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Abstract

A core aspect of science is using data to assess the degree to which data
provide evidence for competing claims, hypotheses, or theories. Evidence is
by definition something that should change the credibility of a claim in a
reasonable person’s mind. However, common statistics, such as significance
testing and confidence intervals have no interface with concepts of belief,
and thus it is unclear how they relate to statistical evidence. We explore the
concept of statistical evidence, and how it can be quantified using the Bayes
factor. We also discuss the philosophical issues inherent in the use of the
Bayes factor.
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A core element of science is that data are used to argue for or against1

hypotheses or theories. Researchers assume that data — if properly anal-2

ysed — provide evidence, whether this evidence is used to understand global3
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climate change (Lawrimore et al., 2011), examine whether the Higgs Boson4

exists Low et al. (2012), explore the evolution of bacteria (Barrick et al.,5

2009), or to describe human reasoning (Kahneman and Tversky, 1972). Sci-6

entists using statistics often write as if evidence is quantifiable: one can have7

no evidence, weaker evidence, stronger evidence – but importantly, statistics8

in common use do not readily admit such interpretations. The use of signif-9

icance tests and confidence intervals are cases in point (Berger and Sellke,10

1987; Jeffreys, 1961; Wagenmakers et al., 2008; Berger and Wolpert, 1988).11

Instead, these statistics are designed to make decisions, such as rejecting a12

hypothesis, rather than providing for a measure of evidence. Consequently,13

statistical practice is beset by a difference between what statistics provide14

and what is desired from them.15

In this paper, we explore a statistical notion that does allow for the16

desired interpretation as a measure of evidence: the Bayes factor (Good,17

1985, 1979; Jeffreys, 1961; Kass and Raftery, 1995). Our central claim is18

that the computation of Bayes factors is an appropriate, appealing method19

for assessing the impact of data on the evaluation of hypotheses. Bayes20

factors present a useful and meaningful measure of evidence.21

To arrive at the Bayes factor, we explore the concept of evidence more22

generally in section 1. We make a number of reasoned choices for an ac-23

count of evidence, identify certain properties that should be reflected in our24

account, and then show that an account using Bayes factors fits the bill. In25

section 2.1 we give a detailed introduction into Bayesian statistics and the26

use of Bayes factors, giving particular attention to certain conceptual issues.27

In the section 3 we offer some examples of the use of Bayes factors as measure28

of evidence, and in section 4 we consider critiques of this use of Bayes factors29

and difficulties inherent in their application.30

1. Evidence31

What is evidence? Our answer is that the evidence presented by data is32

given by the impact that the data have on our evaluation of a theory (e.g.,33

Fox, 2011).2 In what follows we develop an account that ties together three34

2Although there is a large debate within the philosophy of science about the relation
between data, facts, phenomena, and the like (e.g., Bogen and Woodward, 1988), we will
align ourselves with scientific practice here and simply employ the term “data” without
making further discriminations. It will lead us too far afield to add further considerations.
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central notions in this answer (theory, evaluation, and the impact of data) and35

then motivate the use of Bayes factors in statistics. One important caveat:36

our exposition falls far short of a fully worked out theory of evidence, and we37

do not offer a defense of Bayes factors as the only statistical measure of it.38

We cannot treat evidence or Bayes factors in sufficient generality and detail39

to warrant such wide-scope conclusions; there may well be other suitable40

measures, e.g., model selection tools. We argue that Bayes factors reflect the41

key properties of a particular conception of evidence but we do not assess42

the competition.43

1.1. Theory: empirical hypotheses44

One possible goal of scientific inquiry is instrumental: it is enough to45

predict and control the world by means of some scientific system, e.g., a46

theory or a prediction device. The format of such a system is secondary to47

the goal. In particular, there is no reason to expect that that system will48

employ general hypotheses on how the world works, or that it will involve49

evaluations of those hypotheses. But another important goal of science is50

epistemic: science offers us an adequate representation of the world, or at51

least one that lends itself for generating explanation as well as prediction and52

control. For such purposes, the evaluation of hypotheses seems indispensible.53

Of course, a system used for prediction and control might include evaluations54

of hypotheses as well. Our point is that in an instrumentalist view of science55

an evaluative mode (e.g., an interface with beliefs) is not mandatory while56

in an epistemic view it is.57

The idea that scientific inquiry has epistemic implications is common58

among scientists. One important example of recent import is the debate59

over global climate change. The epistemic nature of this debate is hard60

to miss. Much attention has been given, for instance, to the consensus of61

climate scientists; that is, that nearly all climate scientists believe that global62

climate change is caused by humans. The available data is assumed to drive63

climate scientists opinions; the fact of consensus then drives public opinion64

and policy on the topic. Those not believing with the consensus are called,65

pejoratively, “deniers” (Dunlap, 2013). It seems safe to say that we cannot66

altogether do away with epistemic goals in science.67

An epistemic goal puts particular constraints on the format of scientific68

theory: it will have to allow for evaluations of how believable or plausible the69

theory is, and it must contain components that represent nature, or the world,70
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in some manner. We call those components hypotheses.3 There is a large71

variety of structures that may all be classified as hypotheses in virtue of their72

role in representing the world. A hypothesis might be a distinct mechanism,73

the specification of a type of process, a particular class of solutions to some74

system of equations, and so on. For all hypotheses, however, an important75

requirement is that they entail predictions of data. Scientists would regard76

a hypothesis that has no empirical consequences as problematic. Moreover,77

it is a deeply seated conviction among many scientists that the success of a78

theory should be determined on the basis of its ability to predict the data.79

In short, the hypotheses must have empirical content.80

The foregoing claims may seem completely trivial to our current readers.81

However, they are all subject to controversy in the philosophy of science.82

There are long-standing debates on the nature, the use and the status of83

scientific theory. It is far from clear that scientific hypotheses are intended84

to represent something, and that they always have empirical content.4 And85

a closer look at science also gives us a more nuanced view. Consider a sta-86

tistical tool like principal component analysis, in which the variation among87

data points is used to identify salient linear combinations of manifest vari-88

ables. Importantly, this is a data-driven technique that does not rely on89

any explicitly formulated hypothesis. The use of neural networks and other90

data-mining tools for identifying empirical patterns are also cases in point,91

certainly when these tools are seen merely as pattern-seeking devices. The92

message here is that scientific theory need not always have components that93

do representational work. However, the account of evidence that motivates94

Bayes factors does rely on hypotheses as representational items, and does95

assume that these hypotheses have empirical content.596

3In the philosophy of science literature, those structures are often referred to as models.
But in a statistical context models have a specific meaning: they are sets of distributions
over the sample space that serve as input to a statistical analysis. To avoid confusion
when we introduce statistical models later, we use the term “hypotheses”.

