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Abstract

This paper explores the fact that linear pooling can be represented as

a Bayesian update on the opinions of others. It uses this fact to relate

pooling to voting theory, especially Condorcet’s jury theorem. Relative

to certain modelling assumptions the trust parameter from pooling can

be equated with the so-called truth-conduciveness of the jurors featuring

in Condorcet’s result.

1 Introduction

Say that Raquel and Quassim are both pondering over the proposition S.

Raquel’s belief is PR(S) = r, Quassim’s is PQ(S) = q. How can Raquel re-

spond to the opinion of Quassim? One influential model for updating opinions

in the light of disagreement, due to Stone (1961), is linear opinion pooling.1

Linear pooling determines that the posterior opinion of Raquel P ′R(S) is given

by

r′ = wq + (1− w)r. (1)

1The model dates back at least to French (1956) and has been developed by DeGroot

(1974) and numerous others. For many philosophers the classical treatment is Lehrer and

Wagner (1981). Genest and Zidek (1986) offer an extensive mathematical review. More

recent philosophical contributions are Dietrich (2010) and Steele (2012).
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The parameter w ∈ [0, 1] specifies to what extent the updated opinion of Raquel

will move towards that of Quassim. By way of interpretation: it measures the

trust that Raquel has in Quassim.

An entirely different model for Raquel’s accommodating Quassim’s opinion

is based on Bayesian updating. Quassim’s opinion is in that case taken to be

evidence, and Raquel accommodates this evidence by a Bayesian update. A

rigourous theory of how Bayesians can treat the opinions of others was first

given in the context of game theory by Harsanyi (1966/67).2 In what follows it

is taken for granted that opinions of Raquel and Quassim can be captured coher-

ently in an algebra, even while those opinions are also expressed in probability

assignments over the algebra.

In the Bayesian model we represent the fact that Raquel believes S to degree

r, or PR(S) = r for short, by an element from this algebra, prq. To indicate that

Raquel knows her own opinion we write PR(S|prq) = r. Similarly, we represent

PQ(S|prq) = q, i.e., that Quassim believes S to degree q while knowing that

Raquel’s degree of belief is r, by the element pqq. We assume that Quassim

already knows Raquel’s opinion for reasons that will become apparent below.

We can express Raquel’s belief upon learning Quassim’s by Bayes’ rule:

P ′R(S) = PR(S|pqq ∩ prq) = PR(S|prq)PR(pqq|S ∩ prq)
PR(pqq|prq)

(2)

The second equality is of course Bayes’ theorem. If Bayes’ rule is adhered to,

Raquel’s belief after learning Quassim’s opinion is fully determined by her prior

belief PR(S|prq) and the likelihoods PR(pqq|S ∩ prq).

This paper develops the relation between these two models of updating. It is

known that we can provide a Bayesian model of pooling and so make equations

(1) and (2) match. Genest and Schervish (1985) have shown how to orchestrate

the Bayesian model such that

PR(S|pqq ∩ prq) = r′.

2Brandenburger (2007) offers an accessible exposition of so-called interactive epistemology,

in particular of the basic idea of Harsanyi type spaces.

2



For mathematicians the formal equivalence of pooling and Bayesian updating

may therefore be old hat. However, the result has not enjoyed much attention

from a more conceptually engaged audience. Among philosophers more atten-

tion has been devoted to how Bayesian updating and DeGroot pooling may be

combined, and to the question when the order of these operations matter (cf.

Genest et al, 1986; Dietrich, 2010; Leitgeb, 2014). As this paper argues, the

relation between pooling and Bayesian updating brings conceptual and inter-

pretative insights that are worth exploring.

In particular, this paper shows that an explicit reconstruction of pooling

in terms of a Bayesian update illuminates the vexed issue of interpreting the

trust parameter w (see also Genest and McConway, 1990). As things stand, the

trust parameter is an exogenous component of the model of opinion pooling: it

must be set by hand. But this is odd, because the model itself concerns beliefs

and it might be expected that trust can be spelled out in terms of beliefs as

well. As we will see, the trust parameter of pooling is naturally related to the

competence parameters that we find in the context of Condorcet’s jury theorem,

in particular to beliefs about the truth-conduciveness of others.

