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Abstract

We consider the use of intervention data for resolving underdetermina-

tion problems in statistical modelling. The leading example is factor

analysis, a major statistical tool in the social sciences. We first relate

indeterminacy in factor analysis to the problem of underdetermination.

Then we draw a parallel between factor analysis models and Bayesian

networks with hidden nodes, which allows us to clarify the use of in-

tervention data for dealing with indeterminacy. We show that in some

cases, the indeterminacy can be resolved by an intervention. The up-

shot is that intervention data can replace the theoretical criteria that

are typically employed to resolve underdetermination.

1 Introduction

The problem of underdetermination occurs when rival theories fit the empir-

ical facts equally well, so that we cannot choose among the theories on the

basis of empirical fact alone (Douven, 2008). One kind of underdetermina-

tion is widespread in the social sciences, in particular where these sciences

employ statistical modelling. Within a given experimental setup or popula-

tion study, it may so happen that the statistical model includes hypotheses

that have the same likelihood function. The problem of underdetermination

then appears as the problem that the best fitting hypothesis may have a

number of equally well fitting rivals. One standard response to this is to

look for theoretical criteria, such as simplicity or explanatory force, that

force a choice between the rivals.1 Underdetermination is then resolved by

an appeal to theoretical considerations.

1In factor analysis, in particular, researchers use theoretical criteria pertaining to the

variation among the estimations of the statistical parameters, such as “varimax”. See,

e.g., Lawley and Maxwell (1971).
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In this paper we investigate a different response to such underdetermi-

nation in statistical modelling, which makes use of intervention data. The

notion of underdetermination is thereby made relative to what is taken as

observable in a given experimental setup. Relative to a setup and back-

ground theory, several hypotheses under consideration may say the very

same things about what observations to expect, i.e., they have exactly the

same likelihood functions and thus perform equally well on the observation

data. The model consisting of these hypotheses is called ‘unidentifiable’.

However, the hypotheses need not be altogether equivalent. We can con-

sider specific changes to the experimental setup, or interventions for short,

such that the background theory determines different likelihood functions

over the additional results. So, relative to another experimental setup, the

hypotheses can be told apart.

Our primary objectives are philosophical. First, we illustrate that a res-

olution of underdetermination can partly be driven by empirical fact, and

so need not only be driven by theoretical considerations. Second, with our

discussion we bring to the fore an important and undervalued aspect of

scientific confirmation, namely the use of intervention data following experi-

mentation. We believe that insights from the philosophy of experiment (e.g.

Hacking (1980); Gooding (1990)) can come to fruition in confirmation the-

ory and we hope to make a modest start with that here. A further objective

is methodological: we hope to stimulate the uptake of statistical tools for

modelling interventions in social science. Despite the availability of statisti-

cal theories and methodological tools for exploiting intervention data (e.g.

Spirtes et al. (1993); Eberhardt et al (2010); Hyttinen et al (2012)), sci-

entists are often not aware of the potential of intervention data over and

above the use of observational data. It is hoped that this paper will con-

tribute to a better understanding of the benefits of interventions, and hence

will stimulate the use of the available statistical tools.

The setting for illustrating these ideas is exploratory factor analysis. As

it happens, factor analysis has already made an appearance in the philos-

ophy of science in another context. In Haig (2005) and Schurz (2008), for

example, factor analysis is proposed as a model for abductive inference, and

thus as a tool for generating new theory. We emphasize that in this paper

we take a different perspective. We employ exploratory factor analysis as

an illustration of the more general problem concerning statistical underde-
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termination, and we focus on the role of interventions in resolving statistical

underdetermination. This is of course different from taking the technique

of exploratory factor analysis itself as a model for abductive inference, and

hence as a tool for theory choice, as Haig and Schurz do.

The paper is set up in the following way. In §2 we describe two distinct

problems of indeterminacy in factor analysis. We show in §4 that factor

analysis is essentially identical to estimating parameters in a Bayesian net-

work with hidden nodes. Like causal Bayesian networks, the models in fac-

tor analysis therefore allow for incorporating intervention data. We argue

that in specific cases, intervention data can be used to resolve the under-

determination problem. In §6, finally, we briefly suggest how the model for

intervention may prove useful to the philosophy of experiment, and more

generally, to scientific methodology.

2 Underdetermination in statistics

In what follows we characterize the problem of statistical underdetermina-

tion and make it precise for factor analysis, a well-known statistical tech-

nique in psychometrics. Factor analysis is routinely used to interpret psycho-

logical test data, and it is a live problem to working psychologists that the

data do not allow for a complete determination of the underlying factors.

Importantly, the specific focus of this paper is not on the underdetermi-

nation of causal structure by data, as is usual in the context of studying

interventions, but rather on the underdetermination of parameter values.

2.1 Underdetermination in statistics

Consider a simple statistical problem, in which we estimate the chances

of events in independent and identical trials, e.g., results in psychological

tests. An observation at time t is denoted by the variable Qt, with possible

values q0t or q1t , for failing and passing the test. We denote a series of t

observations or test results by the variable St, and the event that earlier

results were some ordered series 〈q01q12q03 . . . q1t 〉 by s〈010...1〉, or st for short.

Denoting the hypothesis that the chance of observing q1t is θ with hθ, we

have

P (q1t+1|hθ ∩ st) = θ (1)
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for each trial t+ 1, an expression2 often called the likelihood function of hθ.

The chance θ of the event q1t+1 may be any value in [0, 1], so we have

a whole continuum of hypotheses hθ gathered in what we call a statistical

model, denoted H. On the basis of some series of events St, we can provide

an estimation of θ. We can do so either by defining a prior P (hθ) and

then computing a posterior by Bayesian conditioning, or by defining an

estimator function over the event space, typically the so-called observed

relative frequency

θ̂(St) =

t∑
i=1

I1(Qi)/t,

in which the indicator I1(Qi) = 1 if Qi takes the value q1i and 0 otherwise.