4See, e.g., Psillos (1999); Bird (1998) for introductions into the so-called realism debate.
5Clearly this leaves open other motivations for using Bayes factors to evaluate neural

networks and the like. Moreover, data-driven techniques are often used for informal hy-
pothesis generation. While the formal evidence evaluation techniques discussed here may
not be appropriate for such exploratory techniques, they may be appropriate for later
products of such techniques.
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1.2. Evaluations: belief and probability97

As we have argued, the epistemic goals of science lead to a particular98

understanding of scientific theory: it consists of empirical hypotheses that99

somehow represent the world. Within statistical analysis, we indeed find100

that theory has this character: statistical hypotheses are distributions that101

represent a population, and they entail probability assignments over a sample102

space.6 A further consequence of taking science as an epistemic enterprise103

was already briefly mentioned: scientific theory must allow for evaluations,104

and hence interface with our epistemic attitudes. These attitudes include105

expectations, convictions, opinions, commitments, assumptions, and more.106

But for ease of reference we will simply speak of beliefs in what follows. Now107

that we have identified the representational components of scientific theory108

as hypotheses, the requirement is that these hypotheses must feature in our109

beliefs. And our account of evidence must accommodate such a role.110

The exact implications of the involvement of belief depend on what we111

take to be the nature of beliefs, and on the specifics of the items featuring112

in it. There are many ways of representing both the beliefs and the targets113

of beliefs. For example, when expressing the strength of our adherence to114

a belief we might take them as categorical, e.g., dichotomous between ac-115

cepted and rejected, or graded in some way or other. Moreover, the beliefs116

need not concern the hypothesis in isolation. In an account of evidence, the117

beliefs might just as well pertain to relations between hypotheses and data.118

Consequently, the involvement of beliefs does not, by itself, impose that we119

assign probabilities to hypotheses. And it does not entail the use of Bayesian120

methods to the exclusion of others either. Numerous interpretations of, and121

add-ons to, classical statistics have been developed to accommodate the need122

for an epistemic interpretation of results (for an overview see Romeijn, 2014).123

Be that as it may, in our account we choose for a distinct way of involv-124

ing beliefs. First consider the representation of the items about which we125

have beliefs, e.g., whether we frame our beliefs as pertaining to sentences or126

events. A fully general framework, which we will adopt here, presents beliefs127

6Notice that the theoretical structure from which the statistical hypotheses arise may be
far richer than the hypotheses themselves, involving exemplars, stories, bits of metaphysics,
and so on. In the philosophy of statistics, there is ongoing debate about the exact use
of this theoretical superstructure, and the extent to which it can be detached from the
empirical substructure. Romeijn (2013) offers a recent discussion of this point, placing
hierarchical Bayesian models in the context of explanatory reasoning in science.
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as pertaining to elements from an algebra that represents events in, or facts128

about, a target system. Next consider the beliefs themselves – predictions,129

expectations, convictions, commitments. They can be formalized in terms130

of a function over the algebra, like truth values or more fine-grained formal-131

izations, e.g., degrees of belief, imprecise probabilities, plausibility orderings132

and so on (see Halpern, 2003, for an overview). It seems inevitable that133

any such function will impose its own constraints on what can be captured.134

Fortunately there are very convincing arguments for capturing beliefs about135

hypotheses in terms of probability assignments over an algebra (Cox, 1946;136

de Finetti, 1995; Joyce, 1998; Ramsey, 1931). In our account we follow this137

dominant practice.138

Our choice for probability assignments suggests a particular way of for-139

malizing the empirical evaluation of hypotheses. We express beliefs by a140

probability over an algebra, so items that obtain a probability, like data and141

possibly also hypotheses, are elements of this algebra. The relation between142

a hypothesis, denoted h, and data, denoted y, will thus be captured by cer-143

tain valuations of the probability function. As will become apparent below,144

a key role is reserved for the probability of the data on the assumption of a145

hypothesis, written ph(y), or p(y | h) depending on the exact role given to146

hypotheses.7147

Notice that the use of probability assignments puts further constraints on148

the nature of the empirical hypotheses: they must specify a distinct proba-149

bility assignment over possible data, i.e., the hypothesis must be statistical.150

This means that if the hypothesis under consideration is composite – mean-151

ing that it consists of a number of different distributions over the sample152

space – we must suppose a probability assignment over these distributions153

themselves in order to arrive at a single-valued probability assignment over154

the sample space. This is simply a requirement for building up a probabilistic155

account of evidence.8156

7Classical statisticians might object to the appearance of h within the scope of the
probability function p. If viewed as a function of the hypothesis, this expression is referred
to as the (marginal) likelihood of the hypothesis h for the (known and fixed) data y.

8For instance, if we are interested in the probability θ that an unfair coin lands with
heads showing, then the hypothesis θ > 1/2, which specifies that the coin is biased toward
heads, is such a composite hypothesis. Each possible value for θ implies a different sampling
distribution over the number of heads. In addition to these sampling distributions we
must have a weighting over all possible θ values. Without such a weighting, typically
a probability assignment, over these component distributions the aggregated or so-called
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Let us take stock. We have argued that our account of evidence involves157

beliefs concerning hypotheses. These beliefs are determined by the relations158

that obtain between hypotheses and data, and probability assignments offer159

a natural means for expressing these beliefs. Against this background, we160

will now investigate the role of data, and thereby identify two key properties161

for our notion of evidence.162

1.3. Impact of data: relative and relational163

The evaluation of empirical hypotheses goes by a confrontation with the164

data. But how precisely do the data engage in our beliefs towards hypotheses,165

and so function as evidence? The data – in the context of statistics, dry166

database entries – do not present evidence all by themselves. They only do167

so because, as we said, they impact on our beliefs about hypotheses. We168

turn to this idea of impact, to single out two properties that are central169

to our account of evidence: it is relational and relative. By relational, we170

mean that evidence is fundamentally about the relation between data and171

hypotheses, and not data alone; by relative, we mean that evidence for or172

against a hypothesis can only be assessed relative to another hypothesis.173

First consider the relational nature of evidence. We might assess the evi-174

dence by offering an account of the evidential value of data taken in isolation.175

By contrast, we might also assess the evidence as a the relation between hy-176

pothesis and data, e.g., by forming a belief regarding the support that the177

data give to the hypothesis. The notion of support clearly pertains to the178

relation between hypothesis and data, and this is different from an assess-179

ment that only pertains to the data as such. We prefer a relational notion180

of evidence in our account, namely one that is based on support relations.181

In general, the support relation will be determined by how well hypothe-182

ses and data are aligned. We like to think about this alignment, and hence183

support relation, in terms of of predictive accuracy. That is, hypotheses may184

be scored and compared according to how well they predict the data. In185

statistics, this is often done simply by the probability that the hypothesis186

assigns to the data, the so-called likelihood, written p(y | h). As will become187

apparent in the next section, precisely this particular use of predictive accu-188

marginal likelihood of the hypothesis cannot be computed, thereby leaving the empirical
content of the composite hypothesis underspecified. Of course this invites further questions
over the status of these marginal likelihoods but we cannot delve into these questions here.
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racy drops out of the choices for the account of evidence that we have made189

in the previous sections.9190

As an aside, notice that predictions based on a hypothesis have an epis-191

temic nature – they are expectations – but that their standard formalization192

in terms of probability is often motivated by the probabilistic nature of some-193

thing non-epistemic: statistical hypotheses pertain to frequencies or chances,194

and the latter can be represented by probability theory as well. The use of195

predictions for evaluating hypotheses thus involves two subtle conceptual196

steps. The probability p(y | h) refers to a chance or a frequency, which197

is then turned into an epistemic expectation, i.e., a prediction, and subse-198

quently taken as a score that expresses the support for the hypothesis by the199

data.200

Next consider the relative, or comparative, nature of evidence. Note201

that support can be considered in absolute or in relative terms. We might202

conceive of the support as something independent of the theoretical context203

in which the support is determined: we base the support solely on how well204

the hypothesis under scrutiny aligns with the data, where this predictive205

performance is judged independently of how well other hypotheses – which206

may or may not be under consideration – predict those data. By contrast, we207

might also conceive of support as an essentially comparative affair. We might208

say one hypothesis is better supported by the data than another because it209

predicts the data better, without saying anything about the absolute support210

that either receives from the data.211

We think the comparative reading fits better with our intuitive under-212

standing of support, namely as something context-sensitive, so we take this213

as another desideratum for our account of evidence. The data do not of-214

fer support in absolute terms: they only do so relative to rival hypotheses.215

Imagine that the hypothesis h predicts the empirical data y with very high216

probability. We will only say that the data y support the hypothesis h if217

other hypotheses h′ do not predict the same data equally well. If the other218

hypotheses also predict the data, perhaps because it is rather easy to predict219

them, then it seems that those data do not offer support either way. Con-220

versely, if the data are surprising in the sense that they have a low probability221

according to all the other hypotheses under consideration, then still, they are222