2 Linear pooling as Bayesian updating

This section presents a simplified version of the result of Genest and Schervish

(1985), which establishes a general equivalence of pooling and Bayesian updat-

ing. The result is not well-known among philosophers, which justifies a brief

presentation here.3 The primary concern in the paper by Genest and Schervish

is to specify conditions under which some form of pooling may serve as a stand-

in for a Bayesian update, in case we do not have a full probability assignment

over all the opinions available. Among other things, Genest and Schervish il-

3In fact the theorem below was at first proved independently from Genest and Schervish.

I am indebted to Carl Wagner for pointing me to the earlier result.
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luminate how both pooling and updating might deal with dependencies among

multiple expert opinions.4

The theorem below is restricted to two agents and to linear pooling. This

will help to focus attention on the conceptual links between pooling and voting.

As above, we represent the opinions of Quassim and Raquel with the events

pqq and prq. It is given in the setup that Quassim is going to reveal his belief

regarding S, so the events pqq form a partition. The theorem below establishes

that we can always find likelihoods PR(pqq|S ∩ prq) such that, after updating

on pqq, Raquel’s belief in S equals the result of pooling. In other words, linearly

pooling r and q with weight w can always be represented by a Bayesian update.

theorem (after Genest and Schervish 1985)

Let PR(S) = PR(S|prq) = r, PQ(S|prq) = q, and let P ′R(S) = r′ = wq+(1−w)r

be the result of linearly pooling these opinions. If we have

PR(pqq|S ∩ prq) = g(q, r)
(

1− w +
w

r
q
)

(3)

PR(pqq|¬S ∩ prq) = g(q, r)

(
1 +

r

1− r
w − w

1− r
q

)
(4)

where g(q, r) and its integral G(q, r) are such that∫ 1

0

g(q, r)dq = 1 (5)∫ 1

0

G(q, r)dq = 1− r (6)

then the Bayesian update on pqq is identical to the update by linear pooling,

PR(S|pqq ∩ prq) = r′ = P ′R(S).

proof

To derive equations (3) and (4) we write Bayes’ theorem in the following way:

PR(pqq|S ∩ prq) = PR(pqq|prq) PR(S|pqq ∩ prq)
PR(S|prq)

(7)

Notice that in the update of equation (2), we derive the posterior of S from its

prior and its likelihood for the event pqq. Here we are deriving the likelihood

4For an illuminating conceptual take on these issues, see Bradley (2006, section 4).
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from the prior and the posterior, PR(S|prq) = r and PR(S|pqq ∩ prq) = wq +

(1 − w)r respectively. Substituting these formulas in equation (7) we obtain

equation (3):

PR(pqq|S ∩ prq) = g(q, r)
(

1− w +
w

r
q
)
,

where we have abbreviated PR(pqq|prq) = g(q, r). Equation (4) can be derived

in a similar manner.

Our next task is to derive the constraints on the function g(q, r), as given in

equations (5) and (6). Because the events pqq form a partition, we must have

that ∫ 1

0

PR(pqq|prq)dq =

∫ 1

0

g(q, r)dq = 1.

This is constraint (5). Furthermore, by the law of total probability we have

PR(S|prq) =

∫ 1

0

PR(pqq|prq)PR(S|pqq ∩ prq) dq (8)

or equivalently,

r =

∫ 1

0

g(q, r) (wq + (1− w)r) dq.

Notice that a companion constraint, that can be based on a similar expression

for PR(¬S|prq) = 1 − r, is entailed by the constraint (5) in conjunction with

(8).

We can employ a so-called partial integration to transform equation (8) into

a constraint on g(q, r) alone. Using G(q, r) for the integral of g(q, r), and setting

G(1, r) = 1 and G(0, r) = 0 to satisfy constraint (5), we can write

r =

∫ 1

0

g(q, r) (wq + (1− w)r) dq

= (w + (1− w)r)G(1, r)− (1− w)rG(0, r) −
∫ 1

0

wG(q, r)dq

= (w + r − wr) − w

∫ 1

0

G(q, r)dq.

With some algebra we obtain∫ 1

0

G(q, r)dq = 1− r.

And this is precisely constraint (6). �
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The constraints (5) and (6) still leave a considerable amount of freedom for the

likelihood functions of equations (3) and (4). A uniform distribution cannot

be made to fit but many simple non-negative functions g(q, r) can. Following

Genest and Schervish (1985) and Bonnay and Cozic (2014), the constraint (6)

can also be written as a constraint on the expectation value for q:

r =

∫ 1

0

g(q, r) (wq + (1− w)r) dq

= (1− w)r (G(1, r)−G(0, r)) + w

∫ 1

0

q g(q, r)dq

= (1− w)r + w

∫ 1

0

q g(q, r)dq.

so that ∫ 1

0

q g(q, r)dq = r.

