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Abstract We present a conservative extension of a Bayesian account of con-
firmation that can deal with the problem of old evidence and new theories. So-
called open-minded Bayesianism challenges the assumption—implicit in stan-
dard Bayesianism—that the correct empirical hypothesis is among the ones
currently under consideration. It requires the inclusion of a catch-all hypoth-
esis, which is characterized by means of sets of probability assignments. Upon
the introduction of a new theory, the former catch-all is decomposed into a
new empirical hypothesis and a new catch-all. As will be seen, this motivates
a second update rule, besides Bayes’ rule, for updating probabilities in light of
a new theory. This rule conserves probability ratios among the old hypotheses.
This framework allows for old evidence to confirm a new hypothesis due to a
shift in the theoretical context. The result is a version of Bayesianism that, in
the words of Earman, “keep[s] an open mind, but not so open that your brain
falls out.”

Keywords Bayesianism · Confirmation · Old Evidence Problem · Theory
Change · Catch-all Hypothesis · Formal Epistemology

1 Introduction

Bayesianism offers a way to revise our degrees of belief in light of new evi-
dence. However, it does not capture all the relevant belief dynamics: in the
process of evaluating our evidence, we may want to consider a new theory,
and so reconsider some of the assumptions on which all of our former degrees
of belief co-depend. Standard forms of Bayesianism do not foresee the option
of adopting a new theory in its formalism, so it seems that in such a case
we have to start from scratch: assigning priors to the empirical hypotheses
belonging to the new theories, and revising the degrees of belief in the face
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of further evidence. In the current paper, we propose a conservative exten-
sion of Bayesianism that is able to encompass theory change, while retaining
comparative aspects of probabilities that have been computed prior to this
change.

1.1 Example: food inspector raising a new hypothesis

Throughout the paper, especially the more technical section 3, it may be help-
ful to keep in mind a simple example. For this purpose, we offer the following
scenario (inspired by an example from Romeijn, 2005):

A food safety inspector wants to determine whether or not a restaurant is
taking the legally required precautions against food poisoning. She enters the
restaurant anonymously and orders a number of dishes. She uses food testing
strips to determine for each of the dishes whether or not they are infected by
a particularly harmful strain of Salmonella. She assumes that these tests work
perfectly, interpreting a positive test result as a Salmonella-infected dish and
a negative result as an uninfected one. She also assumes that in kitchens that
implement the precautionary practices each dish has a probability of 1% of
being infected, whereas this probability rises to 20% in kitchens that do not
implement the practices. She orders five dishes from the kitchen and they all
turn out to be infected. This prompts her to consider a third hypothesis: the
test strips may have been contaminated, rendering all test results positive,
irrespective of whether the dish is infected or not.

After considering this third option, the inspector will not order any addi-
tional dishes. Instead, she will take the old evidence (that five dishes out of
five appeared to be infected) to confirm the new theory (that the test strips
were infected) and it seems reasonable enough for her to do so. Our challenge
is how to represent this positive confirmation of the old evidence for the new
theory in (an extension of) the Bayesian framework.

1.2 Old evidence and new theories

The confirmation-theoretic model of this paper sheds new light on the prob-
lem of old evidence and new theories. This problem for Bayesianism was first
identified by Clark Glymour (1980). The problem arises from the discrepancy
between descriptive, historical examples, in which old evidence does seem to
lend positive confirmation to new theories, and the normative, Bayesian po-
sition, in which old evidence cannot confirm new theories. In particular, by
updating via Bayes’ rule, taking into account evidence that has already been
conditioned upon cannot change the probabilities. And since all expressions
of confirmation hinge on differences in probabilities, it seems that old evi-
dence cannot lead to confirmation of new theories. Many later authors have
called Glymour’s problem simply “the problem of old evidence”. A minority of
philosophers has stressed the importance of the other side of the problem: “the
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problem of new theories” (for example Earman, 1992). In what follows, we
will clarify that both problems can be resolved in open-minded Bayesianism.

Observe that new theories pose a problem for Bayesianism in itself, even
outside the context of confirmation.1 In fact, without a way of introducing
a new theory into the domain of an agent’s degrees of belief, its prior and
posterior degrees of belief simply do not show up in the model. In effect, as we
will explain in section 3.3.2, those probabilities are set to zero. Either way, for
want of a way to express non-zero probability assignments to a new theory,
the problem of old evidence does not even occur—or it is worse than the usual
presentations suggest. Therefore, we analyze the problem of new theories first
and offer a conservative extension of Bayesianism to deal with this problem:
a framework for open-minded Bayesianism. In the course of doing so, it will
become clear what is missing to deal adequately with old evidence and to
determine the confirmation it may give to a new theory. In particular, our
model is compatible with Glymour’s observation that in important historical
examples old evidence does offer positive confirmation to new theories.

Some proposals for addressing the problem of old evidence (in particular
that of Garber, 1983)2 observe that the crucial content that is being learned
and that lends positive confirmation to a new theory, is not the old evidence
itself, but rather the fact that this new theory implies or explains the old evi-
dence. Recently, Sprenger (2014) has proposed a new solution along these lines.
We are sympathetic to this approach.3 However, Sprenger’s results presuppose
that the old evidence, the new theory and the relevant relation between the
two are all elements of some algebra (see his Theorems 1 and 2). As such,
this approach does not address a more fundamental question: how can a new
theory (or a new relation between a theory and a piece of evidence) be incor-
porated in the algebra? This is the problem of new theories, which is especially
pressing in the presence of old evidence, that we tackle here.

1.3 Bayesian confirmation theory

Since the problem of old evidence and new theories is ultimately a problem
concerning Bayesian confirmation, we should first be clear on how we intend to
measure confirmation of a hypothesis by a body of evidence. This is in itself an
interesting problem in formal epistemology, and some reactions to the problem
of old evidence are in fact proposals for a new measure of confirmation (e.g.,
Christensen, 1999, Joyce, 1999). In qualitative terms, a piece of evidence E
lends positive confirmation to a theory T if the posterior P (T | E) exceeds
the prior P (T ). To turn this into a quantitative notion, different measures of

1 This has often been noted in the literature. See for example Gillies (2001).
2 See for instance Easwaran (2011) for a recent overview of approaches to the problem of

old evidence.
3 We also agree with Sprenger (2014) that, if we intend to capture objective confirmation

in a scientific context, the relevant credence function belongs to an abstract agent repre-
senting any unbiased scientist in the relevant context, rather than a particular historical
person.
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confirmation have been proposed: for instance, the difference or (the log of)
the ratio of posterior and prior.

However, our current investigation focuses on how to deal with new the-
ories, which is a problem that besets Bayesianism more broadly, and quite
independently of the chosen confirmation measure. Therefore, we will not opt
for any such measure, and focus our attention on what they supervene on: the
probability assignment over hypotheses themselves. Nothing in our exposition
hinges on the precise measure of confirmation that may be grafted onto the
probabilistic models.

1.4 The catch-all hypothesis

Our proposal of open-minded Bayesianism relies on the use of a catch-all
hypothesis: given a set of explicit hypotheses, we introduce an additional hy-
pothesis that is the negation of the union of the previous hypotheses. The
possibility of currently unexplored theoretical alternatives is relevant not only
for the formal framework of Bayesian confirmation theory, but also for philos-
ophy of science in general. See for instance the discussion on the pessimistic
meta-induction by Sklar (1981), who speaks of “unborn hypotheses”, and by
Stanford (2006), who uses the term “unconceived alternatives”.

Shimony (1970) discussed the idea of a catch-all hypothesis in the context
of his “tempered personalist” account of probability: he suggested it as a way
to represent open-mindedness, which he regarded as a tempering condition
to obtain a weakened form of Bayesianism adequate for scientific inference.
Shimony (1970, p. 96) suggested not to assign numerical weights (priors) to
the catch-all (in contrast to the other hypotheses).

