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Abstract

This paper investigates a problem for statistical model evaluation, in par-

ticular for curve fitting: by employing a different family of curves we can

fit any scatter plot almost perfectly at apparently minor costs in terms of

model complexity. The problem is resolved by an appeal to prior proba-

bilities. This leads to some general lessons about how to approach model

evaluation.

1 Introduction

In curve-fitting we are given a set of points in a plane spanned by an explanatory

and an explained variable, and then choose a curve that best expresses the

systematic relation among them. For example, we might plot the yearly number

of accidents with claimable damage against the total distance covered by the

vehicle. What then needs to be determined is the functional dependence between

frequency and distance. Since vehicles that do not cover any distance will not

incur any damage, the intercept will be zero. The supposition may be that

the dependence is linear, so that the choice concerns the slope of the line that

relates distance to expected number of accidents. We might also postulate a

1



more complicated relation between distance and expected number of accidents,

e.g., a quadratic dependence, perhaps with the idea that long-distance drivers

have proportionally fewer accidents.

The general shape of a curve may be chosen at the outset but sometimes

the shape itself is under scrutiny. For example, we might compare the linear

and the quadratic shapes sketched above. Statistical model evaluation allows

us to compare such families of curves on a variety of performance measures.

Model evaluation is important for scientists and philosophers of science alike. It

allows scientists to submit their modeling assumptions to empirical testing, and

thereby address the uncertainty over their theoretical suppositions. Examples

of such model evaluations abound, ranging from climate science and ecology to

psychiatry and computational archaeology. Moreover, model evaluation gives

philosophers of science a concrete and formally precise handle on a fundamental

kind of uncertainty in science. Philosophers can motivate and develop norms

for dealing with this uncertainty, which has direct relevance for the practice of

science.

This paper contributes to our understanding of the norms that drive sta-

tistical model evaluation. After an introduction into model evaluation tools in

section 2, I present a problem for them in section 3. I then offer a diagnosis of

the problem in section 4. In section 5 I show that the problem can be avoided

if we involve prior probability assignments in the model evaluation. Through-

out I will mostly avoid mathematical detail, to leave more space for conceptual

considerations.

2 Statistical model evaluation

Statistical inference is carried out on the basis of a model, for example by getting

the data to choose among the hypotheses in the model, or by redistributing the

probability assignment over the hypotheses in the model. The curve fitting

sketched in the introduction may not seem like a statistical inference. Given a

family of curves, we simply choose by minimizing the errors, i.e., the sum of the
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discrepancies between curve and point. In the so-called least-squares approach,

for example, the error is calculated as the sum of the squares of the vertical

distance between point and curve. No model seems to be involved in this.

Underneath such a minimization procedure, however, we do find a statistical

inference. One central modeling assumption is that the explained, or dependent,

variable Y follows some unimodal probability distribution, e.g., a normal dis-

tribution N(µ, σ). A further assumption is that the mean of this distribution

depends on the explanatory, or independent, variable X. For example,

Pθ(Y |X) = N (µ(X), 1) . (1)

with µ(X) = θ1X + θ2X
2, for example, and Y standardized to make σ = 1.

Note that the model dictates a distribution over Y for all values of X but that

it does not determine a probability distribution over the values of X itself. The

distance X is an explanatory variable, and we presume that it is randomly

sampled from a uniform distribution.

The data consist of m points in the plane 〈X,Y 〉, collected in a scatter plot:

SXY = {〈x1, y1〉, 〈x2, y2〉, . . . , 〈xm, ym〉}. (2)

For any curve and associated hypothesis we can calculate the probability of a

scatter plot, i.e., the likelihood of the hypothesis for the data, by multiplying

the probability of all the points,

Pθ(SXY ) =

m∏
i=1

Pθ(yi|xi). (3)

To fit the curve we look for the value of θ, denoted θ̂, that makes the probability

of the scatter plot maximal. Generally speaking, maximizing the likelihood of

the curve will correspond to minimizing the vertical distance of points to the

curve under some notion of distance. Figure 1 offers an impression of what these

curves may look like.