The above estimation problem is completely unproblematic. The obser-

vations have a different bearing on each of the hypotheses in the model, i.e.

each member of the set of hypotheses. If there is indeed a true hypothesis

in the set, then according to well-known convergence theorems (cf. Earman

(1992), pp. 141–149), the probability of assigning a probability 1 to this

hypothesis will tend to one. In the limit, we can therefore almost always, in

the technical sense of this expression, tell the statistical hypotheses apart.3

This situation is different if we take a slightly different set of statistical

hypotheses Gξ, characterized as follows:

P (q1t+1|gξ ∩ st) = ξ2 , ξ ∈ [−1, 1].

This set of hypotheses is essentially the same as before, only it is labeled in a

peculiar way. The hypotheses gξ and g−ξ are indistinguishable, because they

both assign exactly the same probability to all the observations: P (q1t+1|gξ∩
st) = P (q1t+1|g−ξ ∩ st). In such a case, we speak of an unidentifiable model.

Unidentifiable models are statistically underdetermined by the observa-

tions. Importantly, statistical underdetermination is not definitive: it is not

ruled out that there are experiments or additional observations that allow us

to disentangle the statistical hypotheses. This paper shows how additional

experiments can achieve this.

2We are writing the probability of data according to a particular hypothesis as P (·|hθ),
and not as phθ (·) or pθ(·), thereby following the Bayesian idea that hypotheses hθ can

serve as arguments of the probability function.
3Any infinitely long series of results is in principle consistent with any of the hypothe-

ses Hθ, and in that sense we are encountering an underdetermination problem in the

estimation. However, here we will not consider this type of underdetermination.
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2.2 Factor analysis

The above example of statistical underdetermination is rather contrived.

No reason is given for distinguishing between the regions ξ > 0 and ξ < 0.

However, there are cases in which it makes perfect sense to introduce dis-

tinctions between hypotheses that do not differ in their likelihood functions.

This subsection is devoted to presenting one of these cases, involving so-

called exploratory factor analysis. The exposition is partly borrowed from

[omitted for purpose of blind review].

Exploratory factor analysis posits a statistical model of hidden, or latent,

random variables on the basis of an analysis of the correlational structure

of observed, or manifest, random variables.4 Say that in some experiment

we observe the levels of fear F and loathing L in a number of individuals

indexed i, and we find a positive correlation between these two variables,

P (Fi, Li) > P (Fi)P (Li).

One way of accounting for the correlation is by positing a statistical model

over the variables in which fear and loathing may be related directly.

We may feel that it is neither the loathing that instills fear in people, nor

the fear that invites loathing. Instead we might think that both feelings are

correlated because of the presence or absence of a happiness drug, denoted

E. We might for example posit a negative correlation between the drug

and the fear, and similarly a negative correlation between the drug and the

loathing. Conditional on a certain drug dosage, fear and loathing can be

taken as uncorrelated:

P (Ei, Fi, Li) = P (Ei)P (Fi|Ei)P (Li|Ei).

We can then say that the drug dosage is the so-called common factor to

the observable, or manifest, variables of fear and loathing. The correlations

between drug usage and fear and loathing respectively we call the factor

loadings.

4See Lawley and Maxwell (1971) for a classical statistical overview, Mulaik (1985) for a

philosophically-minded discussion, and Bartholomew and Knott (1999) for a very insight-

ful introduction from a Bayesian perspective. All these treatises introduce exploratory

factor analysis next to the much less problematic statistical tool of confirmatory factor

analysis. In most of the following we concentrate on the former, and simply call it factor

analysis.
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Factor analysis has a number of standard applications, which are usu-

ally subdivided according to whether the manifest and latent variables are

categorical or continuous. In this paper we discuss one of the most straight-

forward applications of factor analysis, in which both the manifest and latent

variables are binary. Our reason is that we are making a conceptual point

about interventions and underdetermination. For this purpose the simplest

format of factor analysis suffices.

In terms of the example, the drug is either present in subject i, e1i ,

or absent, e0i , and similarly for fear and loathing. We assume that the

probabilistic relations between the variables are independent and identically

distributed. Out of the many possible probabilistic dependencies between

Fi, Li and Ei, we thus confine ourselves to

P (f1i |e
j
i ) = φj , (2)

P (l1i |e
j
i ) = λj , (3)

for j = 0, 1, a conditional version of the Bernoulli model of Equation (1).

Similarly for the variables Ei,

P (e1i ) = ε (4)

The probability over the variables Ei, Li and Fi is thus given by five

Bernoulli distributions, each characterized independently by a single chance

parameter.

In an experimental setting, we can often observe the common factor.

For example, we can check whether the drug was taken or not. But in

situations in which the causal or mechanistic story behind the correlations

is unknown, we may nevertheless want to posit such an underlying story.

For example, recurring feelings of fear and loathing may be two of a large

number of emotions used to describe individuals in a general population

whose constitution is otherwise unknown. It may be that we can account for

the correlations in a statistical model by positing the presence or absence of

a mental condition, depression D. Exploratory factor analysis is a technique

for arriving at such common factors in a systematic way. When given a set

of correlations among manifest variables, it produces a statistical model of

latent common factors that accounts for exactly these correlations.5

5Seeing that exploratory factor analysis generates a structure that explains the observed

correlations, it is rather natural that Haig (2005) and Schurz (2008) present it as a formal

model of abduction.
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Unsurprisingly, applications of factor analysis suffer from problems of un-

derdetermination. After all, factor analysis posits the theoretical structure

of unobservable common causes, over and above the observed correlations

between observable variables. There will generally be many latent common

factor models and many different causal structures that fit the data. But

even if all modelling choices have been made, statistical underdetermination

may appear. In what follows we focus specifically on this restricted version

of statistical underdetermination.