The interpretation is rather natural: in a Bayesian rendering of pooling, Raquel’s

distribution for Quassim’s opinion is centred on her own. And this seems exactly

right. Because she puts some trust in Quassim, any deviation in expectations

would force Raquel to adapt her opinion even before she learns his opinion.

To get a sense of what g(q, r) may look like, notice that Raquel may use a

Beta-distribution centred on r:

PR(pqq|prq) =
Γ(n)

Γ(rn)Γ((1− r)n)
qrn−1(1− q)(1−r)n−1,

where n is a free parameter and the Γ function is an extension of the factorials.

If rn > 1 and (1 − r)n > 1, the distribution PR(pqq|prq) shows a peak at r,

expressing that Raquel thinks it more probable that Quassim’s opinion sits close

to her own, while assigning decreasing probabilities to Quassim’s opinion being

further removed from hers. Other members from the versatile family of Beta-

distributions can model yet other expectations but of course nothing hinges on

using specifically this family of functions.

If these constraints seem too restrictive, we might consider dropping the

assumption that the events pqq form a partition. Quassim could for instance

return a blank when Raquel asks him for his opinion on S. This allows us to lift
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the constraints (5) and (6) from the Bayesian reconstruction of pooling. Rather

than satisfying those, we can tweak the probability assignments for returning a

blank to make updating match pooling. For example, we may choose g(q, r) = 1

and obtain linear likelihood functions that are more easy to interpret. However,

the standard story on pooling is that agents do not return blanks and reveal

real-valued degrees of belief.

With the Bayesian underpinning of pooling firmly in place, we now turn

to its possible uses. First off, the result may serve to justify pooling as a

method of belief change. There are well-known defenses of the Bayesian model

of belief change, and because pooling fits this model, it may fall back on these

defenses. Furthermore, we may motivate applications of opinion pooling by

pointing to the probabilistic assumptions that the Bayesian model brings out.

If those assumptions are met, then arguably pooling is warranted. And this

is a useful conclusion for agents with limited computational resources: under

specific constraints pooling can be taken as an epistemic shortcut.

Perhaps it is not very surprising that there is a representation of pooling in

terms of Bayesian updates. There are several results showing the wide range

of belief update operations that can be subsumed under a Bayesian header (cf.

van Fraassen, 1989). Specifically pooling may be linked to well-known results on

the reflection principle, in virtue of their formal similarity: setting one’s opinion

to a linear combination of opinions of others is much like setting one’s prior

opinion to a linear combination of possible posterior opinions.5 However, our

concern here is not with the formal link between opinion pooling and Bayesian

updating itself. This paper investigates how this link may be employed to link

pooling and voting, and thus help to interpret aspects of these models of social

deliberation.

More in particular, the following sections will offer an interpretation of the

notion of trust, which is central to pooling, in terms of beliefs. For a general

impression, consider the role of the trust w in the likelihood functions (3) and

(4), which determine how Quassim’s opinion impacts on Raquel’s. If Raquel

5I owe this suggestion to Richard Bradley.
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puts some trust in Quassim and hence chooses w > 0, then she finds it more

probable that Quassim will report a degree of belief in S higher than her own

if indeed S is true, than if S is false. Similarly, she finds it more probable that

Quassim reports a degree of belief in S lower than her own if indeed S is false,

than if S is true. The trust parameter thus relates to the ability that Raquel

takes Quassim to have in determining the truth or falsity of S.

3 Truth-conduciveness in voting

In what follows we briefly review Condorcet’s result and a Bayesian refor-

mulation of it. This will bring out a particular aspect, namely the truth-

conduciveness of jurors, that is crucial for the adequacy of a jury verdict. In

the following section it is then shown that the trust parameter w in pooling can

be equated with a parameter that measures truth-conduciveness.

Consider the setting of the original jury theorem of Condorcet ([omitted

for blind reviewing]). Jurors are asked for a categorical vote on a proposition

S. It is assumed that jurors are competent, meaning that if S is true, they

are more likely to vote in support of it while if S is false they are more likely

to vote against. We denote the event of voting for or against S by V and ¬V

respectively. This can be expressed by the values of two competence parameters,

cS and c¬S :

cS = P (V |S) > 1
2
,

c¬S = P (¬V |¬S) > 1
2
.