9Following the recent interest in what is termed accuracy-first epistemology (e.g. Joyce,
1998; Pettigrew, 2013), it also aligns well with the epistemic goals of science.
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only surprising relative to those other hypotheses. Hence, although we ad-223

mit that more absolute notions of evidence can be conceived, our notion of224

support, and thereby of evidence, depends on what candidate hypotheses are225

being considered.226

Summing up, we have now argued that data present evidence insofar as227

they impact on our beliefs about hypotheses, that this impact is best un-228

derstood as relative support, and that it can be measured by a comparison229

among hypotheses of their predictive success. In what follows we will inte-230

grate these insights into an account of evidence and argue that Bayes factors231

offer a natural expression of this kind of evidence.232

1.4. Bayes factors233

Let us return to the conception of evidence that was sketched at the start234

of this section: the evidence presented by the data is the impact that these235

data have on our evaluation of theory.10 In the foregoing we have put in place236

conceptions of theory, evaluation, and the impact of data. In this section we237

assemble the pieces.238

As indicated, we look at the way in which data impact on the evaluation239

of hypotheses, denoted hi. The evidence presented by the datum y can240

thus be formalized in terms of the change in the probability that we assign241

to the hypotheses, i.e., the change in the probability prior and posterior to242

receiving the datum. To signal that these probabilities may be considered243

separate from the probability assignments p(y) over the sample space, we244

denote priors and posteriors as π(hi) and π(hi | y) respectively. A natural245

expression of the change between them is the ratio of prior and posterior.246

The use of probability assignments over hypotheses means that we opt247

for a Bayesian notion of evidence. As is well known, Bayes’ rule relates priors248

and posteriors as follows:249

π(hi | y) =
p(y | hi)

p(y)
π(hi),

where we often write π(hi | y) = πy(hi) to express that the posterior proba-250

bility over the hypotheses is a separate function. In the above expression, the251

10See Kelly (2014) for a quick presentation and some references to a discussion on the
merits of this approach to evidence. Interestingly, others have argued that we can identify
the meaning of a linguistic expression with the impact on our beliefs (cf. Veltman, 1996).
This is suggestive of particular parallels between the concepts of evidence and meaning,
but we will not delve into these here.
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notion of evidence hinges entirely on the likelihoods p(y | hi) for the range of252

hypotheses hi that are currently under consideration. In order to assess the253

relative evidence for two hypotheses hi and hj, we may focus on the ratio of254

priors and posteriors for two distinct hypotheses:255

πy(hi)

πy(hj)
=
p(y | hi)

p(y | hj)
× π(hi)

π(hj)
.

The crucial term – the one that measures the evidence – is the ratio of the256

probabilities of the data y, conditional on the two hypotheses that are being257

compared. This ratio is known as the Bayes factor.258

We can quickly see that the Bayes factor has the properties discussed259

in the foregoing, and that this reinforces our view that Bayes factors are a260

suitable expression of evidence. Obviously, the ratio261

p(y | hi)

p(y | hj)

involves our beliefs concerning empirical hypotheses. More specifically, it262

directly involves an expression for the empirical support for the hypotheses,263

and so the notion of evidence is relational. Support is expressed by predictive264

accuracy, in particular by the probability of the observed data under the265

various hypotheses under consideration. The evaluation is thus relative, in266

the sense that we only look at the ratios: we express evidence as the factor267

between the ratio of priors and posteriors of two distinct hypotheses. In268

sum, the Bayes factor comes out of the reasoned choices that we made for269

our account of evidence, and it exhibits the two properties that we deemed270

suitable for our account.271

Note that we opted for an account of evidence that is explicitly Bayesian.272

After all it hinges on beliefs regarding hypotheses, rather than on beliefs273

regarding the support relation or on something else entirely. However, the274

eventual expression of evidential strenght only involves probability assign-275

ments over data. Although we will not argue this in any detail, it therefore276

seems that a similar account of evidence can also be adopted as part of other277

statistical methodologies, certainly likelihoodism, which is concerned on our278

beliefs regarding support itself (e.g., Royall, 1997).279

1.5. The subjectivity of evidence280

Our notion of evidence depends on the theory that we consider. If we281

consider different hypotheses, our evidence changes as well, both because we282
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pick up on different things in the data if we consider different hypotheses, and283

because we might have different hypotheses to compare evidential supports.284

All of this points to a subjective element in evidence that affects statistical285

analyses in general: the idea that the data speak for themselves cannot be286

maintained. In this final subsection we briefly elaborate on this aspect of287

evidence, addressing in particular those methodologists and scientists who288

find the alleged subjectivity a cause for worry.289

It is easy to see that evidence must be subjective when we realize that290

referring to data as “evidence” is a choice. A psychologist studying mecha-291

nisms of decision-making would ignore data from the exoplanet-hunting Ke-292

pler probe as being non-evidential for the particular questions that they ask.293

There is nothing about the data, by itself, that tells a researcher whether294

it counts as evidence; researchers must combine their theoretical viewpoint295

with the questions at hand to evaluate whether a particular data set is, in296

fact, evidential. This is by necessity a subjective evaluation.297

Another illustration from statistics may help to further clarify the sub-298

jectivity of evidence. It is well-known that statistical procedures depend on299

modeling assumptions made at the outset. Therefore every statistical proce-300

dure is liable to model misspecification (Box, 1979). For instance, if we obtain301

observations that have a particular order structure, like 010101010101, but302

analyze those observations using a model of Bernoulli hypotheses, the or-303

der structure will simply go unnoticed. We will say that the data present304

evidence for the Bernoulli hypothesis that gives a chance of 1/2 to each obser-305

vation. But we do not say that they provide evidence for an order structure,306

because there was no statistical context for identifying this structure.307

It may be thought that the context-sensitivity of evidence is more pro-308

nounced in Bayesian statistics, because a Bayesian inference is closed-minded309

about which hypotheses can be true: after the prior has been chosen, hy-310

potheses with zero probability cannot enter the theory (cf. Dawid, 1982).311

As recently argued in Gelman and Shalizi (2013), classical statistical proce-312

dures are more open-minded in this respect: the theoretical context is not as313

fixed. For this reason, the context-sensitivity of evidence may seem a more314

pressing issue for Bayesians. However, as argued in Hacking (1965), Good315

(1988), and Berger and Wolpert (1988) among others, classical statistical316

procedures have a context-sensitivity of their own. It is well known that317

some classical procedures violate the likelihood principle. Roughly speaking,318

these procedures do not only depend on the actual data but also on data319

that, according to the hypotheses, could have been collected, but was not.320
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The nature of this context sensitivity is different from the one that applies321