2.3 Underdetermination in factor analysis

Consider the factor model of Equations (5), but replace the drug variable E

with the depression variable D:

P (f1i |d
j
i ) = φj ,

P (l1i |d
j
i ) = λj , (5)

P (d1i ) = δ

Now focus on the dimensions of this model. We count 5 parameters, namely

δ, and φj and λj for j = 0, 1. On the other hand, we have the binary ob-

servations Fi and Li that can be used to determine these parameters. But

because we are using Bernoulli hypotheses, only the observed relative fre-

quencies of the possible combinations of Fi and Li matter. And because we

have 4 possible combinations of Fi and Li, whose relative frequencies must

add up to 1, we have effectively 3 frequencies to determine the 5 parameters

in the model. After having used the observations in the determination of

the parameters, therefore, we still have 2 degrees of freedom left. Hence

the values of the parameters in the model cannot be determined by the

observations uniquely.

We can state this problem in more detail by looking at the likelihoods

for the observations of possible combinations of Fi and Li. We write θ =

〈δ, φ0, φ1, λ0, λ1〉. Further, the observations of individuals i are f ji ∧lki , which

may be summarized as qui with u = 2j + k. The sequences st are again

observations of individuals su1u2...ut . Finally, we abbreviate:

η01 ≡ P (f0i ∧ l1i |hθ) = δ(1− φ1)λ1 + (1− δ)(1− φ0)λ0 ,

η10 ≡ P (f1i ∧ l0i |hθ) = δφ1(1− λ1) + (1− δ)φ0(1− λ0) , (6)

η11 ≡ P (f1i ∧ l1i |hθ) = δφ1λ1 + (1− δ)φ0λ0 ,
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The fourth likelihood, P (f0i ∧ l0i |hθ), can be derived from these expressions.

The salient point is that the system of equations resulting from filling in

particular values for the likelihoods ηjk has infinitely many solutions in terms

of the components of θ: for any value of the likelihoods ηjk, the space of

solutions in θ has 2 dimensions. Hence different hypotheses hθ will have

the same set of likelihoods ηjk for the observations. The statistical model is

unidentifiable.

Let us briefly elaborate on the unidentifiability of the model. It means

that the likelihood function over the model does not have a unique maxi-

mum, and so that the maximum-likelihood estimator does not point to a

uniquely best hypothesis.6 Say that we observe the relative frequencies rjk/t

with

rjk =

t∑
i=1

Ij(Fi, st)I
k(Li, st), (7)

the number of occurrences of f ji ∧lki in st, and with the indicators Ij(Fi, st) =

1 if st ⊂ f ji and 0 otherwise, and Ik(Li) analogously. By the likelihoods of

Equations (6) we can then construct a likelihood function for st:

P (st|hθ) =
∏
jk

η
rjk
jk . (8)

The likelihood P (st|hθ) is maximal at the observed relative frequency, ηjk =

rjk/t. But as said, there are infinitely many hypotheses hθ that have these

particular values for the likelihoods. Consequently, there is no unique hy-

pothesis hθ that has maximal overall likelihood P (st|hθ).
For future reference we note that, by means of the likelihoods given in

Equations (8), we can determine a posterior probability for the hypotheses

in the model, P (hθ|st). And from the posterior distribution over the hy-

potheses we can generate the expectation value of the parameter θ of the

model H, according to

E[θ] =

∫
H
θP (hθ|st) dθ . (9)

Here θ runs over [0, 1]5 because the model concerns five independent chances.

Like the posterior, the estimations will suffer from the fact that the hypothe-

ses cannot be told apart: they will depend on the prior probability over the

6Whether we approach the statistical problem in a classical or a Bayesian fashion, the

likelihood function will occupy a central place. The exposition will focus on properties of

this function.
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hypotheses. Of course, this is usually the case in a Bayesian analysis. What

is troublesome is that no amount of additional data can eliminate this de-

pendence of the estimations on the prior.

One reaction is to downplay the underdetermination problem and say

that it only concerns the values of these abstract parameters and not the

empirical consequences. But because the estimations and expectations are

not fully determined, the causal, nomic and conceptual structure of the fac-

tors underlying the observed variables is not determined either. Different

values for the parameters φj and λj entail different systematic relations be-

tween depression, fear and loathing, and ultimately this reflects back on

our understanding of the posited notion of depression itself. In the sta-

tistical underdetermination exemplified here, we find back the well-known

underdetermination of theory by data: we cannot pin down the theoretical

superstructure on the basis of data alone.

3 Underdetermination in multivariate linear re-

gression

We are well aware that the statistical model considered in the foregoing is

much simpler than what is typical in factor analysis. In this section we

argue that the problem outlined above also shows up in more realistic uses

of factor analysis. Furthermore, we will reveal that there are actually two

problems of statistical underdetermination in factor analysis. The first one,

illustrated in §2.3, is made more concrete in the first subsection. The second

type is briefly mentioned in the second, mostly because it has been hotly

debated in psychological methodology, but also because the present paper

can offer a specific angle on it.

3.1 The rotation problem

In many actual applications of factor analysis, the variables are not binary

but continuous, the probabilistic relations between the variables are linear

regressions with normal errors, and the latent variable is assumed to be

governed by some continuous distribution as well. In our example we may

write Fi = f for the event that the level of fear is f ∈ R, and similarly for
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depression Di = d. Then the relation between Fi and Di, for example, is

P (Fi = f |Di = d) = N(λFd, σF ) (10)

in which N(λx, σ) is a normal distribution over the values f of Fi. So the

relation between the variables Di and Fi is characterized by a richer family

of distributions, parameterized by a regression parameter λF and an error

of size σF .