Also Earman (1992) discussed the use of a catch-all to make room for later
theory change. According to Earman (1992, p. 196), new theories are “shaven
off” from the catch-all hypothesis, which thus “serves as a well for initial prob-
abilities for as yet unborn theories, and the actual introduction of new theories
results only in drawing upon this well without disturbing the probabilities of
previously formulated theories.” However, he is not satisfied by the proposal
of shaving off from a catch-all; according to Earman (1992, pp. 195–196) it
leads to the assignment of successively smaller probabilities to later theories
(cf. Romeijn, 2004), and shaving off does not give an adequate description of
scientific revolutions (in the Kuhnian sense) that involve radically new the-
ories. These reservations do not apply to the way in which we formalize the
notion of a catch-all, as we will explain in section 4.

1.5 Assigning open-minded probabilities

When Bayesian ideas are applied within the sciences, the domain of the prob-
ability function tends to have a small scope: it is used to compare parametric
models that apply to a single, well-delineated target system. In philosophy,
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however, we often speak as if the domain of the probability function captures
every thinkable thought. In particular, in philosophy of science and Bayesian
confirmation theory, the probability function assigns values to scientific theo-
ries.

If all later changes to the probability assignment are to be due to condi-
tioning, as standard forms of Bayesianism prescribe, we have to be able to
specify the domain in such a way as to include all possible scientific theories,
including those that are yet to be developed. Nevertheless, it may happen
that genuinely new scientific theories do emerge. It is unclear how those can
be incorporated in a domain that has to be defined upfront.

In section 2, we will make explicit what the domain of the probability
function is on the standard account. Since probability functions assign values
to scientific theories as well as to particular pieces of evidence, we have to define
a domain that can represent all these objects, even though they are of very
different kinds. Specifying this domain provides us with a good opportunity to
formalize the notion of the catch-all hypothesis, and how it is used to change
the domain of the probability function.

In section 3, we will introduce two forms of open-minded Bayesianism,
called vocal and silent, which both employ a catch-all hypothesis. Both are
based on the idea that we can remain open-minded about our probabilities
by employing sets of probability functions rather than single functions. But
both approach the (incomplete) assignment of probabilities in slightly different
ways. Also the rule for updating on new theories takes a different form in both
contexts.

In section 4, we evaluate and compare the proposals.

2 Bayesianism and the catch-all hypothesis

Upon the introduction of a new theory, the domain of the probability function
may change. Before we decide how we will capture this change, let us first
specify the domain for the standard form of Bayesianism. We will start this
investigation by considering Bayes’ theorem. This set-up will also prove fruit-
ful to formalize the notions of hypothesis, evidence, and the catch-all, which
prepares us for the subsequent treatment of domain changes and associated
changes in probability.

2.1 Domain of the probability function

Bayes’ theorem is often presented as follows:

P (H | E) =
P (E | H) P (H)

P (E)
,
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where H is a hypothesis and E is a piece of evidence. But what is P? This
function symbol appears four times in the equation, but can it be interpreted
in the same way in al four appearances?4

We maintain that the four occurrences of P in Bayes’ theorem do refer to
the same probability function with the same domain. We take probability to
be a one-place function, and we employ the standard definition of conditional
probability to make sense of posterior and likelihood. As the common domain,
we consider an algebra spanned by the Cartesian product of a set of elemen-
tary hypotheses, Θ, and a sample space, Ω (more on these in the following
subsections):

A(Θ ×Ω).

To be precise, we interpret the argument H of the prior and the posterior
as shorthand for H × Ω and the argument E of the marginal likelihood as
shorthand for Θ × E. The interpretation of these elements of the algebra A
remains as before.

Dynamics: time stamps In Bayesian confirmation theory, we model the ra-
tional degrees of belief of an agent by a probability function. To capture the
dynamics of the agent’s degrees of belief, we consider a succession of proba-
bility functions, indexed by a time stamp: Pt is the probability function that
represents the rational degrees of belief of the agent at time t. In standard
Bayesianism, these belief states are linked by Bayes’ rule, as detailed below.

2.2 Evidence and updating

Before we can start applying probability theory, we have to fix a particular
sample space (or set of atomic events), Ω, which is chosen such that any result
of a measurement can be represented as a subset of Ω. The sample space can
be a Cartesian product of sets, which allows us to represent very different types
of empirical data.5 We represent (actual and hypothetical) pieces of evidence
as elements of an algebra on the sample space, A(Ω). This set is usually called
the event space, but in the current context it is better to call it the ‘evidence
space’.

4 Some introductory texts, such as Hogg (2012, p. 4) and Bertsekas and Tsitsiklis (2008)
even argue that we are dealing with four different functions and suggest the use of subscripts
to distinguish between them. But we follow a different approach.

5 In the discrete case, we may think of the sample space as the set of infinitely long
sequences (ranging over temporal instants or individuals) of the values of a property (from
a discrete set S) or a vector of properties (each from a discrete set Si): Ω = SI , with S the
possible values of a certain property or a Cartesian product set of such value sets S =

∏
i Si

and I the infinite index set (e.g., N); see for instance Romeijn (2011, section 2). Considering
the algebra spanned by the cylindrical subsets of this sample space allows us to represent
measurements as initial segments of infinitely long streams of data.
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Dynamics: Bayes’ rule If an agent with probability function Pt=n receives
evidence E between t = n and t = n + 1, then Bayes’ rule prescribes that
the agent has to adopt a new probability function Pt=n+1 that is equal to the
posterior of the agent’s previous probability function: Pt=n+1(·) = Pt=n(· | E),
which can be computed via Bayes’ theorem.

2.3 Explicit hypotheses and the catch-all

In the Bayesian framework, probability functions range over evidence and hy-
potheses. Hence, in addition to specifying Ω, we need to define a set of hy-
potheses, H, and an algebra over this set, A(H). The hypotheses are only
specified up to their empirical content. The scientific theories that motivate
them are not brought into view. The way to characterize an empirical hy-
pothesis, H, is by specifying a likelihood function P (· | H) ranging over the
evidence space, A(Ω). Because the empirical content of hypotheses is spelled
out in terms of probability functions over the data, the hypotheses are called
statistical.6

Under a hypothesis we may also subsume an entire family (i.e., a set) of
likelihood functions, which have the same form except for a different value of a
parameter (or vector of parameters).7 Henceforth, we will treat all hypotheses
as sets of probability functions on the domain A(Ω). Hypotheses that corre-
spond with singleton sets will be called elementary hypotheses, others will be
called composite. Observe that the hypotheses in H need not be elementary
in this sense.

Like the elementary events in Ω, the hypotheses in H need to be mutually
exclusive and jointly exhaustive. However, merely exhausting the union of the
hypotheses in H, which is the set of hypotheses that are being considered
at a given point in time, may not suffice. In particular, it does not suffice
once a new hypothesis emerges, because in that case we want to involve a
hypothesis outside

∪
H∈H H. As indicated before, if we do not offer a domain

in which possibilities outside H can be denoted, we cannot begin to formulate
the problem of old evidence and new theories.

Our first and important deviation from what we call ‘standard Bayesian-
ism’ is that we give the probability function a domain that includes hypotheses
outside the set that is currently under consideration. We propose that the hy-
potheses ought to be mutually exclusive and jointly exhaustive of the vast set
of all probability functions on the evidence space A(Ω):8

Θ = {P : A(Ω) → [0, 1] | P is a probability function}.
6 Using this terminology, this article deals with the problem of new hypotheses, rather

than the problem of new theories.
7 See for instance Romeijn (2011, section 7). In such a case, it is more common to speak

of a statistical model or a theory, but we stick to the term ‘hypothesis’, to avoid confusion
with scientific theories.

