihood functions. Fur-
thermore, a statistical model is defined to be a collection of hypotheses,
H = {H1, H2, . . . ,Hn}. We will say that a distinction between two models
H and H? is theoretical if the hypotheses in the model have pairwise iden-
tical likelihood functions, P (E|Hj) = P (E|H?

j ) for 0 < j ≤ n and for all
E.

A central point in this paper is that models whose distinction is theo-
retical may still differ in empirical content, because of the priors we define
over them. We will look at models H and H? that differ theoretically in the
sense specified above, but that are associated with different stories concern-
ing the data generating system. Such stories motivate different priors over
the models in question, and these priors again lead to a different empirical
content for the two models. The data may be used to choose between the
models in virtue of their association with different priors.

This approach to comparing statistical models has been around for a
while, and indeed can be traced back to Gaifman [1985].2 It is perfectly
coherent to assign probabilities to probability assignments, as is routinely
done in Bayesian statistics, and it is also coherent to add more layers of
probabilistic analysis, assigning probabilities to the probability assignments
over the groud level assignments, and so on. More recently, this idea has
taken root in statistics, more precisely in hierarchical Bayesian modeling
(cf. Gelman at al [2004], Gelman and Hill [2007]). This approach compares
models on their marginal likelihoods, in which the prior over the model is
an explicit component. Henderson et al [2010] discuss some philosophical
applications of hierarchical modeling.

1If we assume the likelihood principle, according to which all evidence pertaining to

a hypothesis is mediated by the likelihoods of that hypothesis, then the two hypotheses

cannot be distinguished by any evidence. See Royall [2000].
2Considering the infuence of Prof. Gaifman’s work on the philosophy of science, and

on the philosophy of statistics in particular, the connection of this paper to his work

is a rather weak one. I regret that the philosophical appraisal of Gaifman and Snir’s

seminal paper on rich languages, which was planned for this special issue, is still under

construction.
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1.2 Central claims of this paper

The upshot of this paper is that theoretical notions can play an active role in
statistical inference, and that in particular cases we can tell apart theoreti-
cally distinct models by empirical means. Higher-order probabilities play a
crucial role in capturing these theoretical notions and in making them empir-
ical. These two claims answer two critical discussions on theoretical notions
in science. The first of these is that theoretical notions can be understood
as methodological tools, and should not be discarded as as superfluous and
non-empirical. This claim can be viewed a response to the theoretician’s
dilemma discussed in Hempel [1958]. He argues that, if the aims of science
are indeed empirical, there is no role for theoretical notions, since we can
purge a scientific theory of such notions without losing any of its empirical
content. Against this, I argue that certain uses of theoretical notions lead
to more efficient inferences from the data.

The second claim is that the use of theoretical notions indicated above
captures a particular kind of abductive inference. This is a reply to van
Fraassen [1989], who argues that abductive inference is probabilistically in-
coherent. To some extent I go along with van Fraassen’s way of framing
Bayesian abduction. I consider a set of statistical hypotheses, and take
their empirical content to be given by their likelihoods. But van Fraassen
then proposes to capture the role of theoretical notions, e.g., their explana-
tory force, by additional changes to the probability assignment over the
hypotheses, after processing the Bayesian update. The use of theoretical
notions thus leads to probabilistic incoherence. In response, the Bayesian
model of abduction proposed in this paper uses theoretical notions to mo-
tivate priors over multiple models, which are then adapted by Bayesian
conditioning. Because of the different priors, the impact of the data on the
models is different, allowing us to tell apart models on the basis of theoretical
considerations.

2 Bayesian models of abduction

This section discusses some earlier attempts to accommodate the use of
theoretical notions in Bayesian inference, and thus to reconcile it with ab-
duction. See, for instance, Day and Kincaid [1994], Okasha [2000], Salmon

3



[2001], Sober [2002], McGrew [2003], and Lipton [2004].3 Following the
structure of Bayes’ rule, these attempts incorporate the explanatory or the-
oretical considerations in the prior probability, in the likelihoods, or in both.