to Bayesian statistics, but it amounts to context sensitivity all the same.322

The contextual and hence subjective character of evidence may raise some323

eyebrows. It might seem that the evidence that is presented by the data324

should not be in the eye of the beholder. We believe, however, that depen-325

dence on context is natural. To our mind, the context-sensitivity of evidence326

is an apt expression of the widely held view that empirical facts do not come327

wrapped in their appropriate interpretation. The same empirical facts will328

have different interpretations and different evidential value in different sit-329

uations. We ourselves play a crucial part in this interpretation, by framing330

the empirical facts in a theoretical context or more concretely, in a statistical331

model.11332

2. Bayesian statistics: formalized statistical evidence333

The previous section layed out a general way of approaching the relation-334

ship between evidence and rational belief change which are broadly applica-335

ble in economic, legal, medical, and scientific reasoning. In some applications336

the primary concern is drawing inferences from quantitative data. Bayesian337

statistics is the application of the concepts of evidence and rational belief338

change to statistical scenarios.339

Bayesian statistics is built atop two ideas: first, that the plausibility we340

assign to a hypothesis can be represented as a number between 0 and 1; and341

second, that Bayesian conditioning provides the rule by which we use the342

data to update beliefs. Let y be the data, θ be a vector of parameters that343

characterizes the hypothesis, or the statistical model, h of the foregoing, and344

let p(y | θ) be the sampling distribution of the data given θ: that is, the345

statistical model for the data. Then Bayes conditioning implies that346

πy(θ) = p(θ | y) =
p(y | θ)

p(y)
π(θ).

This is Bayes’ rule. A simple algebraic step yields the above variant, which347

we reproduce here:348

πy(θ)

π(θ)
=
p(y | θ)

p(y)
. (1)

11This formative role for theory echoes ideas from the philosophy of science that trace
back to Popper (1959) and Kuhn (1962).

12



The left-hand side is a ratio indicating the change in belief for a specific θ due349

to seeing the data y: that is, the weight of evidence. The right-hand side is350

the ratio of two predictions: the numerator is the predicted probability of the351

data y for θ, and the denominator is the average predicted probability of the352

data over all θ. Examination of Eq. (1) the important link with statistical353

evidence. The evidence favors an explanation – in this case, a model with354

specific θ – in proportion to how successfully it has predicted the observed355

data.356

For convenience we denote the evidence ratio357

Ev(θ, π,y) =
p(y | θ)

p(y)
.

as a function of θ, the prior beliefs π, and the data y that determines how358

beliefs should change across the values of θ, for any observed y. As above,359

we use bold notation to indicate that the data, parameters, or both could be360

vectors. We should note that the evidence ratio Ev is not what is commonly361

referred to as a Bayes factor because it is a function of parameter values,362

θ. The connection between Ev and Bayes factors is straightforward and will363

become apparent below.364

To make our discussion more concrete, suppose we were interested in365

the probability of buttered toast falling butter-side down. Murphy’s Law –366

which states that “anything that can go wrong will go wrong” – has been367

taken to imply that the buttered toast will tend to land buttered-side down368

(Matthews, 1995), rendering it inedible and soiling the floor12. We begin by369

assuming that toast flips have the same probability of landing butter-side370

down, and that the flips are independent, and thus the number of butter-371

down flips y has a binomial distribution. There is some probability θ that372

represents the probability that the toast lands butter down. Figure 1 shows373

a possible distribution of beliefs, π(θ), about θ; the distribution is unimodal374

and symmetric around 1/2. Beliefs about θ are concentrated in the middle375

of the range, discounting the extreme probabilities. The choice of prior is a376

critical issue in Bayesian statistics; we use this prior for the sake of demon-377

stration and defer discussion of choosing a prior.378

12There is ongoing debate over whether the toast could be eaten if left on the floor for
less than five seconds (Dawson et al., 2007). We assume none of the readers of this article
would consider such a thing.
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Figure 1: A: A prior distribution over the possible values θ, the probability that toast
lands butter-side down. B, C: Probability of outcomes under two models.
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In Bayesian statistics, most attention is centered on distributions of pa-379

rameters, either before observing data (prior) or after observing data (poste-380

rior). We often speak loosely of these distributions as containing the knowl-381

edge we have gained from the data. However, it is important to remember382

that the parameter is inseparable from the underlying statistical model that383

links the parameter with the observable data, p(y | θ). Jointly, the pa-384

rameter and the data make predictions about future data. The parameters385

specify particular chances, or else they specify our expectations about fu-386

ture observations, and thereby they make precise a statistical hypothesis,387

i.e., a particular representation. As we argued above, an inference regarding388

a hypothesis should center on the degree to which a proposed constraint is389

successful in its predictions. With this in mind, we examine the ratio Ev –390

a ratio of predictions for data – in detail.391

The function Ev is a ratio of two probability functions. In the numera-392

tor is the probability of data y given some specific value of θ: that is, the393

numerator is a set of predictions for a specific model of the data. We can un-394

derstand this as a proposal: what predictions does this particular constraint395

make, and how successful are these predictions? For demonstration, we focus396

on the specific θ = 0.5. The light colored histogram in Figure 1B, labelled397

p(y | θ = 0.5), shows the predictions for the outcomes y given θ = 0.5 and398

N = 50, as derived from the binomial(50, 0.5) probability mass function:399

p(y | θ = 0.5) =

(
50

y

)
0.5y(1− 0.5)50−y.

These predictions are centered around 25 butter-side down flips, as would be400

expected given that θ = 0.5 and N = 50.401

The denominator of the ratio Ev is another set of predictions for the data:402

not for a specific θ, but averaged over all θ.403

p(y) =

∫ 1

0

p(y | θ)π(θ) dθ

The predictions p(y) are called the marginal predictions under the prior π(θ),404

shown as the dark histogram in Figure 1B. These marginal predictions are405

necessarily more spread out than those of θ = 0.5, because they do not406

commit to a specific θ. Instead, they use the uncertainty in θ along with the407

binomial model to arrive at these marginal predictions. The spread of the408

predictions thus reflects all of the uncertainty about θ contained in the prior409
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π(θ). The marginal probability of the observed data – that is, when y and410

p(y) have a specific values – is called the marginal likelihood.411

The ratio Ev is thus the ratio of two competing models’ predictions for412

the data. The numerator contains the predictions of the model where the413

parameter θ is constrained to a specific value, and the denominator contains414

the predictions of the full model, with all uncertainty from π(θ) included.415

For notational convenience, we call the restricted numerator model M0 and416

the full, denominator model M1. In statistics, models play the role of the417

hypotheses hi discussed in the previous section.418

Suppose we assign a research assistant to review hundreds of hours of419

security camera footage at a popular breakfast restaurant, she finds N = 50420

instances where the toast fell onto the floor; in y = 30 of these instances, the421

toast landed butter down. We wish to assess the evidence in the data; or,422

put another way, we wish to assess how the data should transform π(θ) into423

a new belief based on y, πy(θ). Eq. (1) tells us that the weight of evidence424

favoring the model M0 is precisely the degree to which it predicted y = 30425

better than the full model, M1. Figure 1C (inside the rectangle) shows the426

probability of y = 30 under M0 and M1. Thus,427

Ev =
p(y = 30 | θ = 0.5)

p(y = 30)
=

0.042

0.037
= 1.145.