8 It would be more accurate to label the set as ΘA(Ω), but we omit the subscript to keep
the notation light.
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Then, we can represent an empirical, or statistical, hypothesis as a non-empty
set of probability functions on A(Ω); hypotheses are thus elements of an alge-
bra on Θ.

Let us consider a collection of N+1 hypotheses (with N a positive integer)
that are mutually exclusive and jointly exhaustive: this partition of Θ contains
N explicitly formulated hypotheses, H0, . . . , HN−1, and one catch-all, ΘN . By
an ‘explicitly formulated’ hypothesis, Hi, we mean an empirical hypothesis
that is produced by a scientific theory. We do not discuss in detail the scientific
theories themselves, or even how they lead to statistical hypotheses.9

We will denote the set of explicitly formulated hypotheses (previously in-
dicated by H) by

TN = {Hi | i ∈ {0, . . . , N − 1}} .

TN represents the ‘theoretical context’ against which hypotheses are being
considered. We will denote the union of the hypotheses in TN by:

ΘN =
N−1∪
i=0

Hi.

Hence, TN is a partition of ΘN . ΘN is the subset of Θ that is currently being
covered by some scientific theory. The catch-all, ΘN , is the complement of ΘN

within Θ (so, TN ∪ {ΘN} is a partition of Θ): this hypothesis is the set of
all the probability functions that are not produced by any known scientific
theory. Whereas the other hypotheses come with a—possibly very intricate—
theoretical background story, the catch-all ΘN has no content other than “none
of the explicitly formulated hypotheses”. So, ΘN is the set Θ \

∪N−1
i=0 Hi and

that is all that can be said about it. In the same vein, we cannot say anything
about the probabilities that the catch-all hypothesis assigns to the evidence.

Dynamics: shaving off In the previous subsection, we have seen that the in-
corporation of evidence leads to an update of the probability function governed
by Bayes’ rule. Standard Bayesianism lacks an analogous procedure for revis-
ing the probability function in light of a new hypothesis. We will now discuss
how the presence of the catch-all allows us to represent the dynamics of the set
of hypotheses. This prepares us for the proposal of open-minded Bayesianism
in the next section.

After a new scientific theory has been developed, the statistical hypoth-
esis it produces may be added to the partition of Θ by “shaving off” from
the catch-all (by the terminology of Earman, 1992, p. 196). At this point in
time, the former catch-all may be decomposed into an additional explicitly

9 It is clear that an indeterministic theory can generate statistical predictions about mea-
surable quantities. In the case of deterministic theories, such as Newtonian mechanics, it
may be less clear how they lead to hypotheses that are expressed in terms of a probabil-
ity assignment. However, when we combine such a theory with measured values for masses,
velocities, etc. the associated measurement uncertainty can be represented in terms of proba-
bility distributions, which in turn leads to statistical predictions concerning other measurable
quantities.
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formulated hypothesis HN (disjoint from the earlier hypotheses) and a new
(smaller) catch-all, ΘN+1. So, the algebra on Θ × Ω changes. Typically, this
will happen because the evidence obtains a very low probability according to
the hypotheses currently under consideration, i.e., P (E|Hi) is very small for
every i. A principled decision to introduce a new theory may be based on the
computation of a model score, or on the application of a model selection tool.
But such scores and tools fall outside the scope of the present paper. The
procedure for deciding to introduce a new theory is not intended to be a part
of our model.

2.4 Summary of key ideas

We briefly recapitulate our approach so far and our use of the following terms:
scientific theory, statistical hypothesis, sample space, evidence, and catch-all.

A scientific theory together with background assumptions produces an em-
pirical, or statistical, hypothesis. (How this happens requires engaging with the
details of a scientific theory, which falls outside the scope of our current frame-
work.) Such an empirical or statistical hypothesis is a set, possibly a singleton,
of probability functions. In order to compare hypotheses produced by different
theories in the light of a common body of empirical data (and thus to com-
pare their measures of confirmation or evidential support), their probability
functions need to have a common domain. This domain is called the evidence
space: it is an algebra on a sample space (which may be a Cartesian prod-
uct set to allow for the representation of mutually independent measurable
quantities).

The union of all statistical hypotheses produced by the currently available
scientific theories (ΘN ) does not exhaust the set of all probability functions on
the evidence space (Θ). The complement of the former set relative to the latter
set is called the catch-all hypothesis (ΘN ): unlike the other hypotheses, it is
not produced by a scientific theory, but rather it results from a meta-theory.
The catch-all hypothesis is included to express that many other hypotheses
are conceivable, each associated with a probability assignment or a set of such
assignments over the evidence.

With the idea of a catch-all hypothesis in place, we can now turn to a full
specification of open-minded Bayesianism. The inclusion of a catch-all hypoth-
esis makes room for modeling the introduction of new hypotheses, namely by
shaving them off from the catch-all. But this in itself is not sufficient: we still
need to specify how shaving off influences probability assignments over the
hypotheses. This is the task undertaken in the next section.

3 Open-minded probability assignments

In the previous section, we have introduced the formal framework of open-
minded Bayesianism. It is a form of Bayesianism that requires the set of hy-
potheses to include a catch-all hypothesis. In the current section, we develop
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the probability kinematics for open-minded Bayesianism. Two versions will
be considered: vocal and silent. The two approaches suggest slightly different
rules for revising probability functions upon theory change.10

3.1 Vocal and silent open-mindedness

In open-minded Bayesianism, hypotheses are represented as sets of probability
functions. If prior probabilities are assigned to the functions within a set, then
a single marginal probability function can be associated with the set. But
without such a prior probability assignment within the set, the set specifies
so-called imprecise probabilities (see, for instance, Walley, 2000).

We first clarify probability assignments over explicitly formulated hypothe-
ses. In standard Bayesianism, prior probabilities are assigned to the hypothe-
ses, which are all explicitly formulated. We can furthermore assign priors over
the individual probability functions contained within composite hypotheses, if
there are any. We call such a prior within a composite hypothesis a sub-prior.
The use of sub-priors leads to a marginal likelihood function for the compos-
ite hypothesis.11 Upon the receipt of evidence we can update all these priors,
i.e., those over elementary and composite hypotheses as well as those within
composite hypotheses.

Now recall that in open-minded Bayesianism, the space of hypotheses also
contains a catch-all, which is a composite hypothesis encompassing all sta-
tistical hypotheses that are not explicitly specified. In standard Bayesianism,
this catch-all hypothesis is usually not mentioned, and all probability mass
is concentrated on the hypotheses that are formulated explicitly. Within the
framework of open-minded Bayesianism, we will represent this standard form
of Bayesianism by setting the prior of the catch-all hypothesis to zero.12

Let us turn to open-minded Bayesianism itself. To express that we are
prepared to revise our theoretical background, we assign a strictly positive
prior, and perhaps a sub-prior, to the catch-all. However, we agree with Shi-
mony (1970) that it is not sensible to assign any definite value to the prior
of the catch-all. Since the catch-all is not based on a scientific theory, the
usual “arational” considerations (to employ the terminology of Earman, 1992,
p. 197) for assigning it a prior, namely by comparing it to hypotheses produced
by other theories, do not come into play here. Moreover, it seems clear that
the catch-all should give rise to imprecise marginal likelihoods as well, which
suggests that we should refrain from assigning sub-priors to its constituents,

10 See Morey et al (2013) for a less rigourous exposition of open-minded Bayesianism,
which they term humble Bayesianism, in a statistics context. The idea of open-mindedness
is already present in what Lindley (1991, p. 104) called Cromwell’s Rule.
11 In statistics this is known as hierarchical modeling (cf. Gelman et al, 2004). A useful
philosophical angle on this is provided in Henderson et al (2010).
12 If the option of a catch-all simply hasn’t been considered, one might intuitively expect its
probability to be undefined rather than zero. However, if we represent Bayesianism without a
catch-all within an open-minded framework, a probability has to be assigned to the catch-all
and its value has to be zero: see section 3.3.2.
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too. (Recall that the algebra on Θ × Ω cannot pick out any strict subset of
the catch-all.) These considerations lead us to consider two closely connected
forms of open-minded Bayesianism, which both avoid assigning a definite prior
to the catch-all:

Vocal open-minded Bayesianism assigns an indefinite prior and likeli-
hood to the catch-all hypothesis, ΘN . We represent its prior by τN ∈]0, 1[
and its likelihood by xN (· | E). To ensure normalization over all hypotheses
(including the catch-all), the priors assigned to the explicitly formulated
hypotheses are set equal to the value they would have in a model without
a catch-all now multiplied by (1− τN ).