2.1 Abduction by priors

One idea is to model abduction in a Bayesian framework by means of prior
probabilities, namely by shifting prior weight to more explanatory hypothe-
ses. However, as argued by Milne [2003], if we want to capture the explana-
tory considerations in a Bayesian update, then we need to portray this head
start of explanatory hypotheses as resulting from the impact of some sort of
evidence. Milne then notes that the characteristics that make a hypothesis
explanatory, like simplicity, aesthetic quality, and the like, will typically be
carried by the hypothesis from the very beginning, because they are logi-
cally entailed by the hypothesis or because the hypothesis is constructed to
have those characteristics. Therefore, any evidential impact of theoretical
characteristics runs into the problem of logical omniscience, or in this case
equivalently, the old evidence problem.4

There may be theoretical characteristics that are not analytic in this
way, but that somehow rely on evidence or background knowledge. But
as illustrated by the burglar story in Weisberg [2009], it is still not clear
that their impact can then be modeled by means of a prior probability. Say
that you find your house in a mess, valuables are missing, and by way of
explanation you imagine either of two things: there has been a burglar in the
house, or alternatively, one burglar in your house was disturbed by another,
then both were discovered by a policeman who chased them away and then
took advantage of the situation. Weisberg argues that the first story is more
explanatory, quite independently of how probable you find these stories to
start with. At least in a subjective Bayesian framework, nothing forces us
to align our prior probabilities to our judgement of the explanatory force of
the hypothesis.

3Douven [1999], Tregear [2004] and Weisberg [2009] react to the criticisms of van

Fraassen by showing that explanatory considerations can be modelled as rational changes

of belief that do not comply to the Bayesian model. I think these reactions deserve separate

attention, but for the moment I seek to maintain the Bayesian norms.
4Several authors have proposed Bayesian models of learning such analytic truths; see

Earman [1992]. But there is certainly no consensus over these models. I will leave further

discussion over them aside.
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But even independently of the reasons adduced by Milne and Weisberg,
I submit that a Bayesian model of abduction in which explanatory force is
defined relative to the data is preferable. That is, a model that involves the
likelihoods of the hypotheses is preferred. This allows for the possibility,
which seems rather natural, that for certain data one statistical model is
more explanatory, while for other data another model is. This is not to say
that assigning a high prior to simple or beautiful hypotheses may not be
part of a full Bayesian model of abduction. But it seems reasonable to say
that such a model cannot be the whole story.

2.2 Explanatory likelihoods

A number of authors hold that the likelihoods of hypotheses can be de-
termined, at least partially, by explanatory considerations. Okasha [2000]
notes that a high probability of the data given some hypothesis may be mo-
tivated by the fact that the hypothesis provides a good explanation of the
data. McGrew [2003] presents an interesting elaboration of this idea. He ar-
gues that, when updating a hypothesis that entails a particular probabilistic
dependence by means of data that confirm this dependence, we effectively
exploit the explanatory virtue of consilience.5

While I think these are valid responses, I think they will not convince a
critic of Bayesian abduction like van Fraassen [1989]. For such a critic, the
natural retort is that differences in the likelihood of hypotheses correspond
to differences in their empirical content. The argument by van Fraassen
against abduction concerns the use of theoretical notions over and above
this empirical content. In other words, it concerns the use of abduction
for telling apart observationally identical hypotheses. As Weisberg [2009]
argues, the employment of high likelihoods for hypotheses with explanatory
virtues effectively conflates these virtues with ones that can be expressed
probabilistically. The model does not capture what is specifically more ex-

5McGrew employs the relevance quotient rather than the likelihoods of the hypotheses

because the latter may be hard to determine independently. The salient point for this

paper is that the explanatory considerations are tied up with the handling of evidence,

rather than being fixed before the evidence comes in. Hence these considerations are

expressed in the likelihoods of the hypotheses at issue. In his example concerning the

lens hypothesis L, we can rephrase the dependence or consilience of the two data S1 and

S2 in terms of the likelihoods as P (S2|L ∩ S1) = P (S1|L ∩ S2) ≈ 1, thereby turning the

consilience into a fact about likelihoods.
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planatory, as opposed to more empirically adequate, about the hypothesis
that has in this way gained more posterior probability. In other words, we
are looking for a Bayesian model of abduction that somehow manages to do
justice to this non-empirical aspect of abduction.