The plausibility of θ = 0.5 has grown by about 15%, because the observation428

y = 30 was 15% more probable under M0 than M1.
13

429

We can compute the factor Ev for every value of θ. The curve in Figure 2A430

shows the probability that y = 30 under every point restriction of θ; the431

horizontal line shows the marginal probability p(y = 30). For each θ, the432

height of the curve relative to the constant p(y) gives the factor by which433

beliefs are updated in favor of that value of θ. Where the curve is above434

the horizontal line (the shaded region), the value of the particular θ is more435

plausible, after observing the data; outside the shaded region, plausibility436

decreases. Figure 2B shows how all of these factors stretch the beliefs to437

form the posterior from the prior, making some regions higher and some438

regions lower. The effect is to transform the prior belief function π(θ) into a439

13We loosely speak of the plausibility of θ here but strictly speaking, because θ is con-
tinuous and π(θ) is a density function, we are referring to the collective plausibility of
values in an arbitrarily small region around θ.

16



Prob. toast lands butter−down (θ)
0.0 0.2 0.4 0.6 0.8 1.0

A

p(y = 30)

p(y = 30 | θ) R
elative Likelihood

0

0.5

1

1.5

2

2.5

3

Li
ke

lih
oo

d

0.00

0.02

0.04

0.06

0.08

0.10

Prob. toast lands butter−down (θ)
0.0 0.2 0.4 0.6 0.8 1.0

B

π(θ)

D
en

si
ty

Prob. toast lands butter−down (θ)
0.0 0.2 0.4 0.6 0.8 1.0

C

π(θ)

πy(θ)

D
en

si
ty
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new belief function πy(θ) which has been updated to reflect the observation440

y.441

The prior and posterior are both shown in Figure 2C. Instead of being442

centered around θ = 0.5, the new updated beliefs have been shifted consistent443

with the data proportion y/N = 0.6, and have smaller variance, showing the444

gain in knowledge from the sample size N = 50. Although simplistic, the445

example shows that the core feature of Bayesian statistics is that beliefs –446

modeled using probability – are driven by evidence weighed proportional to447

predictive success, as required by Bayes’ theorem.448

2.1. The Bayes factor449

Suppose that while your research assistant was collecting the data, you450

and several colleagues were brainstorming about possible outcomes. You451

assert that if Murphy’s law is true, then θ > .5; that is, anytime the toast falls,452

odds are that it will land butter-side down.14 A colleague points out, however,453

that the goal of the data collection is to assess Murphy’s law. Murphy’s law454

itself suggests that if Murphy’s law is true, your attempt to test Murphy’s455

law will fail. She claims that for the trials assessed by your research assistant,456

Murphy’s law entails that θ < .5. A second colleague thinks that the toast457

is probably biased, does not specify a direction of bias: that is, θ is could458

be any probability between 0 and 1. A third colleague believes that θ = .5:459

that is, the butter does not bias the toast at all.460

You would like to assess the evidence for each of these hypotheses when461

your research assistant sends you the data. Because evidence is directly462

proportional to degree to which the observed outcomes were predicted, we463

need to posit predictions for each of the hypotheses. The predictions for464

θ = .5 are the exactly those ofM0, shown in Figure 1B, while the predictions465

of the unconstrained model are the same as those of M1. For θ < .5 and466

θ > .5, we must define plausible prior distributions over these ranges. For467

simplicity of demonstration, we assume that these prior distributions arise468

from restriction of the π(θ) in Figure 1A to the corresponding range (they469

each represent half of π(θ)). We now have three models: M0, in which470

θ = .5; M+, the “Murphy’s law” hypothesis in which θ > .5; and M−, the471

hypothesis in which our test of Murphy’s law fails because θ < .5.472

14Murphy’s law might be understood to imply that the toast will always land butter-side
down. We could instead refer to this hypothesis as the “weak Murphy’s law”: anything
that can go wrong will tend to go wrong.
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Having defined each of the models in such a way that they have predictions473

for the outcomes, we can now outline how the evidence for each can be474

assessed. For any two models Ma and Mb we can define prior odds as the475

ratio of prior probabilities:476

π(Ma)

π(Mb)

The prior odds are the degree to which one’s beliefs favor the numerator477

model over the denominator model. If our beliefs are equivocal, the odds are478

1; to the degree that the odds diverge from 1, the odds favor one model or the479

other. We can also define posterior odds; these are the degree to which beliefs480

will favor the numerator model over the denominator model after observing481

the data:482

πy(Ma)

πy(Mb)

If we are interested in the evidence, then we want to know how the prior483

odds must be changed by the data to become the posterior odds. We call484

this ratio B, and an application of Bayes’ rule yields485

B(Ma,Mb,y) =
πy(Ma)

πy(Mb)

/
π(Ma)

π(Mb)
=
p(y | Ma)

p(y | Mb)
(2)

Here, B – the relative evidence yielded by the data for Ma against Mb – is486

called the Bayes factor. Importantly, Eq. (2) has the same form as Eq. (1),487

which showed how a posterior distribution is formed from the combination488

of a prior distribution and the evidence. The ratio Ev in Eq. (1) was formed489

from the rival predictions of a specific value of θ against a general model in490

which all possible values of θ were weighted by a prior. Eq. (2) generalizes491

this to any two models which predict data.492

We can now consider the evidence for each of our four models, M0,493

M1, M−, and M+. In fact, we have already computed the evidence for494

M0 against M1. The Bayes factor in this case is precisely the factor by495

which the density of θ = .5 increased against M1 in the previous section:496

1.145. This is not an accident, of course; a posterior distribution is simply a497

prior distribution that has been transformed through comparison against the498

“background” model M1.
15 This correspondence is not surprising: Bayes’499

15In simple cases this is referred to as the Savage-Dickey representation of the Bayes
factor. For example, see Dickey and Lientz (1970) and Wagenmakers et al. (2010).
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theorem provides a general account of belief change. These changes in belief500

(in this case, odds) must be the same regardless of whether we consider a501

particular value of θ as part of an ensemble of possible values (as in parameter502

estimation) or by itself (as in hypothesis testing). If the Bayesian account of503

evidence is to be consistent, the evidence forM0 must be the same whether504

we are considering it as part of a posterior distribution or not.505

Figure 3A shows the marginal predictions of three models,M0,M−, and506

M+. The predictions forM0 are the same as they were previously. ForM−507

and M+, we average the probability of the data over the508

p(y | M+) =

∫ 1

.5

p(y | θ)π(θ | θ > .5) dθ

and likewise forM−. As shown in Figure 3A, these marginal predictions are509

substantially more spread out than those ofM0 because they are formed from510

ranges of possible θ values. To assess the evidence provided by y = 30 we511

need only restrict our attention to the probability that each model assigned to512

the outcome that was observed. These probabilities are shown in Figure 3B.513

The Bayes factor of M+ to M0 is514

B(M+,M0, y) =
p(y = 30 | M+)

p(y = 30 | M0)
=

0.066

0.042
= 1.585,

The evidence favors M+ by a factor of 1.585 because y = 30 is 1.585 times515

as probable as M+ than under M0. Visually, this can be seen in Figure 1B516

by the fact that the height of the bar forM+ is 58% higher than the one for517

M0. This Bayes factor means that to adjust for the evidence in y = 30, we518

would have to multiply our prior odds – whatever they are – by a factor of519

1.585.520

The Bayes factor favoring M+ to M− is much larger:521

B(M+,M−, y) =
p(y = 30 | M+)

p(y = 30 | M−)
=

0.066

0.007
= 9.82,

indicating that the evidence favoring the “Murphy’s law” hypothesis θ > .5522

over its complement θ < .5 is much stronger than that favoring the “Murphy’s523

law” hypothesis over the “unbiased toast” hypothesis θ = .5.524

Conceptually, the Bayes factor is simple: it is the ratio of the probabilities525