Silent open-minded Bayesianism assigns no prior or likelihood to the
catch-all hypothesis, not even symbolically. To achieve this, all probabilis-
tic statements are conditionalized on the algebra on ΘN (shorthand for
ΘN ×Ω). ΘN represents the union of the hypotheses in the current theo-
retical context. From the viewpoint of the algebra on Θ×Ω, the probability
assignments will be incomplete.

In both cases, we deviate from the standard Bayesian account in that we
give a strictly positive prior to the catch-all, and then allow opinions to be
partially unspecified: vocal open-minded Bayesianism retains the entire al-
gebra but uses symbols without numerical evaluation as placeholders, whereas
silent open-minded Bayesianism restricts the algebra to which probabilities
are assigned (leaving out the catch-all). Formally, the partial specification of a
probability function comes down to specifying the epistemic state of the agent
by means of a set of probability assignments (cf. Halpern, 2003, Haenni et al,
2003).

3.2 A conservative extension of standard Bayesianism

As detailed in the foregoing, we aim to represent probability assignments of an
agent that change over time. An agent’s probability function therefore receives
a time stamp t. We often talk about this as if the probability function changes
over time, but it is more accurate to say that the entire probability function
gets replaced by a different probability function at certain points in time.
Accordingly, subsequent functions need not even have the same domain.

Standard Bayesianism has one way to replace an agent’s probability func-
tion once the agent learns a new piece of evidence: Bayes’ rule. It amounts
to restricting the algebra to those sets that intersect with the evidence just
obtained. Equivalently, it amounts to setting all the probability assignments
outside this domain to zero. If at time t an agent learns evidence E with cer-
tainty, Bayes’ rule amounts to setting Pt=n equal to Pt=n−1(· | E). If E is the
first piece of evidence that the agent learns, this amounts to restricting the
domain from an algebra on Θ ×Ω to an algebra on Θ ×E and redistributing
the probability over the remaining parts of the algebra according to Bayes’
theorem.
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In addition to this, open-minded Bayesianism requires a rule for replacing
an agent’s probability function once the agent learns information of a different
kind: the introduction of a new hypothesis. This amounts to expanding the
algebra to which explicit probability values are assigned (from an algebra on
ΘN ×E to an algebra on ΘN+1×E). Or in other words, it amounts to refining
the algebra on Θ×E. On both views, the new algebra is larger (i.e., it contains
more sets). What is still missing from our framework is a principle for deter-
mining the probability over the larger algebra. In analogy with Bayes’ rule,
one natural conservativity constraint is that the new probability distribution
must respect the old distribution on the preexisting parts of the algebra.

Viewed in this way, our proposal does not introduce any radical departure
from standard Bayesianism. Open-minded Bayesianism respects Bayes’ rule,
but this rule already concerns changes in the algebra, namely reductions. The
only new part is that we require a separate rule for enlarging the algebra
(extending ΘN or refining the partition of Θ) rather than for reducing it
(restricting Ω). The principle that governs this change of the algebra again
satisfies conservativity constraints akin to Bayes’ rule. As detailed below, silent
and vocal open-minded Bayesianism will give a slightly different rendering of
this rule.

3.3 Updating due to a new hypothesis

In this section, we consider how the probability function ought to change upon
the introduction of a new hypothesis after some evidence has been gathered.
We first consider an abstract formulation of a reduction and extension of the
domain, as well as an example of such an episode in the life of our epistemic
agent. After that we consider both versions of open-minded Bayesianism as
developments of the standard Bayesian account.

3.3.1 Reducing and enlarging: setting the stage

The epistemic episode that we aim to model has three stages:

(t = 0) N explicit hypotheses At time t = 0, the theoretical context of the
agent consists of N explicit hypotheses: TN = {H0, . . . , HN−1}. The union
of the hypotheses in TN is ΘN . The catch-all is the complement of the
latter (within Θ): ΘN .

(t = 1) Evidence E At time t = 1, the agent receives evidence, E. The initial
likelihood of obtaining this evidence given any one of the hypotheses Hi

(i ∈ {0, . . . , N − 1}) is a particular value

Pt=0(E | Hi).

(t = 2) New hypothesis HN At time t = 2, a new scientific theory is intro-
duced, which produces a statistical hypothesis that is a subset of ΘN : call
this additional hypothesis HN . The new set of explicit hypotheses is thus
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TN+1 = {H0, . . . , HN−1,HN}. The union of the hypotheses in TN+1 is
ΘN+1 ⊃ ΘN . The new catch-all is the complement of ΘN+1: ΘN+1 ⊂ ΘN .
In other words: in the algebra on Θ, the old catch-all ΘN is replaced by two
disjoint parts,HN and ΘN+1. The new explicit hypothesisHN is shaven-off
from the old catch-all, ΘN , leaving us with a smaller new catch-all, ΘN+1.

Our first question is how the agent ought to revise her probability assignments
at t = 2. The second question is whether the old evidence (E obtained at
t = 1) can lend positive confirmation to the new hypothesis (HN formulated at
t = 2). We will consider these questions in the context of standard Bayesianism
and both forms of open-minded Bayesianism. As will be seen, the probability
assignments that result from open-minded Bayesianism will show the relevant
similarities with those of standard Bayesianism: within ΘN both have the same
proportions among the probabilities for the hypotheses Hi.

Food inspection example While reading our general treatment of the three
stages, it may be helpful to keep in mind the example of section 1.1. In this
example, the number of explicit hypotheses is N = 2. The hypotheses H0

(meaning, informally, “the kitchen is clean”) and H1 (“this kitchen is not
clean”) can be made formal in the following way: the distribution of infections
follows a binomial distribution with bias parameter p0 = 0.01 (H0) or with bias
parameter p1 = 0.2 (H1). The sample space is the same for both hypotheses:
Ω = {0, 1}N, where 0 means that a dish tested as negative and 1 means that
a dish tested as positive. In this case, the evidence takes the form of initial
segments of the sequences in the sample space (cylindrical sets of {0, 1}N).13
At t = 1, the inspector tests five dishes and receives as evidence an initial
segment of five times ‘1’. The initial likelihood of obtaining this evidence E
given hypothesis H0 is

Pt=0(E | H0) = p50 = 10−10,

and given hypothesis H1 the initial likelihood of the evidence is

Pt=0(E | H1) = p51 = 3.2× 10−4.

At t = 2, the inspector considers a new hypothesis, H2, which can be modeled
as a binomial distribution with p2 = 1.

3.3.2 No update rule for standard Bayesianism

Standard Bayesianism works on a fixed algebra on a fixed set ΘN ×Ω. On this
view, none of the probabilities can change due to hypotheses that are external
to ΘN .