The model of abduction proposed in this paper captures differences in
likelihood that are based on explanatory differences in a specific way, namely
by means of prior probability assignments over otherwise identical statisti-
cal models. I thereby hope to strike a balance between the opposite sides
of the debate on Bayesian abduction. I express the explanatory consider-
ations in prior probability assignments over statistical models, but these
considerations come out in how the priors interact with the data, namely in
the so-called marginal likelihoods. The distinction between the statistical
models is theoretical, in the sense that they consist of the same hypothe-
ses. But the theoretical notions motivate different priors, so that they can
be distinguished empirically. In sum, both between priors and likelihoods
and between theoretical and empirical characteristics, the present model of
abduction occupies a middling position.

3 Bayesian inference

This section presents the standard Bayesian inference of predictions and
parameter values, as discussed in Howson and Urbach [1989], Barnett [1999],
Press [2003] and many others. Readers who are familiar with Bayesian
statistical inference can skip to the next section.

3.1 Tossing coins

Rather unoriginally, I start with an example on coin tossing. This serves as
time-honoured stand-in for a much wider set of chance processes concerning
independent and identical trials.

Single observations are results of coin tosses, either heads or tails. These
are stored as data elements Q, tagged with a time index t and a value
q ∈ {0, 1} for tails and heads respectively. The result of a single coin toss is
thus denoted with Qqt . For example, if the third coin toss results in heads, we
include Q1

3 in the sample. For convenience, sequences of such observations
with a length t are denoted with Eq1···qt , or Et if the results q1 · · · qt are free
variables or clear from the context. For example, if the first tree coin tosses
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all resulted in heads, we may summarise the data in E111 or E3 for short.
We can interpret these data elements directly as sets in a possible worlds
semantics. The data element Q1

3 is the set of all possible worlds in which
the third coin toss indeed results in heads, and similarly E111 is the set of
all possible worlds in which the first three coin tosses all result in heads.
Consequently, we can write E111 = Q1

1 ∩Q1
2 ∩Q1

3.
Bayesian statistical inference involves statistical hypotheses. In the ex-

ample on coins, since the tosses are identical and independent, an appropri-
ate statistical hypothesis concerns a constant and independent chance θ on
heads. This chance θ for the coin to land heads may have a value 1/2, or
1/3, or any other real value in the unit interval. The hypotheses Hθ can be
collected in the model H = {Hθ : θ ∈ [0, 1]}. Every hypothesis in the model
determines a probability assignment over data sets, called the likelihood
function of the hypothesis:

P (Q1
t+1|Hθ ∩ Et) = θ.

Given the hypothesis H1/3, the chance of observing a toss resulting in heads
is 1/3, the chance of three consecutive heads is 1/27, and so on.6 Note that
the trials are indeed independent and identical: the likelihoods of the hy-
potheses Hθ are such that earlier observations Et do not matter, and that
the likelihoods are independent of the index t.

Next to a model, Bayesian statistical inference presupposes a probability
function over a statistical model, the so-called prior probability. Note that
this is in a sense a second-order probability: it is a probability function
whose domain is a set of statistical hypotheses, but these hypotheses are
each associated with a probability assignment over the data. In case the
model contains a continuum of hypotheses, as in the example, the prior
probability can be expressed in a density function, P (Hθ)dθ. Bayes’ theorem
may then be used to determine the probability over the model in the light
of the observations Et. We obtain a so-called posterior probability as a
function of the prior probability and the likelihoods

P (Hθ|Et)dθ =
P (Et|Hθ)
P (Et)

P (Hθ)dθ,

6The statistical hypotheses are not always characterised in terms of conditional prob-

abilities P (·|Hθ). Classical statisticians prefer the notation pθ(Q
1
t+1|Et) = θ.
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where the probability of the data set P (Et) is an average over the likelihoods
weighted according to the prior over the hypotheses,

P (Et) =
∫ 1

0
P (Hθ)P (Et|Hθ)dθ.

Bayesian statistical inference is thus determined by the choice of a model,
specifically the likelihood functions of the hypotheses in the model, and
by a prior probability over the model. Only the prior and the likelihoods
determine the posterior probability over the hypotheses.