– or densities if the data are continuous – of the observed data under two526

models. It makes use of the same evidence that is used by Bayesian parameter527
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estimation; in fact, Bayesian parameter estimation can be seen as a special528

case of Bayesian hypothesis testing, where many point alternatives are each529

compared to an assumed full model. Comparison of Eq. (1) and Eq (2)530

makes this clear. We also prefer this interpretation of parameter estimation531

because it makes clear that the “background” full model is always a part of532

the evaluation.533

Having defined the Bayes factor and its role in Bayesian statistics, we now534

move to an example that is closer to what one might encounter in research.535

We use this example to show how context dependence arises in the use of the536

Bayes factor in practice.537

3. Examples538

In this section, we illustrate how researchers may profitably use Bayes539

factors to assess the evidence for models from data using a realistic example.540

Consider the question of whether working memory abilities are the same, on541

average, for men and women; that is that working memory is invariant to542

gender (e.g., Shibley Hyde, 2005). Although this research hypothesis can be543

stated in a straightforward manner, by itself this statement has no impli-544

cations for the data. In order to test the hypothesis, we must instantiate545

the hypothesis as a statistical model. To show how the statistical evidence546

for various theoretical positions, in the form of Bayes factors, may be com-547

pared, we first specify a general model framework. We then then instantiate548

competing theoretical positions as constraints within the framework.549

To specify the general model framework, let xi and yi , i = 1, . . . , I, be the550

scores for the ith woman and man, respectively. The modeling framework is:551

xi ∼ N(µ+ σδ/2, σ2) and yi ∼ N(µ− σδ/2, σ2), (3)

where µ is a grand mean, δ is the standardized effect size (µx − µy)/σ, and552

σ2 is the error variance.553

The focus in this framework is δ, the effect-size parameter. The theo-554

retical position that working memory ability is invariant to gender can be555

instantiated within the framework by setting δ = 0, shown in Figure 4A as556

the arrow. We denote the model as M0, where the e is for equal abilities.557

With this setting, the Model M0 makes predictions about the data, which558

are best seen by considering δ̂, the observed effect size, δ̂ = (x̄− ȳ)/s, where559

x̄, ȳ, and s are sample means and a pooled sample standard deviation, re-560

spectively. As is well known, under the null hypothesis, the t statistic has a561

22



Student’s T distribution:562

t =
x̄− ȳ
s

√
I/2 ∼ T (ν),

where T is a t-distribution and ν = 2(I − 1) are the appropriate degrees-of-563

freedom for this example. The predictions for the effect size δ̂ thus follow a564

scaled Student’s t distribution:16565

δ̂

√
I

2
∼ T (ν), (4)

Predictions for sample effect size for Model M0 for I = 40 are shown in566

Figure 4B as the solid line. As can be seen, under the gender-invariant567

model of working memory performance, relatively small sample effect sizes568

are predicted.569

Thus far, we have only specified a single model. In order to assess the570

evidence for M0, we must determine a model against which to compare.571

Because we have specified a general model framework, we can compare to572

alternative models in the same framework that do not encode the equality573

constraint. We consider the case of two teams of researchers, Team A and574

Team B who, after considerable thought, instantiate different alternatives.575

Team A follows Jeffreys (1961) and Rouder et al. (2009) who recommend576

using a Cauchy distribution to represent uncertainty about δ:577

Mc
1 : δ ∼ Cauchy(r),

where the Cauchy has a scale parameter, r, which describes the spread of578

effect sizes under the alternative.17 The scale parameter r must be set a579

16Prior distributions must be placed on (µ, σ2). These two parameters are common
across all models, and consequently the priors may be set quite broadly. We use the
Jeffreys priors, π(µ, σ2) ∝ 1/σ2, and the predictions in (4) are derived under this choice.
We note, however, that the distribution of the t statistic depends only on the effect size,
δ, so by focusing on the t statistic we make the prior assumptions for σ2 and µ moot.

17The scaled Cauchy distribution has density

f(δ) =
1

rπ
[
1 +

(
δ
r

)2]
for r > 0.
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Figure 4: Models and predictions. A. Competing models on true effect size (δ) used by
Team A. B. Corresponding predictions for observed effect size. The filled and open points
show the density values for observed effect sizes of δ̂ = .2 and δ̂ = .5, respectively. The
ratio of these densities at an observed value is the Bayes factors, the evidence for one
model relative another. C.-D. The models and corresponding predictions used by Team
B, respectively.
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priori and the team follows the recent advice of Morey and Rouder (Morey580

and Rouder, 2014) to set r =
√

2/2. With this setting for the model on δ,581

denoted Mc
1, is shown in Figure 4A as the dashed line. As can be seen this582

model is a flexible alternative that has mass spread across small and large583

effects, but very large effect sizes are substantially less likely than smaller584

ones. The symmetry of the distribution encodes an a priori belief that it is585

as likely that women outperform men as that men outperform women. The586

corresponding prediction on sample effect size is shown in Figure 4B as the587

dashed line, and the model predicts a greater range of observed effect sizes588

than Model M0.589

Team B considers a different alternative formed by representing their590

uncertainty about the effect size with a symmetric, but bimodal, distribu-591

tion. This bimodal distribution is formed by joining gamma distributions592

in a back-to-back configuration as shown in Figure 4C as the dashed line.593

Similar bimodal priors were recommended by Johnson and Rossell (2010)594

and Morey and Rouder (2011). We denote this alternative as Mg
1, and this595

alternative makes a commitment that if there are effects, they are moderate596

in value.18 Compared to Team A’s alternative, Team B’s alternative has less597

mass for very large and very small magnitudes of effect size while retaining598

the symmetry constraint. A defense of such a prior could be that where599

gender effects are observed, say in mental rotation (see Matlin, 2003), they600

tend to be moderate in value. The corresponding prediction on sample effect601

size is shown in Figure 4B as the dashed line.602

It is critical to realize that neither Team A’s nor Team B’s choice need be603

considered more “correct” in their specification. Each team is interpreting the604

theoretical statement that men and women have different working memory605

capacities on average in good faith and their priors add value. In order to606

compute statistical evidence, choices such as these must be made. Hence,607

variation among priors is the reasonable and expected among analysts. It608

should be viewed as part of the everyday variation across researchers and609

18The density of the model on δ is

f(δ) =

{
g(δ, 3, 4)/2, δ ≥ 0,
g(−δ, 3, 4)/2, δ < 0,

where g(δ, ν, λ) is the density function of a gamma distribution with shape ν and rate λ
evaluated at the value δ.
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research labs much as variations in experimental methods across laboratories610

are viewed as reasonable and expected. As with variations in experimental611

designs, so long as the choices made are transparent the answers will be612

interpretable.613

Suppose the experiment resulted in an observed effect size of δ̂ = 0.2,614

indicating that women somewhat outperformed men. For Team A, the pre-615

dicted densities of observing δ̂ of 0.2 are shown as filled points in Figure 4B.616