Despite these differences, the same kind of underdetermination also oc-

curs in the more complicated statistical models. But in such models it takes

a slightly different shape. Note first that we can extend factor models like

the one above to include any number of common factors. However, once a

model includes more than one common factor, we find that the factor load-

ings are not completely determined. Say, for example, that we analyze fear

F , loathing L, and sleeplessness S in terms of two common factors, one of

them depression D, but next to that the latent variable C. Every individual

is supposed to occupy a specific position in the C × D surface. We might

feel that a more natural way of understanding the surface of latent variables

is by labeling the states in this surface differently, for example by introduc-

ing variables A and B, both of which are linear combinations of C and D.

The factors in a model may be linearly combined or, in more spatial terms,

rotated to form any new pair of factors.7

The underdetermination problem with this is that, if we allow the la-

tent factors to be correlated, any rotation of factors, e.g., from {C,D} to

some {A,B}, will perform equally well on the estimation criterion, be it

maximum likelihood, generalized least squares, or similar. This problem is

appropriately known as the problem of the rotation of factor scores. Neither

the estimation criteria, often maximum likelihood, nor Bayesian methods of

incorporating the data lead to a single best hypothesis in the factor model.

The result is rather a collection of such models, meaning that the factor

model is again unidentifiable, with all the attached problems listed above.

A standard reaction to the rotation problem is to adopt the theoreti-

cal criterion that the latent variables must be independent. In that case,

we cannot freely rotate the axes in the space of latent variables anymore,

because the parameterisation of the space must be such that there are no

7Basically this is a coordinate transformation in the space of latent variables, charac-

terizing it in terms of different bases.
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correlations between the latent variables. But there are alternative theoreti-

cal criteria for choosing the parameterisation of the space of latent variables.

For example, it may be interesting to have maximal variation among the re-

gression coefficients which, intuitively, comes down to coupling each latent

variable with a distinct subset of manifest variables. The thing to note is

that, from the point of view of statistics, the choice for how to parameterize

the space of latent variables is underdetermined: we cannot decide between

these parameterizations on the basis of the observations alone.

In this paper we will not elaborate the mathematical details of under-

determination in these more complicated models. For present purposes, it

suffices to use the simpler factor model of Equations (2) to (4). The crucial

characteristic in all of what follows is that there are latent variables explain-

ing the correlational structure among the manifest variables, and that these

structures are not fully determined by the correlations among the manifest

variables.

3.2 Factor score indeterminacy

There is another problem with factor analysis that can be framed as underde-

termination, and which has received considerable attention within statistical

psychology.8

Say that we have rotated the factors to meet the theoretical criterion

of our choice, for instance by simply assuming a single common factor or

by fixing the independence of the latent factors. Can we then reconstruct

the latent variable itself, that is, can we provide a labeling in which each

individual, i.e. each valuation of the observable variables, is assigned a de-

terminate expected latent score? Sadly, the classical statistical answer here

is negative. We still have to deal with the so-called indeterminacy of factor

scores, meaning that there is a variety of ways in which we can organize

the allocation of the individuals on the latent scores, all of them perfectly

consistent with the estimations.9

8See Steiger (1979) for some historical context, Maraun (1996) for a philosophical eval-

uation, McDonald (1974) for an excellent classical statistical discussion, and Bartholomew

and Knott (1999) for a Bayesian account of it.
9There are some restrictions to this allocation. For example, as worked out in Ellis

and Juncker (1997), if we let the number of manifest variables increase and assume that

the latent variable is tail-measurable in terms of these manifest variables, then the factor

scores are determined up to a functional transformation.
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The type of underdetermination presented by factor score indetermi-

nacy depends on what we take to be the statistical inference underlying

factor analysis. In the context of this paper, we take the factor analysis to

specify a complete probability assignment over the latent and manifest vari-

ables, including a prior probability over the latent variables. As explained

in Bartholomew and Knott (1999), factor score indeterminacy is thereby

eliminated, as long as there are sufficiently many manifest variables that

are related to the latent variables according to distributions of a suitable,

namely exponential, form. In this paper we will therefore ignore most of the

discussion on factor score indeterminacy.

There is one point at which the problem of factor score indeterminacy

enters the present discussion. We will show in the following that intervention

data can also be used to choose among a class of priors. But as indicated,

the problem of choosing a prior probability is related to the problem of

factor score indeterminacy. Therefore the use of intervention data, which

resolves the problem of underdetermination discussed above, provides a new

perspective on the problem of the indeterminacy of factor scores as well. We

will return to this idea in §5.2.

4 Interventions to resolve underdetermination

In the foregoing we have shown that factor analysis suffers from statistical

underdetermination. We now explain the underdetermination inherent to

factor analysis by identifying analogous problems in the estimation of pa-

rameters in Bayesian networks. This leads us to consider a specific solution

to the underdetermination problem, namely by means of intervention data.

We first introduce Bayesian networks in §4.1, then the notion of intervention

in §4.2, and finally its use in resolving underdetermination in §4.3.

4.1 Bayesian networks and factor analysis

In general, a Bayesian network consists of a directed acyclic graph on a finite

set of variables {F,L,D,E . . .} together with the probability distributions

like of each variable conditional on its so-called parents in the graph, for

example P (E | ParE). The graph is related to the probability distribution

over the variables by an assumption known as the Markov Condition: each

variable is probabilistically independent of its non-descendants in the graph,
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conditional on its parents, e.g., E ⊥⊥ NonDescE | ParE ; see Pearl (2000).

Under this assumption the network suffices to determine the joint probability

distribution over the variables, via the identity

P (F,L, . . .) = P (F | ParF )× P (L | ParL)× . . . (11)

The probability of any valuation on the left hand side of this equation can

be computed by filling in these valuations on the right hand side.