3.2 Predictions

The posterior probability assignment over the model is the central result of
a Bayesian inference. Predictions follow directly from this posterior proba-
bility by the law of total probability:

P (Q1
t+1|Et) =

∫ 1

0
P (Q1

t+1|Hθ ∩ Et)P (Hθ|Et) dθ

=
∫ 1

0
θ P (Hθ|Et) dθ.

Note that the latter expression is the expectation value for θ after observing
Et. The predictions based on the hypotheses Hθ can therefore also be read
as Bayesian estimations of the parameter θ.

De Finetti’s representation theorem (cf. De Finetti [1937], Paris [1995])
states that the above scheme of hypotheses covers exactly those prediction
rules, or estimation functions, that are invariant under order permutations
of the observations in Et. We define tq as the number of Qqi in Et. For
example, if we observe q1 · · · q6 = 100111, then t0 = 2 and t1 = 4, so
t = t0 + t1. The prediction rules resulting from the setup of the example
may then be characterised by

P (Qqt+1|Et) = pr(t0, t1).

To derive predictions from Et we only need to know t0 and t1. The order in
which the 0’s and 1’s appear is irrelevant. According to De Finetti’s theorem,
every rule pr corresponds to a unique prior P (Hθ)dθ over the model, and
vice versa. For instance, following Festa [1993], if we assume the prior to be
a symmetric Beta distribution,

P (θ) ∼ θλ/2−1(1− θ)λ/2−1, (1)
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we can derive the so-called Carnapian λ rules,

P (Qqt+1|Et) =
tq + γλ

t+ λ
= prλ(tq, t), (2)

in which γ = 1/2 because the observations are binary (cf. Carnap [1952]). A
higher central peak in the density P (θ) is encoded in a larger parameter λ.
So the larger the value of λ, the more confident we are that the chance θ
has a value around 1/2.

In view of this paper’s focus, note that the hypotheses Hθ are in some
sense already theoretical. They concern the fixed and independent chance
of an observation, and such chances cannot be translated into finite ob-
servational terms. Witnessing De Finetti’s result, the hypotheses can be
eliminated from the inference completely, with the inferences running from
data to predictions directly. According to Hintikka [1970], any real empiri-
cist should in fact strive for such an elimination. Nevertheless, as argued in
XXX [2003, 2005], there are good reasons for including an intermediate step
of statistical hypotheses. The first reason is intelligibility. The hypotheses
express the chance mechanism that is assumed to generate the observations,
and employing these hypotheses gives us an easy way of turning this as-
sumption into inductive predictions. Moreover, as will be explained below,
the hypotheses enable us to express further knowledge of the chance mech-
anisms in a prior probability over them. It is not always straightforward to
incorporate such knowledge in a direct prediction rule.

4 Hierarchical Bayesian modeling

The above concerns the use of a single model H. I now direct attention
to using two such models together, which differ in virtue of a theoretical
notion. In the statistics literature, such a comparison of models falls under
the header of Bayesian model selection, or hierarchical Bayesian modeling.
For more technical detail, I refer to Gelman and Hill [2007]. Gustafson
[2005] provides a detailed discussion of the use of unidentified models, which
is particularly salient here. A more philosophical discussion can be found in
XXX [2008].
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4.1 Magical coins

Say that we are going to toss a coin. We are sure that the chances on
each trial are independent and identical, so the afore-mentioned hypotheses
Hθ seem appropriate. But imagine that we have further knowledge of the
process underlying the data: the coin is either normal, e.g. from an ordinary
wallet, or magical, e.g. from a conjurer’s box. If the coin is normal, it is
most probably fair, having a chance to land heads that is close to 1/2. And
if the coin is magical, it is most probably biased, having a chance to land
heads that is close to 0 or 1. On the other hand, the coin may be from my
wallet and yet have a highly unusual division of weight, corresponding with
a chance away from half. And it may also be from a rather cheap conjurer’s
box and fail to show the expected bias.

To incorporate this additional knowledge about the coin, we may decide
to employ the model concerning constant and independent chances θ twice.
One model may be reserved for the normal coin, H = {Hθ : θ ∈ [0, 1]}, and
another for the magical coin, H? = {H?