In words, the assumption of juror competence is that they are better than a fair

coin in determining the truth or falsity of S. The original result of Condorcet is

that for competent jurors, the majority vote of the jury will tend to the truth

with increasing jury size. More precisely, if S is true then for ever larger juries

the probability that more jurors vote for S than against will tend to 1, and

similarly for S being false. The theorem is essentially a version of the law of

large numbers.
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There is also a Bayesian version of Condorcet’s result, to the effect that the

posterior probability of the true proposition, either S or ¬S, will tend to 1 when

updating on ever more juror votes. Importantly, to arrive at this result we need

not assume that the jurors are competent, i.e., that they perform better than a

fair coin. The assumption needed here is that the jurors are truth-conducive: if

S is true it is more probable that jurors cast a vote for S than that they cast

a vote against it, and conversely if S is false. Formally, we may express this

requirement as follows:

∆ = P (V |S)− P (V |¬S) = cS + c¬S − 1 > 0 (9)

where ∆ is defined as a measure of truth-conduciveness. Notice that this re-

quirement entails the truth-conduciveness for ¬S as well because

P (¬V |¬S)− P (¬V |S) = P (V |S)− P (V |¬S).

The point of truth-conduciveness is that a vote V will boost the probability

of S, while a vote ¬V will boost the probability of ¬S. It may still be that a

vote V boosts the probability of S much less than that a vote ¬V boosts the

probability of ¬S. One of the two competences cS and c¬S might thereby drop

below half.6

With the notion of truth-conduciveness in place, we can now turn to the

central result of this paper, concerning the relation between voting and opinion

pooling. We approach this relation by representing voting in terms of the more

fine-grained Bayesian model which was set up to represent pooling. This will

lead to an expression for the truth-conduciveness of voters in which the trust

parameter of pooling is the dominant term.

6See footnote 1 of [omitted for blind reviewing] for a general expression of what super-

majority is needed to get the required limiting behaviour, relative to the values of cS and

c¬S .
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4 Trust as truth-conduciveness

To capture voting in the more fine-grained Bayesian model, we view Quassim

as the sole member of a jury that advises Raquel. But rather than taking his

categorical vote at face value, we now frame Quassim’s vote in terms of the

probabilistic opinions that he might have. That is, we make a more fine-grained

model of the opinion that Quassim is expressing, in order to seek a connection

with the Bayesian model of pooling.

Specifically, we identify the votes V and ¬V with distinct events in the

Bayesian model of pooling. Recall that we assumed that Quassim knows Ra-

quel’s opinion, PQ(S|prq) = q. Accordingly we may suppose that Quassim

votes in favour or against S with an eye on the effect that this has on Raquel’s

degree of belief. More precisely, he votes in favour if his opinion is higher than

hers, and against if his degree of belief is lower. We denote these two events by

pq > rq and pq < rq respectively, and we stipulate that the events V and ¬V

run parallel to pq > rq and pq < rq.

The central result of this paper employs this parallel. The idea is that Raquel

conceives of Quassim’s vote as a shorthand for a range of probabilistic opinions

that he might have. Raquel sees the event V as a shorthand for Quassim ex-

pressing the opinion pq > rq, and similarly for the event ¬V expressing pq < rq.

Raquel then accommodates Quassim’s opinion much like she accommodates a

categorical vote, namely by a Bayesian update. In the remainder of this sec-

tion we investigate what this leads to, if we fill in the details of this update by

means of the Bayesian model of pooling developed above, i.e., by means of the

likelihoods (3) and (4) and the constraints (5) and (6).

Before we work out the details, let us briefly pause and consider the philo-

sophical motivation for representing voting in the more fine-grained Bayesian

model. The parallel between the categorical vote and the more fine-grained ex-

pression of a range of probabilities may be considered insufficiently motivated,

or even somewhat contrived. But remember what the goal of this representation

is: to interpret the trust parameter that is used in pooling in terms of beliefs.
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Now the Bayesian representation of pooling already offers an interpretation of

sorts: it shows up as the slope of the likelihood function. But in what follows,

we will see that the fine-grained Bayesian representation of voting occasions

a far more natural interpretation of the trust parameter. This motivates the

representation of voting just given. We do not need to claim that that the

representation of voting is unique or forced on us in any sense. It suffices that

the representation follows from reasoned choices, and that it offers a particular

voting-related perspective on the Bayesian model of pooling.