13 Since the inspector assumes that the test is perfect, instead of representing the test
results, she may just as well represent these data in terms of dishes being infected or not
(such that 0 means that a dish is not infected and 1 that a dish is infected.) This illustrates
how data and evidence may come apart: we regard evidence as interpreted data, where the
interpretation depends on the sample space that is used in a hypothesis. We do not pursue
this complication here.
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(t = 0) N explicit hypotheses Each explicit hypothesis receives a prior prob-
ability, Pt=0(Hi). If we assume that, initially, the agent is completely unde-
cided with regard to the N hypotheses, she will assign equal priors to them:
Pt=0(Hi) = 1/N (for all i ∈ {0, . . . , N − 1}).14

(t = 1) Evidence E The marginal likelihood of the evidence can be obtained
via the law of total probability:

Pt=0(E) =
N−1∑
j=0

Pt=0(Hj) Pt=0(E | Hj),

which is about 1.6 × 10−4 for the example. The posterior probability of each
hypothesis given the evidence can be obtained by Bayes’ theorem:

Pt=0(Hi | E) =
Pt=0(Hi) Pt=0(E | Hi)

Pt=0(E)
(for all i ∈ {0, . . . , N − 1}).

In the example, this is about 3.1 × 10−7 for H0 and 1 − 3.1 × 10−7 for H1.
According to Bayes’ rule, upon receiving the evidence E, the agent should
replace her probability function by Pt=1 = Pt=0(· | E). In the example, the
inspector should now assign a probability to H1 that is more than three million
times higher than the probability she assigns to H0.

In the example, the confirmation is positive for H1 and negative for H0.

(t = 2) New hypothesis HN Suppose a new hypothesis is formulated: some
HN ∈ ΘN . In terms of the example: the inspector was in a situation in which
she could have received evidence with a much higher initial probability than
that of the evidence she actually received, and we might imagine that this
makes her decide to take the hypothesis H2 on infected test strips into con-
sideration. Now since, in general, the new hypothesis HN is not a part of the
theoretical context, TN , the intersection of HN with ΘN is empty. Hence, the
probability assigned to HN is zero, simply because P (TN ) = 0. And because
the prior of this hypothesis is zero, the confirmation of this hypothesis is zero
as well. In other words, standard Bayesianism simply does not allow us to
represent new hypotheses (other than by the empty set). In this sense, the
problem of old evidence does not even occur: new theories cannot be taken
into account.

3.3.3 Update rule for vocal open-minded Bayesianism

This version of Bayesianism employs a refinable algebra on a fixed set Θ×Ω.
In this view, none of the previous probability assignments change upon theory
change, but new probabilities can be expressed and earlier expressions can be
rewritten accordingly.

14 The assumption of equal priors is not essential for the framework. The agent may assign
different priors, based on considerations that are external to the Bayesian framework, such
as relevant base rates (where the usual reference class problem emerges; cf. Hájek, 2007).
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(t = 0) N explicit hypotheses Each explicit hypothesis receives a prior, Pt=0(Hi)
(and, where appropriate, sub-priors). The proposal of vocal open-mindedness
is to assign an undefined prior, τN ∈ (0, 1), to the catch-all hypothesis, ΘN :

Pt=0(ΘN ) = τN .

No subsets of the catch-all receive (sub-)priors at t = 0, but certain subsets
of the catch-all will receive a prior later on. To ensure normalization over
all hypotheses (including the catch-all), the priors assigned to the explicitly
formulated hypotheses are set equal to the value they had in the model without
a catch-all now multiplied by (1− τN ); for each i ∈ {0, . . . , N − 1}:

Pt=0(Hi) = (1− τN ) Pt=0(Hi | ΘN ).

Although the value of τN is unknown, the N + 1 priors sum to unity. In the
example, we have as prior of the catch-all Pt=0(Θ2) = τ2 and as prior for the
two explicit hypotheses Pt=0(H0) = 1/2× (1− τ2) = Pt=0(H1).

The likelihood functions of the explicit hypotheses Hi are the same as
in the usual model. Regarding the likelihood of the catch-all, the proposal
is to represent it by an undefined weighted average of functions in Θ \ ΘN :
Pt=0(· | ΘN ) = xN (·).

(t = 1) Evidence E The marginal likelihood of the evidence has an additional
term as compared to the standard model:

Pt=0(E) =
N−1∑
j=0

Pt=0(Hj) Pt=0(E | Hj) + τN xN (E).

Due to the presence of undetermined factors associated with the catch-all,
Pt=0(E) cannot be evaluated numerically. As a result, also the updated prob-
ability function, Pt=1(·) = Pt=0(· | E), contains unknown factors. These are
the posteriors for Hi (for all i ∈ {0, . . . , N − 1}):

Pt=0(Hi | E) = Pt=0(Hi) Pt=0(E|Hi)
Pt=0(E)

= (1−τN ) Pt=0(Hi|ΘN ) Pt=0(E|Hi)∑N−1
j=0 (1−τN ) Pt=0(Hj |ΘN ) Pt=0(E|Hj) + τN xN (E)

.

Although this expression cannot be evaluated numerically, some comparative
probability evaluations can be computed since the unknown factors cancel. In
particular, the ratio of two posterior probabilities assigned to explicit hypothe-
ses can still be obtained; for i, j ∈ {0, . . . , N − 1}:

Pt=1(Hi)

Pt=1(Hj)
=

Pt=0(Hi | ΘN ) Pt=0(E | Hi)

Pt=0(Hj | ΘN ) Pt=0(E | Hj)
.

In the example, it can still be established that after receiving evidence E the
inspector should assign a probability to H1 that is more than three million
times higher than the probability she assigns to H0. Similarly, we can still
establish that both hypotheses have a very small likelihood for the evidence
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that is obtained. And this may be enough to motivate the introduction of a
new hypothesis.

In the context of vocal open-mindedness, any expression of the belief change
will contain unknown factors, and the implications are worse than for the pos-
teriors: if the change is measured as the difference between posterior and prior,
both terms have different unknown factors ( 1−τN

Pt=0(E) and 1− τN , respectively).

(t = 2) New hypothesis HN Recall that the old catch-all ΘN is replaced by
two disjoint parts: the hypothesis that is shaven off, HN , and the remaining
part of the catch-all ΘN+1. Finite additivity suggests to decompose the prior
that was assigned to ΘN into two corresponding terms:

τN = Pt=0(HN ) + τN+1,

where Pt=0(HN ) is the prior of the new hypothesis HN and τN+1 ∈]0, τN [
is the (indefinite) prior of the remaining catch-all ΘN+1, both of which are
assigned retroactively. Although the value of τN+1 is unknown, the N + 2
priors sum to unity.

The priors for the hypotheses in TN can thence be written in three ways:

Pt=0(Hi) = (1− τN ) Pt=0(Hi | ΘN )
= (1− τN+1)Pt=0(Hi | ΘN+1)
= (1− τN+1) (1− Pt=0(HN | ΘN+1)) Pt=0(Hi | ΘN ),

where Pt=0(HN | ΘN+1) is some definite number ∈]0, τN [. For instance, if we
had a uniform prior over TN and we want to keep a uniform prior over TN+1,
we have to set Pt=0(HN | ΘN+1) =

1
N+1 .

Now that HN is an explicit hypothesis, its likelihood is a definite function
Pt=0(· | HN ) (also specified retroactively). In the example, the likelihood for
obtaining the evidence Pt=0(E1(5) | H2) is 1 on the new hypothesis. We as-

sign an undefined likelihood to the new catch-all: Pt=0(· | ΘN+1) = xN+1(·).
This allows us to rewrite the previous expression obtained for the marginal
likelihood:

P (E) =
∑N−1

j=0 (1− τN+1) (1− Pt=0(HN | ΘN+1)) Pt=0(Hj | ΘN ) Pt=0(E | Hj)

+ Pt=0(HN ) Pt=0(E | HN ) + τN+1 xN+1(E),

where the last two terms equal τN xN (E).
At this point, we can also rewrite the expressions for the posteriors (for all

i ∈ {0, . . . , N − 1}):

Pt=2(Hi) =
(1− τN+1) (1− Pt=0(HN | ΘN+1)) Pt=0(Hi | ΘN ) Pt=0(E | Hi)

P (E)
.