Against this background of curve fitting as statistical inference, it will be

clear that evaluating the general shape of the curves, e.g., comparing linear
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Figure 1: The polynomial curves fitted to the scatter plot.

and quadratic ones, is part of statistical model evaluation. Note that I use the

term “model evaluation”, not the more often used “model selection”. Select-

ing a model would seem a decision, and so involves decision-theoretic as well

as inferential aspects. But in what follows I will only consider norms for the

comparison of models from an evaluative, epistemic standpoint.

A very common idea about model evaluation is that, next to the fit with

data, it involves the complexity of the model. If a neat fit with the data is

achieved by adding many bells and whistles, we are rightly reluctant to put our

trust in it. We then say that the model is fitting to noise, or overfitting. In

the example, the best fitting curve from the quadratic model will have a higher

likelihood than the best curve from the linear model. But this is not to say that

the quadratic curve is better. The question is whether the gain in fit weighs up

against the cost of a more complicated model.

The extant model evaluation tools, most notably the various information

criteria (Claeskens and Hjort, 2008), provide specific formats for this trade-off

between simplicity and fit. The two most prominent tools, the Akaike and

Bayesian information criteria or AIC and BIC for short, express the simplicity

by means of the number of free parameters in the model (cf. Akaike, 1973;

Burnham and Anderson, 2002; Raftery, 1995; Schwarz, 1978). The linear model

of the example has one free parameter, and the quadratic model has two. The

ICs then differ in how they factor the number of parameters into the trade-off:

AIC(Mθ) = 2 log
(
Pθ̂(S)

)
− 2 dim(Mθ), (4)

BIC(Mθ) = 2 log
(
Pθ̂(S)

)
− log(m) dim(Mθ), (5)
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in which Mθ is the model parameterized by the vector θ, the number of free

parameters is given by dim(Mθ), and θ̂ is the hypothesis in the model with

maximum likelihood for the data S, so that Pθ̂(S) is the likelihood of the maxi-

mum likelihood estimator for the data S. In the BIC the penalty for complexity

is scaled according to the sample size of the data m.

The involvement of the complexity of models in their evaluation may seem

intuitive on pragmatic and metaphysical grounds. A simpler model is easier to

use, and we might think that the world itself is a simple place, perhaps because

the Demiurge is an efficient or lazy being. However, the actual reason for the

appearance of the complexity penalty in the ICs is epistemic. For example,

the number of parameters appears in the AIC as a result of approximating the

expected Kullback-Leibler divergence to the true hypothesis. And for the BIC

the penalty for complexity drops out of an approximation of the past predictive

performance of the model, as measured by the marginal likelihood.

The number of model parameters surfaces repeatedly as a criterion for model

evaluation, under a variety of epistemic good-making features of models. Very

roughly, the underlying reason is that the predictions and general empirical

claims of more complex models will be less robust and reliable. In a more

complex model the same number of data points will be used to determine a

larger number of parameter values and therefore, speaking metaphorically, the

available information will have to be spread more thinly. For the AIC this

shows up in the relative uniformity of the likelihood function over the model,

and in the BIC it appears as the relative uniformity of the posterior probability

distribution within the model. The general idea is that we can always introduce

an additional parameter that improves the best fit in the model, but that we

might then lack the data to properly back up a stable value for this additional

parameter.

However, this intuition does not cover everything that is salient about com-

plexity in model evaluation. There is another epistemic good-making feature,

strongly related to complexity and the number of parameters, that needs to

be taken into account when we compare models. This further feature concerns
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Figure 2: The sine curve that perfectly fits the scatter plot.

something like model size. It can be expressed by means of the prior probability

distribution within the models, as the following model evaluation problem will

reveal.

3 Cheap and almost perfect fit

Consider again the example of the scatter plot and the polynomial model. But

instead of using the polynomial curves, as detailed above, imagine fitting the

data with a model based on trigonometric functions, or sine curves for short (cf.