θ : θ ∈ [0, 1]}. We can distinguish
hypotheses Hθ with different values of θ within the model H, and similarly
we can distinguish H?

θ with different values of θ within H?. But we cannot
distinguish the hypothesis Hθ from the hypothesis H?

θ with the correspond-
ing value of θ, because these hypotheses have identical likelihood functions.
Following the above discussion, the distinction between the models H and
H? is theoretical. The combined model {H,H?} is therefore non-identifiable,
but in virtue of that we have separate control over the priors defined on the
models. Our knowledge concerning the two types of coins motivates specific
forms for these priors.7

For the sake of simplicity, we choose both functions from the class of
symmetric Beta priors, as expressed in Equation (1). For λ = 2 this distri-
bution is uniform, while larger values λ > 2 lead to an ever sharper single
peak at θ = 1/2, and smaller values λ < 2 lead to two peaks at θ = 0
and θ = 1, with an ever deeper valley in between. None of these priors is
dogmatic, meaning that each of them is nonzero over the whole domain of

7If we had no further theoretical story, we would apply something like the principle

of indifference or entropy maximization to arrive at a uniform prior over the hypotheses

Hθ in the single model H, or use the non-informative prior devised by Jeffreys [1939].

But in this case, the theoretical background stories motivate different priors for the two

submodels.
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Figure 1: Two different priors over the two models of fixed chance hypotheses, Hθ and

H?
θ . The single peak prior is associated with the normal coin, the twin peaks prior with

the magical coin.

θ ∈ [0, 1]. Concretely, to express our expectations for the normal coin, the
prior over the model H may be a symmetric Beta distribution with λ = 12,
so that P (Hθ) ∼ θ5(1−θ)5. This means that we are quite confident that the
chance of the normal coin landing heads is close to 1/2. The prior over the
model H? may be P (H?

θ ) ∼ (θ)−5/6(1 − θ)−5/6, with λ = 1/3, meaning that
we expect the magical coin to have a chance close to 0, or close to 1. These
priors are illustrated in Figure 1. Finally, we put a higher-order probability
over the models themselves. Since we are initially undecided between the
two models, we choose P (H) = P (H?) = 1/2. These assignments together
pin down a complete prior over the non-identifiable model.

4.2 Bayesian inference over models

We can now apply the Bayesian inference of Section 3. Within the two
models, we adapt the probability functions over the statistical hypothesesHθ

and H?
θ in the light of new data. Each prior separately leads to predictions

over coin tosses. The two Beta priors over H and H? lead to two different
Carnapian prediction rules, with λ = 12 for the normal coin and λ? = 1/3

for the magical one. We write

P (Qqt+1|H ∩ Et) = pr12(tq, t), (3)

P (Qqt+1|H
? ∩ Et) = pr1/3(tq, t). (4)

So the probability assignments within the two models H and H? may be
updated separately, exactly as described in the foregoing.

The probability assignment over the models themselves is also affected
by the data set Et. This is the core idea of Bayesian model selection: we
may treat the models as separate hypotheses, and run a Bayesian inference
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on the level of models. This allows us to compute the ratio of posterior
model probabilities:

P (H|Et)
P (H?|Et)

=
P (H)
P (H?)

P (Et|H)
P (Et|H?)

.

In the example the ratio of priors is 1 and hence can be eliminated from
the equation. The marginal likelihoods P (Et|H) and P (Et|H?) are built up
sequentially, using the Carnapian predictions (3) and (4) as likelihoods at
each step.

For our example these likelihoods can be given analytical expressions.
As indicated, the marginal likelihood is the product of the Carnapian pre-
dictions at each step:

P (Et|H) =
t0−1∏
i=0

prλ(i, i)
t−1∏
i=t0

prλ(i− t0, i).