It is well-known that Bayesian networks, structural equations modeling,

and factor analysis are closely related. Effectively, the introduction of factor

analysis for the binary variables {F,L,D} was already an introduction to a

specific class of Bayesian networks. First, we assume that there are no inter-

subject dependencies and that the same probability assignment describes all

subjects,

P (Fi, Li, Di) = P (Fi′ , Li′ , Di′), (12)

so that we can omit the subscripts i. For each subject the factor analysis

determines a probability function P (F,L,D) that observes a specific symme-

try: conditional on the latent depression D there is no correlation between

the manifest fear F and loathing L,

P (F,L,D) = P (D)P (F |D)P (L|D). (13)

On this basis we can build a network, with the variables F , L and D as

nodes. Quite apart from the exact probability values, the probability func-

tion determined by factor analysis can thus be represented in a Bayesian

network whose graph is depicted in figure 1.

����
F

����
D
��

�
��*

HHHHHj����
L

Figure 1: The graphical structure representing the independence relations in a factor

analysis of depression, fear and loathing.

There are also differences between the theory of Bayesian networks and

factor analysis. For one, factor analysis entails a rather specific network
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structure: there are latent parent nodes, observable child nodes, there are

typically fewer parents than children, and any child can be connected to any

parent. On the other hand, applications of the former are usually restricted

to probability functions over finite or at least countable domains. Nodes

with continuous domains are not that commonly discussed, although they

have been studied in the context of structural equations models, for example

in Pearl (2000) and, from the side of latent variable modeling, in von Eye and

Clogg (1994). A related difference is that in most applications of factor anal-

ysis the probability functions that are considered are restricted to normal

distributions over latent nodes, and to linear regressions with normal errors

between latent and observable nodes. Applications of Bayesian networks are

typically, but not necessarily, restricted to Bernoulli distributions.

In this paper we approach factor analysis more from the angle of Bayesian

networks, using the framework for inference over Bayesian networks pre-

sented in [omitted for blind reviewing]. Hence the statistical underdetermi-

nation presented in §2.3 is framed as a problem to do with determining the

posterior probability distribution over the parameters that characterize the

Bayesian network of Figure 1. As announced, we are going to resolve this

statistical underdetermination by means of intervention data. To this aim

we first introduce interventions in the context of Bayesian networks.

4.2 Interventions

A causally interpreted Bayesian network, or causal net for short, is a Bayes-

ian network where the graph is interpreted as a causal graph. That is, each

arrow in the graph is interpreted as denoting a direct causal relationship

from the parent variable to the child variable. Under this interpretation,

the Markov Condition is called the Causal Markov Condition. It says that

each variable is probabilistically independent of its non-effects conditional

on its direct causes. It is often assumed that the Causal Markov Condition is

bound to hold if the graph in the net is correct and is closed under common

causes (i.e., any common causes of variables in the net are also included in

the net). While there are situations in which the condition is implausible, it

can be justified as a default assumption [omitted for blind reviewing], and

we shall take it for granted here.

Causal nets are helpful for predicting the effects of interventions. When

an experimenter intervenes to fix the value of a variable, she interrupts the
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normal course of affairs and sets the variable exogenously. The usual mech-

anisms, according to which the variable is determined, are thereby replaced

with new mechanisms, according to which the variable is determined only

by the experimenter. An ‘ideal’ or ‘divine’ intervention is one in which

the intervention only changes the intended variable, without changing other

variables under consideration and without changing other causal relation-

ships under consideration. By means of Equation (11) we can determine the

probability P ′ that some variable F takes value f1 after an ideal intervention

has been performed that sets E to e1. Note that the causal net determines

two different probability distributions, P before and P ′ after intervention.

While P and P ′ will coincide on the non-descendants of E, they probabilities

for the variables downstream from E will be different.

Causal nets can also handle a more general notion of intervention that is

central to our concerns. We might set the probability to a new value P ′(e1) =

ε′ 6= P (e1) while leaving the rest of the network intact. In other words, we

transform the causal net by eliminating arrows into E, set its unconditional

distribution to P ′(e1) = ε′, and then determine the new probabilities for

other variables. This kind of intervention is sometimes called an ‘imperfect’

or ‘stochastic’ intervention, to distinguish it from the divine interventions

considered above. A stochastic intervention is itself a special case of another

kind of intervention—called a parametric intervention—where, instead of

intervening to fix the effect variable, one intervenes to change how the causes

impact on the effect variable. See Korb et al (2004) and Eberhardt and

Scheines (2007) for discussion of these kinds of intervention.

Interventions can help with underdetermination in two ways. First, they

can help with underdetermination of causal structure, as described exten-

sively in Spirtes et al. (1993). If more than one causal structure is compatible

with evidence, one can intervene, collect more evidence, and use this new

evidence to decide between the causal structures. To take the example pre-

sented in the foregoing, suppose variables F , L and D are all measured, and

that the resulting data shows that F and L are probabilistically independent

conditional on D, written F ⊥⊥ L | D. This evidence is compatible with the

causal graph of Figure 1, but equally with Figures 2 and 3. The evidence

can be used to fill in the conditional probability distributions on these causal

models, but cannot decide between them. An intervention can decide be-

tween them, however. If, after intervening to change the distribution of D,
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the distribution of F and L are changed, then that favours Figure 1. Other-

wise if only the distribution of L is changed after intervention, then Figure 2

is supported, and if only the distribution of F is changed then Figure 3 is

supported.

����
F -����

D -����
L

Figure 2: A chain of fear F causing depression D, which causes loathing L.

����
L -����

D -����
F

Figure 3: A chain of loathing L causing depression D, which causes fear F .

More important for our concerns is that interventions can be used to re-

solve the statistical underdetermination of the parameters. Suppose that the

causal structure is known and that data is collected which helps to estimate

the probability distributions of some variables conditional on their parents,

but which does not determine conditional distributions that attach to other

variables. By carrying out an ideal intervention, an experimenter effectively

changes the conditional distribution of one variable without changing the

distributions of other variables. The data obtained after the intervention

can then be used in conjunction with the old data to further constrain the

values of the underdetermined distributions.