The Bayes factor is the ratio of the predicted densities under M0 and Mc
1.617

Because the density is 3.041 times higher under M0 than under Mc
1, the618

evidence yielded by δ̂ = 0.2 is a Bayes factor of 3.041. Team A can then619

state the evidence for the equality of working-memory performance by this620

same factor. Team B computes their Bayes factor analogously. Because the621

density is 4.018 times higher underM0 than underMg
1, the relative evidence622

yielded by δ̂ = 0.2 is a Bayes factor of 4.018. Team B states evidence for the623

equality of working-memory performance by this factor. Although Team A624

and Team B reach the same conclusions, their evidence differs by a factor of625

32%.626

The open circles in Figure 4B show the same two analyses for a different627

hypothetical observed effect size, in this case δ̂ = 0.5. The Bayes factors628

reached by Team A and Team B are about 2-to-1 and 3-to-1 in favor of a629

performance effect, and once again, these values differ.630

Although it may appear problematic that two teams assessed the evi-631

dence in the same data differently, it is important to note that the two teams632

asked slightly different statistical questions; that is, the teams used different633

instantiations of the theoretically relevant statement into statistical models.634

Team A compared the null hypothesis δ = 0 to their unimodal Cauchy prior,635

and Team B compared the null hypotheses to their bimodal prior. As we636

have argued, however, this dependence on context is a natural property of637

statistical evidence. Whereas the variation in modeling is expected and rea-638

sonable, so is the variation in evidence values. Data cannot impact different639

researchers in the same way across all contexts. We discuss this further in640

the next section.641

4. Discussion642

In this paper, we defined evidence in a straightforward way: the evidence643

presented by data is given by the change in belief that it affects. We for-644

malized this definition and showed how it can be put to use in statistics.645
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A Bayesian notion of evidence arises when it is assumed that “beliefs” are646

represented by probabilities, and that belief change is manifested by con-647

ditioning the probability of various hypotheses on the data. These choices648

can be questioned, of course. If one wants to quantify statistical evidence649

in another manner, it would be necessary to flesh out other models that650

tie together hypothesis, data, and evaluation (e.g., fiducial statistics; Fisher,651

1930).652

Given the importance to scientists of quantifying statistical evidence, why653

have researchers not moved from frequentist techniques to other techniques654

more suited to their goals? There are several reasons for this. First, re-655

searchers believe, falsely, that currently popular methods serve their purposes656

(Gigerenzer et al., 2004; Oakes, 1986; Haller and Krauss, 2002; Hoekstra657

et al., 2014). Second, there are several major critiques of Bayes factors that,658

thus far, have kept them from widespread usage. Here we outline some ma-659

jor critiques of Bayes factors that prevent them from being used as measures660

of evidence by working scientists: that Bayes factors are overly-sensitive to661

prior distributions, that prior distributions are too difficult to choose, and662

that Bayes factors depend on the true model being considered.663

4.1. Sensitivity to prior distributions664

A number of authors have critiqued the use of Bayes factors for inference665

on the grounds that they are sensitive to the prior distribution chosen to666

represent the hypothesis (e.g., Aitkin, 1991; Liu and Aitkin, 2008; O’Hagan,667

1995; Grünwald, 2000). In the example in Section 3, this was apparent:668

Team A and Team B chose different prior distributions over the effect size669

δ. Each team had to decide what prior distribution best represented the670

alternative that women and men do have the same working memory ability on671

average. Although the two teams were nominally testing the same hypothesis,672

the Bayes factors computed by the two teams differed. This leads to the673

appearance that the Bayes factors are overly-dependent on the priors, which674

in turn causes the evidence to be arbitrary.675

To some extent we defer this criticism to Bayesian statistics in general.676

As our development of the Bayes factor in Section 2 should make clear, the677

Bayes factor is neither less nor more dependent on the prior than any other678

Bayesian method. In fact, the transformation from prior to posterior is a679

special case of a Bayes factor analysis, where every point-restriction in a680

full model is compared to the full model itself. Any general critique of Bayes681

factors as a method is a critique of the foundations of Bayesian analysis itself.682
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To avoid already well-trod ground, we refer the reader to other proponents683

of Bayesianism (Edwards et al., 1963; Jeffreys, 1961). In our account of684

evidence, we simply assume the Bayesian perspective.685

It is important, however, to emphasize that the Bayes factor is not sen-686

sitive to prior distributions in all cases; the use of Bayes factors does not687

always require the specification of a prior distribution. Inspection of Eq. 2688

reveals that the Bayes factor is solely a function of the probability of the data689

under the two hypotheses in question. Whenever the hypotheses are com-690

posite, these probabilities will be obtained through marginalizing over priors.691

But this is not the only way of obtaining predictions. It may so happen that692

the hypothesis, or model, under consideration does not involve any further693

parameters, and hence does not require any priors over the parameters (e.g.,694

Jefferys and Berger, 1991)19.695

Even if the Bayes factors depend on the choice of a prior, a case can be696

made that this is as it should be. We obtain the marginal likelihoods of a697

model by taking an average of the likelihoods of the component hypotheses,698

weighted by the prior distribution. The prior distribution thus ensures that699

the model has a definite marginal likelihood, and thus establishes a bridge700

between the hypothesis and the data. Importantly, the Bayes factor is not701

dependent on the priors in any other way than through this marginal likeli-702

hood. Moreover, it is sensitive to the priors only insofar as the priors impact703

on the predictions of a model or a hypothesis. Arguably, this sensitivity of704

the Bayes factor to the priors is precisely what one would expect: the priors705

are included in the evaluation insofar as they have empirical content (see also706

Vanpaemel, 2010).707

For users of classical significance testing, the above idea can at first be708

counter-intuitive. Consider a pair of standard classical hypotheses assuming709

known σ:710

z ∼ Normal(δ
√
N, 1) (5)

H0 : δ = 0 (6)

Ha : δ 6= 0. (7)

19It may be thought that all modeling is accompanied by some degree of freedom but
this need not be. A good example is given by statistical predictions about measurements
of radioactive decay and subatomic particle spin. Predictions for these quantities can be
derived from quantum mechanics, and they have unique distributions under the theory.
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No Bayes factor analysis is possible on this pair of hypotheses: one can never711

determine the support of this particular instantiation ofHa, because it makes712

no predictions at all. In a classical significance test, by contrast, there are713

two possible outcomes: either we retain H0, or we reject it. One cannot714

make any positive claims about the evidence in favor of H0, and so the test715

is asymmetric, allowing only an argument for Ha. A classical account of the716

evidence, in other words, is incomplete.717

The use of Bayes factors requires that one instantiate hypotheses in such718

a way that they have constrained predictions for the data. One cannot test719

empty hypotheses such as “the population mean is not 100”, because the720

predictions of such hypotheses are left indeterminate. But in order to arrive721

at a definite likelihood, we need a prior probability. And we believe that this722

is as it should be; any valid inference will hinge on the marginal data predic-723

tions, and hence on the choice of a prior. Even stronger, we believe that this724

prior dependence signals an important property of inference in general: evi-725

dence for or against a hypothesis should always be based on that hypothesis’726

empirical content – in our case: its predictions. However, because the choice727

of prior distributions is sometimes critical, we are required to put careful728

thought into this when we construct hypotheses.729

4.2. Choosing prior distributions730

As we said, the use of Bayes factors forces the analyst to specify what731

the empirical content of a hypothesis is. But specifying the empirical con-732

tent of a hypothesis may require substantial work. If used well, the Bayes733

factor rewards the analyst with an easily-interpretable measure of statistical734

evidence. If used badly — that is, without consideration of whether the in-735

stantiations of the hypotheses are meaninful — the Bayes factor is useless.736

Careless, automatic application of Bayes factors will lead to meaningless ev-737

idence measures that compare hypotheses not of interest to anyone. Solving738

the problem of careless, automatic application of Bayes factors is not trivial.739