Notice that the order of the observations does not matter to the marginal
likelihoods so that we can reorder them as suggested above. This leads to
the expression:

P (Et|H) =
1
2
× λ/2 + 1

λ+ 1
× · · · × λ/2 + t0

λ+ t0
(5)

× λ/2 + 1
λ+ t0 + 1

× · · · × λ/2 + t1
λ+ t− 1

(6)

=
(λ− 1)¡

(λ+ t− 1)¡
× (λ/2 + t0)¡(λ/2 + t1)¡

(λ/2− 1)¡ (λ/2− 1)¡
(7)

Here f ¡ denotes the normal factorial for f ∈ N while for f ∈ R \ N we have
f ¡ =

∏bfc
i=0(f − i), with bfc the value of f rounded off. We can derive the

same expression using λ? for the marginal likelihood of H?. The ratio of
these two expressions gives us the ratio of the marginal likelihoods, or in
short the Bayes factor, of the two submodels.

From the posteriors over the non-identifiable model we can subsequently
calculate the predictions P (Qqt+1|Et). To this aim we weigh the two Car-
napian rules with the probabilities of the models. The result is, what Skyrms
[1993] calls, a hyper-Carnapian prediction rule:

P (Qqt+1|Et) = P (H|Et) pr12(tq, t) + P (H?|Et) pr1/3(tq, t). (8)

The overall prediction may again be taken as an overall Bayesian estimator
of the chance for the coin to land heads. It is a mixture of the estimations
within the two models.
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This setup has some interesting consequences. While the models H and
H? consist of pairwise identical hypotheses, the differing priors over them
cause different marginal likelihoods. So if we update with a data set for
which the relative frequency is close or equal to 0, say E000000, we will find
that the updated probability ofH? is larger than that ofH. To illustrate this,
the table shows a comparison between the effect of E000000 on the predictions
P (Q0

t+1|Et), as based on the non-identifiable model {H,H?}, and as based
on the single model H. Over the latter we choose a uniform prior, which
leads to the prediction rule P (Q0

t+1|Et) = pr2(t0, t). Also included in the
table is the probability assigned to the modelH? in the non-identifiable case,
P (H?|Et).

Number of observations t 0 1 2 3 4 5 6

Observations qt - 0 0 0 0 0 0

P (Q0
t+1|Et) in H 0.50 0.67 0.75 0.80 0.83 0.86 0.88

P (Q0
t+1|Et) in {H,H?} 0.50 0.71 0.79 0.85 0.90 0.93 0.94

P (H?|Et) in {H,H?} 0.50 0.50 0.62 0.73 0.81 0.87 0.91

The salient point for us is that the distinction of the two models is theoret-
ical, but that the theoretical notions associated with these models motivate
different priors. This making the models empirically distinghuishable.

4.3 Discussion

I want to make two further observations about this table, linked to the
two central claims of this paper. First, the predictions based on the non-
identifiable model are quicker to pick up on the correct relative frequencies.
Because the prior over the non-identifiable partition is tailor-made to fit the
most likely courses of events it will, if the coin is indeed from a wallet or a
conjurer’s box, converge to the correct predictions and the true parameter
value more quickly. The use of a theoretical notion, i.e. the origin of the
coin, thus enables us to improve our predictions. And second, in a direct
comparison the model associated with the magical coin becomes more prob-
able than the model associated with the normal coin. This means that we
are able to decide over the origin of the coin, a theoretical notion, on the
basis of data.

13



It may seem that the representation of inductive predictions in terms
of statistical hypotheses is rather contrived, and that it is much more nat-
ural to employ the two models H and H? as hypotheses directly, with the
Carnapian rules as their likelihoods. We can then omit the whole story
on the underlying models, concentrating on values for λ as determinants of
the likelihoods instead, and leaving no reason to invoke theoretical notions.
But I think there are compelling reasons for spelling out the above in terms
of statistical hypotheses. For one, it is hard to make sense of Carnapian
prediction rules as the likelihoods of statistical hypotheses. Because such
Carnapian hypotheses follow the observed relative frequency, in the limit of
sample size t to infinity such hypotheses all have the same likelihood. Hence
none of the usual convergence theorems for Bayesian updating applies. The
Carnapian hypotheses cannot be said to concern relative frequencies.