4.3 Interventions and underdetermination

In this section we show how interventions can be used to resolve the sta-

tistical underdetermination introduced in §2.3. We consider the example of

depression, fear, and loathing. In the next section we sketch how the idea

can be extended to factor analysis more generally.

Let us briefly explain the general idea of using interventions to resolve

underdetermination. We need to assume that the factor model is more

than a convenient way of representing the probability functions involved.

The arrows in the factor model need to be interpreted causally, that is, the

common factors must be taken as the causes of the observed variables. With

this causal assumption in place, an intervention on the subjects will indeed
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change the distribution over the latent variables of the subjects, and not

the probabilistic relations between the latent and the manifest variables.

After the intervention we obtain an entirely new estimation problem for

the parameters in the Bayesian network. However, because the data are

obtained by intervention, we can assume that the parameters associated

with the relations between latent and manifest variables do not change.

To accommodate the intervention data, we therefore have a smaller space

of parameters available. In the following we show that, depending on the

model, intervention data can thus be used to select a unique best estimate

for the parameter values in the factor model.

Consider again the model characterized by Equations (5), (12) and (13).

As explained in the foregoing, an intervention is an external shift to the

probability assignment. In this particular case, we intervene on the node

D, giving all the subjects a treatment intended to change the probability

for depression. In terms of the foregoing, we change the probability of

depression, P (d1) = δ, to a new value,

P ′(d1i ) = δ′,

which is supposed to be lower than δ. The relations of the depression variable

to the variables of fear and loathing, given by P ′(f1i |d
j
i ) = φj and P ′(l1i |d

j
i ) =

λj , are not changed by the intervention: the treatment is supposed to change

the probability for depression but not how depression, whether absent or

present, affects feelings of fear and loathing. Finally, after the intervention

we record the observations s′t in the same set of t individuals. In analogy to

Equation (7), we observe the numbers of the occurrences in the new sequence

of observations s′t,

r′jk =
t∑
i=1

Ij(Fi, s
′
t)I

k(Li, s
′
t).

So r′jk/t are the relative frequencies of the variables F and L as observed

after the intervention.

To get the point of this across quickly, we focus again on the dimensions

of the model. This time we count a number of 6 parameters, namely δ, φj

and λj for j = 0, 1, and finally δ′. On the other hand, we have a richer set of

observations that can be used to determine these parameters. Specifically,

we have 3 observed relative frequencies of f ji ∧ lki before intervention, and 3

of them after intervention, so six in total. Whereas previously we had two
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degrees of freedom left after the incorporation of the data, we can now fill

in all the parameter values of the factor model.

Let us make this more precise. As before, we have the likelihoods of

Equations (6). But to these expressions we now add the likelihoods of the

hypotheses after the intervention:

P ′(f0i ∧ l1i |hθ) = δ′(1− φ1)λ1 + (1− δ′)(1− φ0)λ0 ≡ η′01 ,

P ′(f1i ∧ l0i |hθ) = δ′φ1(1− λ1) + (1− δ′)φ0(1− λ0) ≡ η′10 , (14)

P ′(f1i ∧ l1i |hθ) = δ′φ1λ1 + (1− δ′)φ0λ0 ≡ η′11 .

The system of equations that results from equating likelihoods and observed

relative frequencies is:

ηjk =
rjk
t
, η′jk =

r′jk
t
.

Each of these two constrains the parameters in θ in a particular way.

The Appendix to this paper shows that if this system of equations has

a solution, then the solution is unique up to a transformation of the two

values for D. Solutions thus come in mirror-image pairs, differing in the

interpretation of the values for the variable D or, in other words, differing in

whether the intervention has beneficial or adverse effects on the probability

of being depressed. On the assumption that the treatment reduces the

probability for depression, every hypothesis hθ in the model is associated

with a unique set of values for the likelihoods ηjk and η′jk. The conclusion is

that if the data are generated by a chance process specified by a hypothesis

hθ, then we can identify this hypothesis, in the same way as we were able

to identify the true hθ in the model of Equation (1).

As indicated, this does not hold for the entire range of possible values for

the observed frequencies. For extremal values there is still an infinity of so-

lutions. Moreover, certain combinations of frequencies simply do not match

with any of the statistical hypotheses within the model. In those cases the

intervention data overdetermine the factor model, and the factor model fails

to fit all the correlations. We must then look for a richer statistical model. It

seems rather natural to incorporate this aspect of scientific reasoning in our

account, and describe how statistical models are adapted when intervention

data yield a bad fit. The idea is that the overdetermination due to inter-

vention may lead to controlled and formally specified changes in the model,
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and that this may lead to a formal account of theory change. However, such

an account is beyond the scope of the current paper.

The main conclusion for now is that intervention data can indeed be used

to resolve the statistical underdetermination, as it was introduced in §2.1.

If there are parameter values matching the relative frequencies exactly, then

on the assumption that the treatment is beneficial, these values are unique:

the likelihood function has a unique maximum after the normal and the

intervention data are incorporated. While we have only shown this for a

simple example, it is readily seen, and briefly considered in the Appendix,

that the example generalizes. The example serves as a proof of principle

and supports the central idea of this paper, which is that interventions can

be used to adjudicate between previously indistinguishable hypotheses and

thereby replace theoretical criteria that fulfil this role.

5 Philosophical and practical implications

We now discuss the philosophical and practical implications of the foregoing.

After that we briefly revisit the indeterminacy of factor scores. Intervention

data can be used to resolve this indeterminacy, at least in the form it takes

within a Bayesian statistical model.