We now provide the formal details of the relation between voting and pool-

ing. To fully specify the update that Raquel performs, we need to determine

the distribution PR(pqq|prq), expressing Raquel’s expectations about Quassim’s

opinions. Raquel might choose the following step function:

PR(pqq|prq) =


l if q < εr

h if q > 1− ε(1− r)

0 else.

(10)

where 0 < ε ≤ 1. If we take ε = 1, Raquel distinguishes between Quassim

offering a lower or a higher degree of belief in S, but within these two ranges the

distribution is uniform. For small ε, Raquel takes Quassim to offer a probability

below εr and hence close to zero, or above 1 − ε(1 − r) and hence close to

one. A distribution with small ε expresses that Quassim’s opinions, though

probabilistic, resemble categorical votes.

If we want the Bayesian update of Raquel to emulate pooling, the distribu-

tion PR(pqq|prq) must comply to the constraints (5) and (6). Solving for these

constraints yields:

l =
1− r
εr

, h =
r

ε(1− r)
(11)

Notice that this entails

PR(pq < rq|prq)dq = 1− r. (12)

The constraints entail that Raquel finds it more probable that Quassim will

report a value q that is lower than her opinion when she is herself assigning a
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low probability r to S. This is not specific for the distribution above. To comply

to pooling, Raquel must always expect that Quassim’s opinions will reinforce

what she is already thinking about S.

Together with the likelihoods of equations (3) and (4), the step function

(11) offers a Bayesian representation of Raquel’s pooling operation, if she were

given a sharp probability by Quassim. However, Quassim merely offers his

opinion in the form of a categorical vote, which is then interpreted as either

of the events pq > rq or pq < rq. Fortunately the Bayesian representation still

allows us to compute an updated probability for Raquel, using the marginal

likelihoods of S and ¬S for the event pq > rq, to wit, P (pq > rq|S ∩ prq) and

P (pq > rq|¬S ∩ prq), as well as the marginal likelihoods for the event pq < rq.

On the basis of the foregoing we now determine these marginal likelihoods.

For the event pq > rq we find

P (pq > rq|S ∩ prq) = (1− w)r + w − (1− r)w ε
2
,

P (pq > rq|¬S ∩ prq) = (1− w)r + rw
ε

2
.

Similar equations can of course be derived for the event pq < rq. Now observe

that

P (pq > rq|S ∩ prq)− P (pq > rq|¬S ∩ prq) = w
(

1− ε

2

)
(13)

and equivalently for pq < rq. In words, we find that a certain measure for the

impact that the event pq > rq has on Raquel’s opinion of S and ¬S, namely

the difference of the likelihoods for these events, is proportional to the trust

parameter. And if we take the limit of ε to zero, this proportionality is replaced

by an equality. We have thus arrived at a clean expression of the trust parameter

of pooling in terms of beliefs.

Recall that in the context of voting, the truth-conduciveness of equation (9)

showed up as a crucial quantity. It will be clear that equation (13), pertaining to

trust in the context of a Bayesian reconstruction of pooling, shows similarity to

equation (9) concerning truth-conduciveness. Drawing on the parallel between

votes V and ¬V on the one hand, and opinions pq > rq and pq < rq on the
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other, we can talk about truth-conduciveness in the context of pooling as well:

∆ = P (pq > rq|S ∩ prq)− P (pq > rq|¬S ∩ prq).

In words, we label the difference between the likelihoods of S and ¬S for the

event pq > rq as the truth-conduciveness that Raquel attributes to Quassim.

Hence we have ∆ = w
(
1− ε

2

)
. For diminishing values of ε, the match between

truth-conduciveness and trust becomes exact:

∆ = w (14)

That is to say, we can think of the trust parameter w as a measure of the truth-

conduciveness that Raquel attributes to Quassim. When viewing a vote as a

coarse-grained version of pooling, the trust parameter from pooling shows up

as the truth-conduciveness from voting.

Of course we can contest the result of equation (14), by challenging specific

choices that were made in forging the link between the models of voting and

pooling. For starters, the choice of a step function as distribution over pqq

seems rather arbitrary. But note that the exact shape of the distribution looses

import if we take ever smaller values of ε. In fact in the limit, when taking more

and more probability mass towards the extremes, nothing hinges on the exact

shape of the distribution.