I want to add two pragmatic benefits of using the non-identifiable model,
relating to the use of hypotheses discussed in Section 3. First, because
the two models facilitate the use of differing priors, they enable us to put
to use the available knowledge on the nature of the chance process that
generates the observations. Second, the use of two models helps us to arrive
at intelligible and analytic results. It is in principle possible to work with
an informative prior over a single partition H, choosing a single function
with the required shape. But the predictions resulting from the combined
priors over the two models cannot be equated with a single Carnapian rule,
and it is not easy to find some other prediction rule that captures them.
It is much more convenient to choose two separate Beta distributions and
update these independently. Summing up, the use of a theoretical notion
brings a methodological advantage: it makes the statistical inference more
transparent, and its use improves the predictive performance.

5 Underdetermination and abduction

After discussing the two claims of this paper in the context of the example,
we now assess them in more general terms. Below I characterize a partic-
ular kind of abductive inference, so-called evaluative empirical abduction,
which is arguably captured in the Bayesian model. The section ends with a
discussion of the relation between observational and theoretical notions.
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5.1 Methodological and realist challenges

The problem of underdetermination is that scientific theory is not deter-
mined by observation alone: the observations often do not allow us to make
a choice between different hypotheses. This presents us with two different
challenges, methodological and realist, associated with the afore-mentioned
criticisms of Hempel and van Fraassen.

The methodological challenge is to clarify that science is underdeter-
mined in the light of its aims, e.g., to find the truth, or perhaps only the
observational truth. The challenge is not that we resolve underdetermina-
tion. Rather it is to make sense of the use of underdetermined theoretical
structures in science in view of science’s goals. The realist challenge, by con-
trast, is to resolve the underdetermination of science, and thus to safeguard
the idea that science provides full epistemic access to the world. A common
way of meeting the realist challenge is by defending inference rules such
as abduction, which enable us to choose between underdetermined theory
on the basis of additional theoretical criteria, like explanatory force. The
methodological challenge has attracted far less attention in the literature.

I think that the preceding section presents a partial answer to both
of these challenges. Regarding the methodological challenge, the example
shows that non-identified statistical models facilitate the expression of sup-
positions on underlying mechanisms in priors, and that if the suppositions
are correct, their use will improve the predictions. That is to say, the statisti-
cal inferences are underdetermined, but this underdetermination has a clear
methodological use, because it provides us with an opportunity to employ
additional knowledge as input to the statistical inference, thereby improving
predictive performance. Regarding the realist challenge, the example shows
that we can sometimes decide between models that consist of pairwise identi-
cal hypotheses. More specifically, theoretical notions may motivate different
priors over otherwise identical models, so that these models become ob-
servationally distinct. The posterior probability assignment over models is
subsequently taken to reflect back onto these theoretical notions. We can
thus draw conclusions on typically theoretical notions concerning underlying
processes or mechanisms, conclusions that are usually considered to involve
abductive inference.
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5.2 Evaluative empirical abduction

Following the above answer to the realist challenge, we might argue that
the foregoing presents us with a Bayesian model of abduction: the examples
present a mode of inference allowing us to decide over, in some sense, theo-
retical notions. The obvious question is: can we call it abductive inference?

Part of the answer is negative. Nothing in the above concerns the gen-
eration of suppositions on underlying structure, while many discussions of
abduction take that as one of its most important aspects. Moreover, nothing
in the above answers to the problem that there are infinitely many theoret-
ical notions that are potentially useful, and that we do not have any reason
to choose any particular one when learning from the observations. This
problem, which is related to the so-called argument from the bad lot in Van
Fraassen [1989], has not been addressed. What the above examples show is
that if we happen to choose the theoretical concepts well, then they will be
beneficial to the predictions, instead of being irrelevant or detrimental. In
other words, the examples show that theoretical notions have an evaluative
rather than a generative use. In the model, abduction is thus restricted to
the evaluation of a given set of theoretical notions, or to evaluative abduction
for short.