Moreover, we can now assign a posterior to HN :

Pt=2(HN ) =
(1− τN+1) Pt=0(HN | ΘN+1) Pt=0(E | HN )

P (E)
.
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Although it is still not possible to evaluate these posteriors numerically, we
can compute new comparative probability evaluations for ratios involving HN .
For all i ∈ {0, . . . , N − 1}:

Pt=1(HN )

Pt=1(Hi)
=

Pt=0(HN | ΘN+1) Pt=0(E | HN )

(1− Pt=0(HN | ΘN+1)) Pt=0(Hi | ΘN ) Pt=0(E | Hj)
.

In the case of uniform priors, additional factors cancel:15

(1− Pt=0(HN | ΘN+1)) Pt=0(Hi | ΘN ) = (1− 1
N+1 )

1
N

= 1
N+1

= Pt=0(HN | ΘN+1).

For the example, we can compute Pt=2(H2)
Pt=2(H1)

= 1
p5
0
= 1

3.2×10−4 = 3125. So, in the

new theoretical context (T3) the posterior of the new hypothesis (H2) given the
old evidence E, namely the sequence of five positive tests, is more than three
thousand times higher than that of the hypothesis that was best confirmed
(H1) within the old theoretical context (T2).

16

At t = 1, no belief can be expressed for HN , but at t = 2 the beliefs
regarding HN at t = 1 can be expressed and the expressions for the old
hypotheses Hi can be rewritten. We are still left with two terms that have
different unknown factors, which do not simply cancel out.17 At any rate,
degrees of confirmation can be evaluated if we first condition the probability
assignments on the current theoretical context, ΘN . We return to this point
below.

3.3.4 Update rule for silent open-minded Bayesianism

This form of Bayesianism employs an algebra on a set ΘN × Ω, which may
be extended to ΘN+1 × Ω (and beyond). On this view, when the theoretical
context changes, new conditional probabilities become relevant to the agent.

Let us briefly motivate the silent version as an alternative to vocal open-
mindedness. We have seen that the vocal version comes with a heavy notational
load. Given that in the end, we can only compute comparative probabilities,
it seems desirable to dispense with the symbolic assignment of a prior and
a likelihood to the catch-all hypothesis. Silent open-mindedness achieves this
by conditioning all evaluations on ΘN , the union of the hypotheses in the
theoretical context. This allows us to express the agent’s opinions concerning
the relative probability of Hi and Hj (for any i, j ∈ {0, . . . , N − 1}) without

15 Since these factors are all known at t = 2, it is not a problem if they do not cancel.
16 Observe that the catch-all Θ2 is strictly larger than the family of binomial distributions
with p ∈ [0, 1] \ {0.01, 0.2}. The binomial distribution only applies to situations that can be
thought of as having a fixed bias and producing independent outcomes. The catch-all should
be large enough to allow the agent to also reconsider these assumptions at a later point in
time.
17 This may be a reason to consider a particular measure of confirmation, such as P (H |
E)− P (H | E) (cf. Christensen, 1999, Joyce, 1999), for which the factors do cancel out.
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saying anything, not even something in terms of free parameters, about the
absolute probability that they have. Opinions about the theories in the current
theoretical context TN are thus comparative only.

(t = 0) N explicit hypotheses Instead of assigning absolute priors to Pt=0(Hi) =
Pt=0(Hi | Θ), humble Bayesianism suggests to only assign priors that are con-
ditionalized on the theoretical context, Pt=0(Hi | ΘN ).

(t = 1) Evidence E Since Hi ⊆ ΘN , the likelihoods of explicit hypotheses are
statistically independent of the theoretical context:

Pt=0(E|Hi ∩ΘN ) = Pt=0(E|Hi).

Silent open-mindedness suggests not to assign a likelihood to the catch-all.
This “probability gap” is not problematic (by the terminology of Hájek, 2003),
since all the other probability assignments are conditionalized on ΘN . The
agent can update her comparative opinion in the usual Bayesian way, as long
as she conditionalizes everything on this context:18

Pt=1(Hi | ΘN ) = Pt=0(Hi|E ∩ΘN ) = Pt=0(Hi|ΘN )
Pt=0(E|Hi)

P0(E|ΘN )
.

(t = 2) New hypothesis HN After a new hypothesis has been introduced, the
silently open-minded Bayesian has to start conditionalizing on the expanded
(union of the) theoretical context ΘN+1 rather than on ΘN . Once HN gets
formulated, its likelihood will be known too. We require that the probability
evaluations conditional on the old context ΘN do not change. In this way we
cohere with standard Bayesianism and with the vocal open-minded variant.

We can treat Pt=2(HN | ΘN+1) much like a ‘postponed prior’, and give it
a value based on arational considerations that are not captured by constraints
within the (extended) Bayesian framework. In particular, we can engage in the
kind of reconstructive work as is done in vocal open-mindedness, but this is not
mandatory here. We might also determine the posterior probability of HN and
so reverse engineer what the prior must have been to make this posterior come
out after the occurrence of E. In any case, when moving to a new context the
other posteriors need to be changed accordingly (such that the N+1 posteriors
sum to unity): Pt=2(Hi | ΘN+1) = (1− Pt=2(HN | ΘN+1))Pt=1(Hi | ΘN ). So,
the move from TN to TN+1 essentially amounts to a kind of recalibration of
the posteriors.

Importantly, we can compute all known confirmation measures using the
priors and posteriors that are conditional on a particular theoretical context.
Once the context changes, this clearly impacts on the confirmation allotted
to the respective hypotheses. The price for this transparency is of course that
we can only establish the confirmation of a hypothesis relative to a theoret-
ical context ΘN . The natural use of a degree of confirmation thus becomes

18 Recall from section 2 that we interpret E as shorthand for Θ×E, so E ∩ΘN should be
understood as (Θ ∩ΘN )× E = ΘN × E.
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comparative: it tells us which hypothesis among the currently available ones
is best supported by the evidence, but there is no attempt to offer an absolute
indication of this support.

4 Evaluation and conclusion

In this section we critically evaluate open-minded Bayesianism. We clarify our
views on it, and conclude that it provides a handle on the problem of old
evidence: it explains how old evidence can be used afresh without violating
Bayesian coherence norms. Towards the end, we sketch a number of ideas and
problems that deserve further exploration.

4.1 Evaluation of open-minded Bayesianism

It may be argued that open-minded Bayesianism fails to provide us with the re-
quired normative guidance. In the silent version, it only concerns suppositional
reasoning and hence cannot inform our unconditional beliefs. In metaphorical
terms, the worry is that the agent cannot keep hiding behind the conditional-
ization stroke. In the vocal form, the same worry arises in relation to the use
of factors with indefinite numerical values, which are introduced to represent
the prior and likelihood of the catch-all hypothesis, but which soon ‘infect’
all probability assignments and measures of confirmation. Either way, it may
seem that the agent must come clean on her absolute commitments at some
point.

We respond to this worry by biting the bullet. If we want to allow new
theories to enter the conceptual scene, then we will have to provide room
for this in our formal framework. There are attempts to accommodate (other
forms of) theory change in a Bayesian framework that employ fully specified
probability assignments (e.g., Romeijn, 2004, 2005). In this paper, by contrast,
we have offered a framework that creates room for new theories by leaving part
of the probability assignment unspecified. We accept that this leads to a model
that only concerns conditional belief.

We should emphasize that we are not alone in preaching an open-minded
form of Bayesianism. We already mentioned the proposal for tempered Bayesian-
ism by Shimony (1970), who suggested the use of a catch-all hypothesis in this
context. This suggestion was also discussed by Earman (1992), who introduced
the evocative terminology of shaving off new hypotheses from the catch-all.
Furthermore, our proposal of humble Bayesianism is related to earlier work
by Salmon (1990) and Lindley (1991). Morey et al (2013) recently introduced
what they call humble Bayesianism in a debate over the nature of statistical
model comparisons.