5.1 Interventions replace theoretical criteria

The philosophical upshot of this is that empirical criteria for theory evalu-

ation, based on the targeted acquisition of intervention data, can take the

place of the theoretical criteria that normally guide theory choice in the face

of underdetermination. Where we had otherwise used a theoretical criterion

to choose among the equally well fitting alternative hypotheses, we can now

decide on the basis of additional data, obtained after intervention. Within

statistics, one might say, the problem of underdetermination has fuzzy edges:

it can be resolved by an appeal to theoretical criteria, but it can also be re-

solved by extending the realm of observations with intervention data. It is

worth emphasizing that we do not need to know anything about the exact

impact of the intervention. That is, we do not need to know the exact value

of δ′. The mere fact that we have changed something to the probability of

the latent variable suffices.
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Clearly, this is not to say that the use of intervention data requires no

assumptions whatsoever. As indicated in the foregoing, the new data can

only be taken as pertaining to the same parameters if we assume that the

causal structure of the latent and observed variables is, at least roughly,

correct. More specifically, we need to assume that the probabilistic rela-

tions between the latent and the observed variables, expressed in φi and λi,

remain invariant under intervention. So in order to employ the intervention

data for a resolution of the statistical underdetermination, we have to make

particular causal assumptions. Nevertheless we think that the resolution of

underdetermination by causal assumptions and further empirical data is to

be preferred over a resolution that employs a theoretical criterion only.

The resolution of underdetermination is of philosophical interest: if

there is less empirical underdetermination in factor analysis than commonly

thought, then factor analysis, which has long been regarded by some as

somewhat speculative (see, e.g., Furfey and Daly (1937)), is put on a firmer

footing. The use of interventions to resolve underdetermination in factor

analysis is also of methodological and practical interest. Recall the problem

of underdetermination due to the rotation of latent variables, as discussed

in §2.3. This rotation problem is particularly pressing for the design of

clinical and personality tests: how do we relate clusters of test items to spe-

cific personality traits? And what traits should we distinguish in the first

place? The fact that we can opt for a multitude of latent structures, each

associated with a different causal story on how the correlations between ob-

served variables has emerged, presents researchers with a genuine problem.

The standard response to this problem is to employ theoretical criteria on

the latent variables, for example by supposing that the traits are indepen-

dent, or by choosing the latent variables such that the regression parameters

show maximal variation, thus associating each test with a minimal number

of traits.

The idea of the present paper is that these theoretical criteria can be

replaced by intervention data. For example, for clinical psychologists work-

ing with factor analysis, interventions may constrain the latent structure

behind their tests, thereby providing a clearer view of what the tests are

measuring. However, it leads us to far away from the line of this paper to

explicate an application here or work out the statistical details. For a more

extensive discussion on the use of interventions, we refer to Hyttinen et al
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(2012), which presents a more general treatment of the use of intervention

data for identifying causal models.

5.2 Interventions and the indeterminacy of factor scores

We briefly remark on the problem of the indeterminacy of factor scores, as

discussed in 3.2. Insofar as there is a problem with factor scores in the

Bayesian treatment, intervention data can play an interesting role.

Recall that the expected value E[θ], given in Equation (9), depends on

the posterior probability over the parameter P (hθ|st), and that according

to Equation (8), this posterior depends on the prior probability P (hθ). As

shown in Bartholomew and Knott (1999), the indeterminacy of factor scores

in classical factor analysis derives directly from the fact that a prior prob-

ability is not provided. And because in a Bayesian treatment such a prior

is assumed, we can say that Bayesian factor analysis is not affected by fac-

tor score indeterminacy. However, the prior is assumed, not derived, so a

classical statistician may well ask for a motivation of the prior probability

assignment.

Following the ideas of the foregoing, the prior probability may be de-

termined by means of intervention data. Instead of choosing a single prior,

we might consider a whole collection of possible priors over the parameter

values. For example, we might consider as priors all so-called symmetric

Beta-distributions,

P (hθ) =
(2n− 1)!

((n− 1)!)2
δn−1(1− δ)n−1,

parameterized by the natural numbers n > 0. Effectively, we thereby in-

crease the dimension of the parameter space by one. But we might know

from a different study that the chance of being depressed after the treat-

ment δ′ has some particular value, or is functionally related to the chance

on depression before treatment. This reduces the number of parameters by

one again, because δ′ is then fixed, or every δ′ is coupled to a unique value

δ. The net effect is that we can again estimate all the parameters, namely

δ, φj and λj for j = 0, 1, and finally the second-order parameter n.10

10In the statistical literature, the idea that we can confirm or disconfirm probability

distributions over statistical parameters has become known as hierarchical Bayesian mod-

elling. See, for instance, Chapter 5 of Gelman (2004), [omitted for blind reviewing] ,
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In other words, just as we can estimate the effects of an intervention, δ′,

we can estimate the prior probability assignment that best suits the factor

model. Of course, this is just a toy example. We have not said anything

about the more realistic continuous case, in which we typically assume a

normal distribution over the continuous variable Di as prior. Moreover, it is

unrealistic to suppose that there is a clear and deterministic relation between

the parameters governing the distribution over the variables Di before and

after the intervention.

Nevertheless, we maintain that the foregoing illuminates how interven-

tion data can be of use in dealing with the rightful heir of the problem of

factor score indeterminacy in Bayesian factor analysis, namely the problem

of how to choose a prior.

6 Conclusion

In this paper we have investigated the use of interventions for the problem

of statistical underdetermination: if two statistical hypotheses have exactly

the same likelihoods for all the possible observations, then how do we choose

between them? While an answer to this question often invokes theoretical

criteria such as simplicity and explanatory considerations, we have provided

a partial answer in terms of empirical criteria. The idea is to use the back-

ground theory that generates the hypotheses, namely the causal picture.

This theory provides us with a recipe for how to deal with interventions.

Together with some assumptions on the causal structure of the latent and

observed variables, the intervention data enable us to tell the statistically

underdetermined hypotheses apart.

We illustrated the problem of underdetermination by means of factor

analysis. That is, we have worked out how interventions can be framed in

terms of alterations to the factor model, and how the intervention data can

then be employed to resolve the underdetermination of the factor loadings.

In this paper we have not applied the same ideas to the more practical set-

ting of factor analysis with normal distributions over continuous variables.