Harman and Kulkarni, 2007, Chapter 3). We use the normal distributions of

Equation (1) but instead of choosing µ(X) to be polynomial we choose

µ(X) = α1 − α1 cos(α2X). (6)

Figure 2 gives an impression of the fit that may be achieved by the so-called sine

model. Importantly, all the points in the scatter plot are given close to maximal

probability, because they all end up sitting arbitrarily close to the curve, and

hence to the mean for the distribution.

The key observation is that we have achieved this remarkable fit at the

expense of only two parameters, α1 and α2. It is known that we can obtain a

perfect fit to m data points with a polynomial curve that has m free parameters.

But fitting any number m of points with two parameters seems inexplicably

efficient. Clearly, if we were to apply model evaluation criteria like AIC or BIC,

or indeed any other method in which complexity is expressed by the number of
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parameters, the sine model wins out on the quadratic model, and most likely

also on the linear model. What is going on?

Before providing a diagnosis, let me emphasize that the claim that a near-

perfect fit is always possible is mathematically non-trivial. In the remainder of

this section I will provide more detail to substantiate it. Notably, the fit does not

hinge on the assumption of any particular distribution, be it normal, Poisson, or

otherwise, or on any particular format of the data, be it real numbers, integers or

otherwise. Moreover, given that the scatter plot will manifest on a finite domain

0 < X < L we need not even suppose that the parameters are real-valued: it

is enough to consider sine curves with a period L/t for t ∈ N, as one does in

a Fourier series. Despite all this, it turns out that there are always infinitely

many almost perfect fits to a set of points. This abundance of solutions will

turn out to be of crucial importance for the resolution of the problem.

Say that we have been given a scatter plot SXY whose farthest points are at

xi = L and yj = H. For convenience we set α1 = H/2, but any α1 larger than

that will work too. Take any specific point 〈x, y〉 from the scatter plot, consider

the curves with α2 = L/t for increasing t, and ask: for what values of t does the

sine curve intersect with the line X = x in very close proximity to the value y?

Observe that x ∈ [kL/t, (k+1)L/t] for some t, and that the curve covers the whole

of the range [0, H] over this interval of X twice. If we allow for a discrepancy

of ε between the curve and the value y and assume that x falls within the first

half of the interval, we must require that

L

πt
cos−1 (1− 2(y−ε)/H) < x− kL

t
<

L

πt
cos−1 (1− 2(y+ε)/H) . (7)

If x falls in the second half of the interval [kL/t, (k+1)L/t], we require an analogous

constraint. Because the slope of the cosine is bounded between −1 and 1, we

may replace the above inequalities with

XB −
2εL

πtH
< x− kL

t
< XB +

2εL

πtH
, (8)

in which XB = L
πt cos−1(1− 2y/H), and similarly for x sitting in the second half

of the interval. Consequently, for every t there is a specific region of length
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Figure 3: A sine curve that passes a point at distance ε.

4εL/πtH within the interval of length L/t such that, if it includes x, the resulting

distance of the curve to y lies within an ε bound. Figure 3 gives an impression

of the above construction.

The remaining question is whether and for what values of t the value x

lies within this specific region. To establish that, we first recall that the xi’s

from the scatter plot SXY were randomly sampled from a uniform distribution

over [0, L]. This means that the individual x from the sample is almost surely,

i.e., with probability one, a random number. Consequently, there will be no

pattern in how x shows up inside the intervals [kL/t, (k+1)L/t] for increasing t.

The locations of x are evenly distributed over all parts of these intervals. Hence

for any ε > 0 there will be infinitely many t for which x will fall within the

portion of length 4εL/πtH inside the interval of length L/t. The relative size of

the region in which the curve is sufficiently close to the value y is constant for

increasing t at 4ε/πH. And so there will be infinitely many sine curves that have

an arbitrarily small error in fitting the point 〈x, y〉.