Another main criticism was already touched on in the foregoing: the rep-

resentation of votes in terms of the Bayesian model of pooling is insufficiently

motivated. In addition to what was argued above, we can now point to charac-

teristics of the model for small ε. There are well-known ties between probabilistic

and categorical belief that employ the so-called Lockean thesis: above a certain

threshold for the probability, categorical belief is warranted. By choosing ε small

enough Quassim’s opinion will pass the thresholds, so that categorical votes V

and ¬V are indeed adequate representations. For small ε, it makes sense to

draw a parallel between V and the event pq > 1− ε(1− r)q, and between ¬V

and pq < εrq. It seems natural to represent a categorical voter in terms of the

distribution of equation (10) if we choose small values of ε.
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There may well be other criticism of how we forged the link between voting

and pooling. But the general message can be appreciated even if some of the

details of the link are deemed problematic. In a Bayesian model of how an agent

accommodates the trustworthy opinion of someone else, as for example in the

setting of Condorcet, the likelihoods express a notion of truth-conduciveness. If

we construct a Bayesian model of pooling, the trust parameter shows up as a

characterstic of the likelihood functions in, by and large, the same way. Certain

expressions involving the trust parameter can be interpreted as expressing this

truth-conduciveness, and this helps us to think about the trust parameter in a

way that relates to beliefs.

5 Conclusions

What precisely is gained now that we have a formal relation between voting,

pooling, and Bayesian updating? The main result is that the trust parameter

from pooling can be given a natural interpretation by means of the Bayesian

model, and by means of locating categorical voting in it. This seems a gain

from the point of view of representational economy. As intimated earlier, it

is odd that a model of belief change would employ a trust parameter that is

not itself representable in terms of the beliefs that are being modelled. The

trust should somehow be located among those beliefs. This paper shows that

the Bayesian representation of pooling allows us to identify trust with intuitive

epistemic notions.

Research that exploits the Bayesian representation of pooling does not stop

here. There is a vast body of literature that can fruitfully be related to pooling

because pooling has been given a Bayesian reconstruction. Much of this liter-

ature goes under the headers of interactive epistemology and epistemic game

theory (Brandenburger, 2007; Pacuit and Roy, 2014). The present paper has

made only a modest start with that. Interactive epistemology was developed

mostly in the context of game theory, to model players of a game who reason

about each others opinions. It seems that the relevance of this literature has
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not been fully appreciated by all philosophers working on social epistemology.

I suggest that the current result may stimulate research at the intersection of

these disciplines.

One natural application of the foregoing concerns a debate in traditional

epistemology. Since a number of years epistemologists have been interested in

disagreement among peers (Christensen and Lackey, 2010). With some excep-

tions (e.g., Russell et al, 2015), this debate has relatively few points of contact

with the literature in statistics and epistemic game theory. The current paper

may serve a constructive role in facilitating more extensive contact. By way

of example, an influential view on how to resolve disagreement employs the

strategy of splitting-the-difference: when two agents have different degrees of

belief about some proposition S, then they can resolve their disagreement by

both adopting a, possibly weighted, average of the two degrees, i.e., by a pool-

ing operation. Many have wondered what may justify this intuitive response

(Jehle and Fitelson, 2009). The Bayesian reconstruction of pooling may provide

such a justification, by stating precisely what beliefs the agents must have for

splitting-the-difference to be probabilistically coherent.

A possibly more exciting application concerns the existing models for de-

scribing deliberation and consensus formation. DeGroot (1974) and Lehrer and

Wagner (1981) describe conditions under which iterated pooling leads to con-

sensus. It seems rather natural that such results can be related to Aumann’s

well-known agreement theorem, and Aumann himself indeed thought of his re-

sult as providing an underpinning for iterated pooling (Aumann, 1976, p. 1238).

The result of Aumann is static, i.e., it does not mention belief change. But Gen-

neakoplos and Polemarchakis (1982) offer a dynamic formulation of the same

result, and [omitted for blind reviewing] provide the construction of a prior

probability assignment such that repeated Bayesian updates on the revealed

opinions of others replicates the consensus formation process effected by iter-

ated pooling. That result relies in part on the results of this paper. In fact the

current results were arrived at in the context of work on the relation between

Aumann and DeGroot.
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Once a relation has been established between the agreement theorem and

consensus formation through repeated pooling, this may invite further research

into pooling as a form of information sharing, and into failures of consensus

as resulting from differences in the priors of different agents. In general, the

fact that pooling is a short-hand for a more fine-grained Bayesian update may

help to mitigate doubts over the nature and justification of this procedure, and

illuminate the presuppositions of iterated opinion pooling as a dynamics for

social deliberation.
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