For some relatively simple classes of models – e.g., linear models – it is possi-740

ble to define flexible families of alternative models to compare (Liang et al.,741

2008; Rouder et al., 2012; Zellner and Siow, 1980).742

However, for testing complex, non-nested models, the challenge of plac-743

ing priors over unknown parameters is a serious impediment to the use of744

Bayes factors. There are several ways we might meet the challenge. One745

seemingly attractive way to instantiate the assumption that the values of the746

unknown parameters is irrelevant is to assume a so-called “non-informative”747
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(possibly improper) prior over the parameter space. This sort of prior can748

be specially chosen to reflect indifference across possible values of the pa-749

rameters (Bernardo, 1979; Berger and Bernardo, 1992; Jeffreys, 1961, 1946,750

e.g.,). However, given the development above, such a prior would be unwise.751

Bayes factors with improper priors have many issues stemming from the fact752

that the priors are not true probability distributions, and the marginal likeli-753

hood is not uniquely defined (Atkinson, 1978; Bartlett, 1957; Jeffreys, 1961;754

Spiegelhalter and Smith, 1982). Even relatively uninformative proper priors755

are open to the critique that practically, these hypotheses are unlike those756

that any researcher might consider, due to their heavy weighting of large757

effect sizes (DeGroot, 1982).758

Another approach to avoiding the arbitrariness of noninformative priors759

is to always specify “reasonable” priors. Lindley was a strong advocate of760

this approach. In his critique of O’Hagan’s (1995), he wrote: “It is better761

to think about [the parameter] and what it means to the scientist. It is his762

prior that is needed, not the statistician’s. No one who does this has an763

improper distribution.” Although this approach is attractive in principle,764

in practice it can be daunting for a scientist to think of prior distributions.765

Some parameters can be difficult to interpret, and when there are hundreds766

or thousands of parameters in a statistical model, a scientist may not be767

able to generate meaningful priors (c.f. Goldstein, 2006; Berger, 2006, and768

discussion) in practice.769

Another possible solution is to build a “default” prior for the parameters770

using the data itself. Because improper priors can yield proper posteriors771

given a minimal sample size, one could use a small part of the sample to772

compute the priors needed for the marginal likelihood to be defined for each773

model, then compute the Bayes factor as the ratio of the marginal likeli-774

hoods for the remaining data, given the priors built from the training data.775

Variations on this basic approach, called “partial Bayes factors,” have been776

suggested by multiple authors, including Aitkin (1991); Atkinson (1978);777

Berger and Pericchi (1996, 1998); Spiegelhalter and Smith (1982). O’Hagan778

(1995) has suggested using a fraction of the likelihood itself as a prior. These779

approaches all attempt to circumvent, in some way, the problem of generat-780

ing a reasonable prior for model comparison. They can all be critiqued on781

the basis that the hypothesis to be tested was derived from the data itself,782

and so interpreting the results of the hypothesis test may be difficult.783

Discussion of the details of each of these statistics is outside the scope784

of this paper. However, we agree with the principle put forward by Berger785
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and Pericchi (1996): “Methods that correspond to use of plausible default786

(proper) priors are preferable to those that do not correspond to any possible787

actual Bayesian analysis.” Not all of the above default methods correspond to788

actual Bayesian analyses (see Berger and Pericchi, 1998, for discussion). The789

methods that correspond to a plausible default priors will have an interpre-790

tation in terms of statistical evidence for some pair of hypotheses; methods791

that do not correspond to any possible Bayesian analysis will not. Of course,792

even if a default method corresponds to a possible actual Bayesian analysis,793

one must always ask whether the comparison offered by a default method is794

interesting.795

4.3. Selection versus comparison, truth versus representation796

Bayes factors are often described as a model selection method; that is,797

one may compute the Bayes factors across a number of models, and select798

the model that has the highest Bayes factor as the “best” model. We have799

deliberately avoided discussion of model selection. In our minds, the most800

useful feature of the Bayes factor is its interpretation as a measure of evidence.801

Our view is that the concept of evidence is of paramount value. How one802

uses the evidence is a separate issue from the weighing of the evidence itself803

(see Fisher, 1955, for a similar point).804

The distinction between model comparison and model selection is crit-805

ically important. Selecting a model on the basis of a Bayes factor implies806

that one believes that the model is “good enough” in some way. However,807

as Gelman and Rubin (1995) point out, this cannot be argued on the basis808

of the Bayes factor alone. A model with the highest Bayes factor in a set of809

models may nonetheless fit badly. A model having the highest Bayes factor810

means nothing more than that the model had the highest amount of evidence811

in favor of it out of the models currently under consideration. However, a812

new model that could be considered may perform substantially better. We813

have stressed here and elsewhere that a model comparison perspective – as814

opposed to a model selection perspective – respects the fact that the evi-815

dence is always relative (Morey et al., 2013). This will not be so surprising816

to scientists, who are used to the tentative nature of scientific conclusions.817

Finally, it has been argued that the use of Bayes factors requires an im-818

plicit belief that one of the models under consideration is true (Gelman and819

Shalizi, 2013; Sanborn and Hills, 2014; Yu et al., 2014). Some statistical prop-820

erties of Bayes factors — for instance, their convergence to the true model821

under regularity conditions — do depend on the “true” model model being822
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in the set of considered models (Schervish, 1995). We believe, however, that823

in scientific practice the notion of true or false models is misguided. Sta-824

tistical models are impoverished representations that attempt to capture an825

important aspect of a phenomenon. Although they may be used to generate826

propositions that can be true or false, by themselves they are not true or827

false. Or at least, put more carefully, their truth conditions are far from828

clear.829

This may appear to threaten the entire enterprise of quantifying statis-830

tical evidence. After all, if models are not necessarily true or false, what831

does it mean to accumulate evidence for a model? We suggest that just as832

statistical models are proxies for real-world phenomena, statistical evidence833

is a proxy for real-world evidence. The applicability of the computed statis-834

tical evidence to the scientific question at hand will depend on a number of835

factors, including the degree to which the models compared correspond to836

the scientific question at hand (Morey et al., 2013). The rarefied property of837

statistics applies as much to statistical evidence as it does to other aspects838

of statistics. For instance, often statistical inferences are described as be-839

ing about populations. However, the idea of a population is abstract, and a840

single, unique population – in the statistical sense – may not meaningfully841

exist. This, of course, does not not prevent the population from being a842

useful concept; likewise, that a model may not be true does not mean that843

statistical evidence for the model is not interesting. Careful consideration844

is required to know whether a statement of statistical evidence is useful in845

understanding the phenomenon of interest to the researcher.846
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