This suffices as an argument for there being an infinity of curves that fit

any finite number of points almost perfectly. For a single point, the fraction

of sine curves will tend to 4ε/πH. So for a set of m points that are randomly

distributed over X, the fraction will tend to (4ε/πH)m. When making ε small

and thus maximizing the likelihoods, the fraction of curves with good enough

fit will be very small. But there will still be infinitely many fitting ones.
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4 Diagnosis of the problem

The foregoing construction presents a problem for standard model evaluation

tools. The BIC simply rules in favour of the sine model. The AIC is not

defined for unidentified models, so the fact that there are infinitely many equally

well-fitting sine curves incapacitates it. While silence is better than positive

evaluation, a negative evaluation of the intuitively incorrect sine model would

seem best. Closer inspection reveals that the sine model is not robust, that its

dimensions are deceptive, and that it is not well-behaved under increases in data

size. Fortunately these considerations set us up for a solution to the problem

along Bayesian lines in the next section.

First consider the robustness of the sine model. Imagine that we alter the

scatter plot by slightly nudging a single data point. What will be the result if

the curve is a polynomial of a given degree? Clearly, any curve that was fitted

to the data will change a little as well. But the rough shape of the curve will

not change a lot: a small change in data is matched by a similarly small change

to the best fitting curve. By contrast, if the curve is a trigonometric function,

then nudging a single data point slightly will radically alter it. Nudging leads to

a completely new set of best fits. We might say that the sine model is skittish,

or too versatile, or lacking in robustness: it is oversensitive to the smallest of

changes in the scatter plot.

The AIC and BIC do not accommodate this feature of models. MDL-based

model evaluation tools and extensions of the AIC and BIC fare slightly better.

The so-called Fisher information approximation for example includes a geo-

metric complexity term, based on the Fisher information (FI). One might say

that the FI expresses how densely packed the model is with likelihood functions

(Grunwald, 2007; Myung et al, 2000; Ly et al, 20XX). Inclusion of the FI will

penalize skittish models, because these models cover a larger set of data patters,

and in this sense they are indeed packed more densely. Furthermore, developing

the AIC and the BIC (cf. Bozdogan, 1987, and further references therein), we
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also encounter the Fisher information. So there are natural extensions of the

AIC and the BIC that accommodate something of the skittishness.

However, in all of these refined methods, the contribution of the Fisher

information term is not of the required order of magnitude to resolve the problem

of the sine curves. Apart from the original AIC, the FI term is trumped by the

term that captures complexity as the number of free parameters, which grows

with log(m). And the FI term cannot compete with the fit term, which grows

with m in all model evaluation tools. For larger data sets the influence of the

FI term on the model score therefore dwindles, so that the sines seem preferable

after all.

A second consideration concerns the deceptively low dimensions of the sine

model: it seems to harbor an inherent complexity that is not expressed in the

number of parameters. The sine model illustrates that model dimension is a

fleeting notion. As a quick illustration, note that statistical parameters are

often real numbers. But real numbers are such that we can package any amount

of information into them. For example, a sufficiently complicated function will

allow us to compact two real numbers in a single one, by constructing the

numerical expansion of a number from two such expansions, e.g., 0.135 . . . and

0.246 . . . yield 0.123456 . . ., and so on. While this sort of function is of course

hopelessly contrived, it illustrates that counting statistical parameters does not

give us a fair indication of model dimensions.

This has been observed about model evaluation criteria more often, for ex-

ample in Bozdogan (1987), who proposes to adapt the AIC by involving the

sample size, thereby bringing it closer to the BIC. His motivation for adapting

the penalty term is, by and large, that the notion of complexity is not ade-

quately captured by the dimension term in the original AIC. Similar sentiments

are expressed in Balasubramanian (2005) who develops a minimum description

length (MDL) approach, and in Romeijn and van de Schoot (2008) and Romeijn

et al. (2012), in which the BIC is investigated and extended. The latter two

point to a more general notion of model size as a component of complexity.

10



However, while these proposals are in the right direction, the adapted versions

of AIC, BIC, and MDL still give the number of parameters a central role.