But we believe that the underdetermination problem identified in discrete

Bayesian networks is in all the relevant respects similar to the underdeter-

and the recent philosophical appraisal in Henderson et al (2010) and [omitted for blind

reviewing].
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mination associated with the rotation of factors in the continuous setting,

and we are confident that in future work we can present a resolution of this

problem of rotation on the basis of intervention data. The aforementioned

paper of Hyttinen et al (2012) goes a long way in this direction. Our contri-

bution lies in the philosophical reception of these ideas and their connection

to foundational problems in methodology generally, and in factor analysis

particularly.

We like to mention one specific theme for future research. We suggested

that, relative to a given causal picture that links latent and observable vari-

ables, intervention data can also guide extensions of the statistical model.

The rough idea is that the specifics of the misfit between model and interven-

tion data will suggest how the latent structure might be adapted to repair

the fit. Model selection techniques and further considerations of complexity

or conservativity might then determine which of these adaptations is most

appropriate. The methods and algorithms for putting this idea to work have

yet to be determined, but we think that there are many potential applica-

tions of the idea. A tool for guiding extensions of statistical models can be

of use to experimental scientists, but also to computer scientists working on

the automated search of network structures.

Such applications lie within the realm of statistical methodology. How-

ever, there may also be a rather different application of the present ideas,

within more traditional philosophy of science. The confirmatory practice of

scientists has received a lot of attention from formally oriented philosophers

of science, often with the aim of explaining or rationalizing science, or to

provide scientists with norms that guide the inference from data to theory.

Experimental practice, on the other hand, has not been subject to the same

scrutiny from the point of view of formal modelling. Experiments have been

the subject of science studies, but formal philosophers of science have by

and large avoided the subject. We believe experiments should be included

among the topics of formal philosophy of science, especially because the tools

to describe interventions in mathematical terms are available. We hope that

with the present study, we are contributing to the development of a formal

philosophy of experiment.
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Appendix

This appendix substantiates the claim that if the system of Equations (6)

and (14) has a solution, then this solution is unique. We are only dealing

with the specific example of this paper and do not generalize the result. The

actual generalization will bring rather cumbersome algebraic expressions

and, we believe, little added insight. The reader may glean the strategy for

an analytical investigation of the solution space, and an associated proof

strategy for the general case, from what follows.11

We first simplify the expressions to

η10 + η11 = δφ1 + (1− δ)φ0 ≡ f ,

η01 + η11 = δλ1 + (1− δ)λ0 ≡ l ,

η′10 + η′11 = δ′φ1 + (1− δ′)φ0 ≡ f ′ ,

η′01 + η′11 = δ′λ1 + (1− δ′)λ0 ≡ l′ , (15)

where f and l are the frequencies of fear and loathing respectively. We can

now solve for δ as well as δ′ and derive the first set of four constraints on

the parameters:

δ =
f − φ0
φ1 − φ0

=
l − λ0
λ1 − λ0

,

δ′ =
f ′ − φ0
φ1 − φ0

=
l′ − λ0
λ1 − λ0

. (16)

The intuitive meaning is that f and f ′ must both sit in between φ0 and

φ1, and that the relative positions of f and f ′ within this interval must be

equaled by the relative positions of l and l′ in between λ0 and λ1. In terms

of freedom in the parameter space, there are thus two degrees of freedom

left. If, for example, we determine φ0 and φ1, the values for λ0 and λ1 as

well as the values for δ and δ′ follow.

11With the aid of the solver in Mathematica, we have also investigated this space numer-

ically. Special thanks go to David Atkinson for providing help with this, and for initially

presenting us with an alternative, more elegant proof of uniqueness.
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We now determine these two values by a further set of two equations.

We can judiciously substitute terms appearing in Equations (15) into the

expressions for fear and loathing occurring together:

η11 = δφ1λ1 + (1− δ)φ0λ0 ≡ c ,

η′11 = δ′φ1λ1 + (1− δ′)φ0λ0 ≡ c′ .

Here we abbreviate the frequencies of fear and loathing occurring together

as c and c′. With some algebraic reformulation the substitution leads to

λ0φ1 = fλ0 + lφ1 − c , (17)

λ1φ0 = fλ1 + lφ0 − c . (18)

We can derive the analogous expressions for the parameters by using the

frequencies after intervention. Combining the equations we get

λ0 =
l′ − l
f − f ′

φ1 −
c′ − c
f − f ′

, (19)

λ1 =
l′ − l
f − f ′

φ0 −
c′ − c
f − f ′

. (20)

Together with the constraints of Equation (16) these two linear relations

between the λ’s and φ’s are sufficient for determining all the values of the

parameters.

To solve the equations we fill in the expression for λ0 of Equation (19)

into Equation (17), thereby obtaining a quadratic equation for φ1:(
l′ − l
f − f ′

φ1 −
c′ − c
f − f ′

)
φ1 = f

(
l′ − l
f − f ′

φ1 −
c′ − c
f − f ′

)
+ lφ1 − b.

A parallel expression for φ0 can be obtained by filling in λ1 of Equation (20)

into Equation (18), but if soluble within the domain [0, 1], this expression

will yield the same two solutions. Once we choose either of the two solutions

for φ1, the parameter φ0 takes on the other value. And once we have solved

for φ1 and chosen whether it obtains the higher or the lower of the two

values, we thereby fix the values of all the other parameters. Swapping

around the two solutions will effectively swap around the ordering among δ

and δ′, according to the expressions above.

Going on the interpretation of depression, fear, loathing, and treatment,

the normal case will have f ′ < f , l′ < l and c′ < c so that λ0 < λ1,

φ0 < φ1, and δ′ < δ. A further investigation of the space of solutions can be
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undertaken by identifying of each point in the space of frequencies whether

or not the constraints can all be met. However, for present purposes the

abstract characterization suffices, alongside the remark that the space of

solutions is non-empty.
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