The latter paper lends further supports to open-minded Bayesianism. The
point of Morey et al (2013) is that an agent may want to use Bayesian methods
to evaluate statistical models, without buying into the conviction, implicit in
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the standard Bayesian framework, that one of the theories under considera-
tion is true. After all, a standard Bayesian will have the probabilities of the
hypotheses under consideration add up to one, and so judges herself to be per-
fectly calibrated (cf. Dawid, 1982). The standard Bayesian is overly confident,
hence a more open-minded form of Bayesianism seems called for.

The price to pay is that the epistemic attitudes for which the framework
of the open-minded Bayesian provides the norms are different: they have a
conditional nature. Whether we spell out the details using a vocal or a silent
open-mindedness, the normative framework tells the agent what to believe only
if she temporarily supposes, without committing to it, that the true theory is
among those currently under consideration.

4.2 The old evidence problem

Now that we have bitten the bullet, we better make sure that we do so for good
reasons. In this section, we argue that open-minded Bayesianism provides a
new handle on the problem of old evidence, by explaining how old evidence
can be re-used.

In his encyclopedia entry on Bayesianism, Talbott (2008) summarizes the
Bayesian problem of new theories as follows: “Suppose that there is one theory
H1 that is generally regarded as highly confirmed by the available evidence
E. It is possible that simply the introduction of an alternative theory H2

can lead to an erosion of H1’s support. [. . . ] This sort of change cannot be
explained by conditionalization.” It is precisely this “erosion” of support that
can be captured by the update rule for open-minded Bayesianism, since both
approaches make the agent reconsider the posteriors of the old hypotheses.
The strong point of open-minded Bayesianism is that this reconsideration of
the posteriors does not render the agent probabilistically incoherent.

When writing about the operation of shaving off new hypotheses, Earman
(1992, p. 195) worried that a point may be reached “where the new theory has
such a low initial probability as to stand not much of a fighting chance.” This
worry, however, does not apply to our framework. Notice that we do not assign
an explicit value to the prior of the current theoretical context. We may think
of the prior associated with the catch-all hypothesis as a number extremely
close to unity—and the humbler we are, the closer to unity we can imagine it to
be. At any rate, no matter how large the discrepancy between the posteriors of
the old hypotheses and the new one, the impact that the decomposition of the
catch-all has on the catch-all’s posterior will remain unknown, or indefinite. Of
course, once we pin down a value for the probability τN , the worry of Earman
becomes a live one. But lacking such a definite value, the problem that the
catch-all gets crowded out by explicit hypotheses does not arise.

There are, however, differences in how the vocal and silent approaches to
open-minded Bayesianism deal with reassessing the posteriors, and in what
role they give to old evidence. The vocal approach requires us to assign a
prior to the new hypothesis HN after the fact, and to compute its current
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posterior on the basis of this assignment. The other posteriors are obtained
via a renormalization.19 This approach requires us to evaluate probabilities
retroactively: priors have to be set post hoc, for hypotheses that were not
known at the time. To our mind this need not be a cause of concern though.
One cannot unlearn the evidence that has been gathered, but it is still possible
to use base rates or other sources of objective information to determine the
priors retroactively.20

The silent approach, by contrast, requires us to assign a posterior to the
new hypothesis HN without offering an explicit recourse to the prior proba-
bility assignments over the old hypotheses. The point here is rather subtle. It
is in virtue of a prior probability assignment of τN to the old catch-all ΘN

that we can meaningfully claim, as part of the vocal approach, that the prior
of the old catch-all is decomposed into the prior of a new hypothesis HN and
the prior of a new catch-all ΘN+1. Since the silent approach remains silent
precisely on this prior, it is hard to see how we can retroactively decompose
it. So in this approach, it is not clear whether old evidence ever confirms new
theories. Unless we have set the value of Pt=2(HN | ΘN+1) by means of a
reconstruction that ultimately depends on Pt=0(HN | ΘN+1), its value is not
obtained via conditionalization on E. In humble Bayesianism, the old evidence
is therefore not given a new role.

Now that we have discussed the role of evidence in two forms of open-
minded Bayesianism, it is time to take stock. Both approaches suffer some
drawbacks. The vocal proposal comes with the complication of a heavy no-
tational load that hampers the evaluation of the degree of confirmation. The
silent proposal allows too much freedom in the assignment of a posterior to
the new hypothesis—so much freedom, that it is not clear that the old ev-
idence has any impact. For these reasons, we propose a hybrid approach to
open-minded Bayesianism, that combines the best elements of both.

On our hybrid proposal, the open-minded Bayesian remains in the silent
phase,21 except for the times at which her theoretical context changes. Un-
like a standard Bayesian, the open-minded Bayesian is allowed to change the
algebra to which probabilities are assigned and thus to assign non-zero prob-
abilities to the new hypothesis, which is impossible without a catch-all. Then
she enters the vocal phase: she engages in assigning a prior to the new hy-

19 More accurately, the decomposition into definite and indefinite factors changes in a way
that is reminiscent of a renormalization.
20 Vocal open-minded Bayesianism can be compared with the analysis of the problem of old
evidence given by both Garber (1983) and Jeffrey (1983), who concluded that what is discov-
ered is the fact that the new theory entails the old evidence. To model agents who discover
a statement of this kind, they proposed weakening the Bayesian background assumption of
logical omniscience. The vocal approach paints a similar, reconstructive picture, though it
is not logical omniscience that fails the agent: what is discovered upon the change in the
algebra at t = 2, is how to express the posterior (and hence the confirmation) of the new
hypothesis given the old evidence, which was inexpressible at t = 1.
21 We might call the silently open-minded Bayesian a relativized standard Bayesian: the
probabilities conditionalized on the theoretical context appearing in the humble approach
equal the corresponding unconditional probabilities of the approach without a catch-all.
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pothesis (retroactively) and computing its posterior given the evidence (also
retroactively) and renormalizing the other priors.

Open-minded Bayesianism thus offers a particular perspective on the use
of old evidence for confirming a new theory. On the conceptual level, it shows
how our perception of evidence and confirmation changes if we move from one
theoretical context to another. Relative to one set of hypotheses, the data were
telling towards one particular candidate hypothesis, and so counted as evidence
that confirms this candidate. But with the inclusion of a new hypothesis, the
data may tell against the formerly best candidate, and so count as evidence
that disconfirms it. We take it to be a virtue of our model that it brings out
this context-sensitivity of evidence and confirmation.

4.3 Illustration of the hybrid approach

To make our proposal for a hybrid approach more vivid, we apply it to the food
inspection example. Initially, when the food inspector implicitly assumes her
equipment to be working properly, she can be described by the silent approach
to open-minded Bayesianism. Within the initial context, she only needs to
take into account two explicit hypotheses: the kitchen is clean or it is not. She
assigns prior probabilities to these hypotheses and she computes posteriors, but
these assignments are conditional on her implicit assumption that the testing
strips are uncontaminated (as well as many other background assumptions). So
far, she acts much like any Bayesian would; her open-mindedness will surface
only when provoked.

The result, that five dishes out of five appear to be infected, was initially
unlikely on both of her explicit hypotheses. (Recall that the initial likelihood
was 10−10 in the case of a clean kitchen and 3.2×10−4 in the case of an unclean
kitchen.) Computing the posterior probabilities, which implicitly requires us
to assume that the correct hypothesis is among the two hypotheses being
considered, leads to a value close to zero (3.1×10−7) for a clean kitchen and a
value near to unity (1− 3.1× 10−7) for an unclean kitchen. If the priors were
equal (or at least of the same order of magnitude), then on any measure of
confirmation, the evidence provides very strong confirmation for the hypothesis
that the kitchen was unclean.