A more promising method for dealing with the problem of the sine curves

is perhaps offered by the so-called Deviance information criterion, or DIC for

short (Spiegelhalter et al, 2002). The DIC was originally designed for compar-

ing hierarchical Bayesian models, in which the number of free parameters is

not clearly defined. Central to the DIC is the so-called deviance, which can be

roughly understood as the reduction in surprise due to estimation, and hence as

a degree of overfitting. The penalty for complexity in the DIC is determined by

the effective number of parameters, which is based on the notion of deviance. It

would seem that the DIC responds correctly to the sine model but the details of

this must be left to future research. The present purpose is not to advise practi-

tioners on the IC of choice, but to offer a conceptual analysis of the inadequacy

of the sine model.

A final consideration brings us closest to this goal. Note that both polyno-

mial and trigonometric curves can be used as a basis for the space of functions

on a finite domain, in the algebraic sense that they parameterize that space:

we can write down functions by their Taylor or Fourier series. We can col-

lect all the curves that fit some scatter plot almost perfectly into a set within

the space of functions. But for the Taylor and Fourier series this set will look

very different. In the Taylor parameterization, the set is a well-behaved region

sitting somewhere in the linear combination of at least m axes. But the set

of well-fitting curves will look much wilder and disjointed in the Fourier pa-

rameterization, disjointed and intersecting with distinct axes rather than being

lumped together.

The implications of this are best brought out through a variant of the robust-

ness discussed above, namely by considering what happens if we start adding

points in the scatter plot. The original polynomial curve will not change too

radically: the region of well-fitting curves will shift only slightly. By contrast,

the set of best fitting sine curves alters significantly with the addition of a point,

not so much by being relocated but rather by being constrained severely. There
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are infinitely many sine curves that fit the scatter plot, but almost all of those

curves will miss the additional point by a stretch, and so be eliminated from

the set of well-fitting curves. The solution of the problem hinges on exactly this

elimination of hypotheses.

5 Priors to the rescue

This section develops a particular response to the problem of the sine curves.

It relies on so-called Bayesian model selection, or Bayesian model evaluation

(BME). Following BME the sine model loses against polynomial models because

of the specific failure of robustness introduced above.

The message of this section is not that we should embrace BME as the new

standard in model selection. I will not make a systematic comparison with other

model evaluation criteria and their relation to the salient notion of robustness.

Looking at the solution that BME provides and the central role for the so-called

marginal likelihood in BME, we might expect that other approaches in which

the marginal likelihood is central, e.g., the DIC and MDL-based criteria but

arguably also cross-validation, will provide a solution as well. Because we can

only compute something like a marginal likelihood if we adopt some version of a

prior within the model, the central point of this section is rather that solutions

will have to rely on priors of some kind.

The central idea of BME is to compare models by their posterior probability

assignment:
P (M1|SXY )

P (M2|SXY )
=
P (M1)

P (M2)
× P (SXY |M1)

P (SXY |M2)
. (9)

Assuming an equal prior for the models Mi, the posteriors are completely de-

termined by the ratio of the so-called marginal likelihoods,

P (SXY |Mi) =

∫
Θ

P (Hθ|Mi)P (SXY |Hθ ∩M1) dθ, (10)

in which Θ is the parameter space. The likelihoods P (SXY |Hθ ∩ M1) are a

different notation for the Pθ(SXY ) of the foregoing. Notice that the prior within

the model, P (Hθ|Mi), plays a key role in the computation of the marginal
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likelihood. Many approaches to model evaluation rely on the marginal likelihood

of the model, including the BIC, the DIC, and MDL-based approaches. All these

approaches must use some notion of a prior.

Now recall how sine curves manage to fit any scatter plots almost perfectly,

in particular that there are infinitely many such curves. With the addition of a

new point this set of best fitting curves will lose a large number of members, and

this will severely impact the marginal likelihood of the sine model. Following

Equation (3), we see that the likelihood of sine curves that retain their fit must

be multiplied by a maximal probability for every new data point. But this only

holds for a small fraction 4ε/πH of the sine curves. The fraction 1− 4ε/πH of sine

curves will be multiplied by a factor that falls very far short of the maximum

probability.