There is another way in which the above set-up falls short of a proper
account of abduction. Concerning the methodological challenge, note that
the use of theoretical notions in the examples is directed towards improv-
ing the predictions. The above examples have little to say on the use of
theoretical notions for improving understanding and explanation, which are
equally valid scientific aims. Similarly, concerning the realist challenge, note
that we choose between the models not on the basis of theoretical notions
proper, but on the basis of the fact that one of the priors, as motivated by
the theoretical notions, matches the observations better. So in the end the
theoretical notions do have empirical content. Both these aspects are char-
acteristic of the kind of abduction that I take to be captured by the above
Bayesian inferences, which may be called empirical abduction. We can only
show the use of theoretical notions, and model the abductive inferences con-
cerning these theoretical notions, insofar as they lead to certain higher-order
empirical expectations, and thus have some observational implications.
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5.3 Theory-laden observations

The statistical models H and H? have different empirical content, so it is
doubtful that the foregoing captures a mode of inference that tells apart
the statistical models on the basis of theoretical differences. But notice that
theoretical is not the same as non-empirical. Indeed, we can view the above
mode of inference as driven by theoretical yet empirical considerations.

We might say that the nature of the distinction between models, as being
theoretical or empirical, depends on the content that we take the observation
to have. If we emphasize that the models consist of pairwise identical hy-
potheses and that the contents of the observations is determined completely
by the likelihoods of these hypotheses, then the difference between the mod-
els is best understood as theoretical. But if we say that the content of an
observation is determined by its entire epistemic impact, then the difference
between the models is straightforwardly empirical.

In the end the observations allow us to tell the two models apart, and
so it is more appropriate to say that the content of the observations is de-
termined by the total effect that updating with the observation has on the
probability assignment. But I want to resist the conclusion that, conse-
quently, the above model is completely empiricist in spirit, has nothing to
do with theoretical structure, and had better not be called abduction at
all. Instead I propose that the content of the observations is partly deter-
mined by the prior probability assignments over the hypotheses. That is,
the content of observations includes some theoretical content via the the-
oretical scheme in which we choose to frame these observations, and the
observations allow us to draw conclusions on theoretical notions exactly be-
cause the observations are framed in this way. Put rather speculatively,
the use of non-identified models provides us with a formal account of the
theory-ladenness of observations.8

In closing, let me relate this to the likelihood principle, according to
which the evidential impact of observations is entirely determined by the
likelihoods. In parallel to the above considerations, we may ask at what
level the likelihood principle is supposed to apply. If it is applied on the
level of hypotheses, the models are observationally identical. Applied on
the level of models, the models are observationally distinct, but then the

8For more on theory-ladenness as a response to the problem of underdetermination,

see Okasha [2002].
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observations inherit some of the theoretical content from the priors over
the models. Whether we like this or not, it seems that in Bayesian model
selection the principle must be applied to models, because the theoretically
motivated prior over the model is part and parcel of the evidential impact
that an observation has.9

6 Conclusion

I have argued that there is a specific use for underdetermination in statis-
tical inference, and thus in scientific method insofar as it concerns these
inferences. I have further argued that in the use of theoretical notions we
encounter a particular kind of abductive inference, which I called evaluative
empirical abduction. This abductive inference hinges on the interaction be-
tween observations and theoretical notions. The statistical inferences of the
above provide a formal model of it.

It is tempting to transfer the present insights on evaluative empirical
abduction to scientific methodology more generally. The formal model may
present an explanation and a justification of the fact that in the face of
underdetermination, scientists nevertheless feel that they sometimes have
reasons to prefer one theoretical hypothesis over another. They often posit
complicated theoretical notions behind relatively poor observational struc-
tures. Eventually this will have to be decided by historical case studies and
far more detailed analysis, but I suggest that scientists do this in order to al-
low themselves better ways of using all available knowledge, both in framing
observations and in testing theories.

Of course, there are many instances of abductive inference that are not
adequately captured by what is presented above. Scientists may well be more
creative and speculative than can be accommodated by any probabilistic
model of reasoning. In the words of Peter Lipton: their loveliest explanations
are often the most unlikely ones. Nevertheless, I hope to have shown that
particular concepts can after all be abducted by Bayesians.

9Forster [2007] presents arguments against the likelihood principle as a principle for fix-

ing the evidential impact of observations, by showing that different ways of parameterizing

lead to different maximum likelihood estimations. The problem cases that Forster comes

up with are genuine, but I do not think this reflects badly on the likelihood principle. My

hunch is that the problems highlight the evidential import of the prior probability.
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