The observation that it is highly unlikely even for an unclean kitchen to
produce five infected dishes may suggest that there is an even better hypothesis
‘out there’ that has not yet been taken into account. Indeed, seeing the result
prompts the inspector to reconsider one of her implicit assumptions and she
turns its negation into a new theory (and associated statistical hypothesis):
the testing strips may not have been clean after all (bias = 1). (Of course, this
is still but one out of many other alternative hypotheses.) Our framework for
open-minded Bayesianism is able represent this formally.

In the vocal phase, the agent shaves off her third hypothesis from the catch-
all and revises her probability assignments: she retroactively assigns a prior to
the new hypothesis, adjusts the priors of the two old hypotheses by a suitable
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factor, and computes the likelihood of the old evidence on the new hypothesis
(as described in section 3.3.3). All this leads her to reassess the posteriors of the
old hypotheses and to assign a posterior to the new hypothesis. Assuming equal
priors, the final result is this: within the new theoretical context, the posterior
of the new hypothesis given the old evidence is more than three thousand
times higher than that of the hypothesis that was best confirmed within the
old theoretical context. Irrespective of the details of the confirmation measure
and assuming priors of at least equal orders of magnitude, this implies that the
old evidence strongly confirms the new hypothesis and disconfirms the others.
This illustrates that it is the shift in theoretical context itself that may cause
old evidence to confirm a new hypothesis.

Once the agent is satisfied that, for the evidence currently at hand, the
new theoretical context includes all the relevant hypotheses, she may start to
conditionalize all her findings on this context and thereby enter a new silent
phase. The remaining catch-all hypothesis need not be mentioned again until
new doubts arise.

In Kuhnian terminology, the silent version of open-minded Bayesianism is
sufficient for describing episodes of normal science (and if the conditionaliza-
tion on the theoretical context remains implicit, it is indistinguishable from
the usual Bayesian picture), but the vocal version of open-minded Bayesianism
is required to model revolutionary changes in the theoretical context.

4.4 Further research

With the foregoing, we believe we have only scratched the surface of the matter
at hand. Many avenues for further research lay open for exploration. In what
follows, we briefly mention a number of these avenues. With this we showcase
our ongoing research on this, we invite the reader to join in, but mostly we
indicate where we ourselves feel that our account is lacking.

One important consideration that has not received sufficient attention in
the foregoing concerns degrees of confirmation. Our goal with this paper was
to show that we can accommodate the introduction of a new theory and hence
a new empirical hypothesis in the Bayesian framework, and that old evidence
can play a role in the determination of the posterior probability of this new
hypothesis without violating probabilistic coherence. We have been mostly
silent on how the posteriors may be used to compute a degree of confirmation,
so that the impact of old evidence can be expressed more precisely. A com-
plete account of open-minded Bayesianism will certainly involve more detail
on degrees of confirmation.

Another aspect of the process of theory change targeted in this article also
deserves a more detailed normative treatment: the decision to introduce a new
theory. In the foregoing, we have treated this decision as completely external
to the model. However, we also indicated that the search for new theories
may be motivated by a so-called statistical model selection criterion, e.g., by
a measure of the predictive performance of the agent, or by some other score
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that attaches to the data and the hypotheses currently under consideration.
We think that our account, which may provide rationality constraints on the
transition from one theoretical context to another, can be combined fruitfully
with an account of how theoretical contexts are evaluated and selected.

Furthermore, we should stress that we have only considered one type of
theory change—a change that may be captured by shaving off new hypotheses
from a catch-all hypothesis.22 In general, theory change may lead to other
types of change to the domain of the probability function, A(Θ ×Ω), in var-
ious ways. For one, we have not explicitly considered changes in the space Ω
of empirical possibilities. Notice that such changes are generally more radical
than changes in the theoretical realm: theories obtain their empirical content
in terms of hypotheses that are formulated by means of Ω. One captivating
question concerns the exact reach of our account of new theory and old evi-
dence. Specifically, can we assume at the outset that Θ and Ω are rich enough
to accommodate all conceivable theory changes? An answer to this question
requires us to survey a rich landscape of theory changes.23

We would like to mention one other aspect to theory change that is related
to two issues discussed above, namely the decision to introduce a new theory
and the type of theory change effected by that. It concerns the notion of
awareness. Hill (2010) and Dietrich and List (2013) have recently argued that
a decision problem obtains new dimensions when the agent is made aware of
considerations that were previously not live to her. We think that roughly the
same can be said about the epistemic problems an agent faces, and that the
foregoing offers a natural model for an agent that becomes aware of a theory
while performing a predictive, or more generally an epistemic task. It seems
natural to combine the frameworks for modeling awareness.

Finally, we briefly mention two possibilities that open-minded Bayesianism
offers, when it is combined with ideas on relative infinitesimals (in the sense of
Wenmackers, 2013). One is that the framework allows us to model radically
sceptical yet empiricist epistemic attitudes: all the priors and posteriors of
explicit hypotheses, old and new ones, may be very small, indeed infinitesimally
small, compared to the probabilities associated with the catch-all. That is,
we may choose τN to be some number very close to one. Despite that, a

22 Earman (1992, p. 196) has introduced a distinction between two forms of theory change:
“The mildest form occurs when the new theory articulates a possibility that lay within the
boundaries of the space of theories to be taken seriously but that, because of the failure
of logical omniscience [. . . ], had previously been unrecognized as an explicit possibility.
The more radical form occurs when the space of possibilities is itself significantly altered.”
Although this is a helpful way of categorizing theory change, it is not absolute: the kind
of theory change that we have discussed can be reconstructed as a radical one by humble
Bayesianism (in which ΘN is extended to ΘN+1) or as a mild one by Bayesian Tauism (in
which the partition on Θ is refined). Presumably, radical changes that can be reconstructed
as mild changes are best considered as intermediate cases: there are both milder and more
radical changes possible.
23 Recall that we have defined Θ as the set of all probability functions on a common
domain, A(Ω). Arguably, it may suffice to choose a smaller set Θ, namely the set of all
computable probability functions on the domain A(Ω). This is the idea behind the celebrated
theory of universal prediction by Solomonoff (1967).
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particular theory may have a large prior or posterior relative to the other
theories in the theoretical context. The framework thus allows us to model a
radical sceptic who is nevertheless sensitive to differences in empirical support.
On the other side of the spectrum, the framework of open-minded Bayesianism
allows us to model practical certainty without spilling over into dogmatism.
We may be aware of the existence of certain hypotheses, but we might choose
not to include them in our considerations: they may seem irrelevant to the
kinds of evidence under study (assuming statistical independence), they are
deemed highly unlikely,24 including them may require too high a number of
computations, or because of other pragmatic reasons. However, upon receiving
falsifying or strongly disconfirming evidence, we might want to reconsider some
of these omissions.25 The catch-all hypothesis with infinitesimal probability
may then serve as a reservoir for the hypotheses that seemed dispensable at one
point in time, but that later on turn out to be relevant. Falsifying or strongly
disconfirming evidence may lead to a situation in which the probability of
the catch-all is no longer regarded as a relative infinitesimal: the marginal
likelihood becomes so small that it becomes comparable to the probability of
the catch-all.

The above list of research topics indicates that our resolution to the prob-
lem of old evidence and new theories leaves much to be done. However, the list
also suggests that the framework of open-minded Bayesianism provides access
to several interesting aspects of belief dynamics that fall outside the scope
of orthodox Bayesianism. We call to mind what Sue says in Earman (1992,
p. 235): “By all means keep an open mind, but not so open that your brain
falls out.” It seems to us that open-minded Bayesianism does precisely that.
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Hájek A (2003) What conditional probability could not be. Synthese 137:273–
323
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