By comparison, the likelihoods of well-fitting polynomial curves will pick up

a factor that is somewhat lower than the maximal probability for each point,

though not falling very far short of the maximum. Importantly, this high but

not maximum factor will apply to a set of curves that is more or less stable

and that will accumulate more and more probability with the addition of data

points. Consequently, the overall factor picked up by the marginal likelihood of

the polynomial models will tend to this high but not maximum factor.

To put this in a more mathematical format, say that the average factor picked

up by the likelihood of a sine curve outside of the set of best fitting curves is U ,

that the same factor applies to badly fitting polynomial curves, that the factor

for a reasonably well-fitting polynomial is V , and for a best fitting sine curve

W , so that U < V < W . For the sine curves we obtain

P (〈xm+1, ym+1〉|MSine ∩ SXY ) ≈
(

1− 4ε

πH

)
U +

4ε

πH
W, (11)

which is arbitrarily close to U . For the modelMPoly with polynomial curves of

a specific order we will have

P (〈xm+1, ym+1〉|MPoly ∩ SXY ) ≈ (1−Rm)U +RmV. (12)
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The factor Rm stands for the probability of the region of hypotheses for which

the fit with the m points is reasonably good. It is hard to say how this factor

develops in general but with the accumulation of data points, the set of well-

fitting curves will generally stabilize, and hence Rm will tend towards 1 for

increasing m. The result is that the sine model performs less well than the

polynomial model on the BME criterion. On BME, therefore, the inherent

complexity of the sine curves is adequately factored in.

It will be insightful to return to the observations that the set of well-fitting

sine curves is skittish. Well-fitting polynomial curves of a given degree are

located in a particular region within the model, in which posterior probability

can accumulate when data size increases: they will respond to new data points

in roughly the same way. By contrast, with every new data point a tiny fraction

of the well-fitting sine curves is multiplied by a high likelihood, while the rest

picks up a very low factor. It reveals the skittishness of sine curves that such a

large portion of curves is suddenly far off in their prediction.

We can also convert this reasoning to arrive at the consideration on model

size. Judged from a prior probability distribution within the sine model, the

set of well-fitting curves is very small indeed: after m points it has decreased to

(4ε/πH)
m

. But considering a prior within the polynomial model, the set of well-

fitting curves retains a reasonable size. What this signals is that the sine model,

although it has only two free parameters, has many more different statistical

hypotheses packed into it. It is versatile at the cost of a particular kind of

robustness. The use of a prior within the model enables us to bring this kind of

robustness out.

6 Conclusion

We cannot turn the foregoing into an argument for BME: other model evaluation

criteria may also have a response to the problem at stake. But there are several

general lessons to take away. One is that we must never mistake the number

of parameters in a model for its actual complexity. A related lesson is that
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we must not forget the deeper motivations for the model evaluation tools, i.e.,

the good-making features that the tools are based on. Concentrating on those

features will guide us to a better understanding of our evaluations.

Another general general lesson ties in with earlier work on the role of size in

model evaluation (Romeijn et al., 2012), and indeed with scientific methodology

as a whole. In the solution of the problem with the sine model, we can recognize

a Popperian theme. Models that allow for fewer possible data patterns are

preferable to those that allow for a very wide range of data patterns. To express

a notion of model size in our evaluations, we have to adopt some measure over

the space of distributions over data. So we must involve something akin to a

prior.

There is, however, a problem with the idea that we can objectively determine

how densely distributions are packed together in a model. To say that a set of

distributions shows a wide variety in the data patterns that it can adapt to, we

need to presuppose a notion of similarity among data patters or, more generally

speaking, a metric over sample space. In this paper that metric was adopted

implicitly, as part of the way in which we depict and conceptualize the data. This

dependence on the metric of the sample space points to a potential subjectivity

in adjudicating between statistical models, or at least a reliance on a natural

conceptualization of the sample space. This idea deserves to be studied in its

own right.
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