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All Agreed: Aumann meets DeGroot

Abstract

We represent consensus formation processes based on iterated opinion

pooling (DeGroot, 1974; Lehrer and Wagner, 1981) as a dynamic approach

to common knowledge of posteriors (Aumann, 1976; Genneakoplos and

Polemarchakis, 1982). We thus provide a concrete and plausible Bayesian

rationalization of consensus through iterated pooling. The link clarifies

the conditions under which iterated pooling can be rationalized from a

Bayesian perspective, and offers an understanding of iterated pooling in

terms of higher-order beliefs.

1 Introduction

This paper is about two influential models of convergence of probabilistic opin-

ions: consensus through opinion pooling (DeGroot, 1974; Lehrer and Wagner,

1981), and agreement through Bayesian updates (Aumann, 1976; Genneakoplos

and Polemarchakis, 1982).

In linear pooling, upon learning what others believe each agent forms her

new belief by taking a linear combination of the opinions of herself and of others,

weighted by how much she trusts or respects them. By iterating this process

sufficiently often the agents will converge to a fixed point in the space of opinions.

In Bayesian models of agreement, on the other hand, upon learning what the

others believe, the agents update their beliefs by Bayesian conditioning. Under

the assumption of a common starting point and under the further assumption

that agents know the type of information, but not the information content, that

others have been given in the meantime, iteratively announcing the posteriors

will lead the agents to agree.

While it has been claimed that both models offer a method to achieve consen-

sus that is rational in its own right (Aumann, 1976; Lehrer and Wagner, 1981),

doubts have been cast on the conceptual compatibility of pooling and Bayesian

updating—see in particular the discussion in Bradley (2007) and Steele (2012).

Moreover, Bayesian updating is often taken as the “basic normative standard”
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for rational belief change (cf. Bradley, 2007, p. 12). This leads to the question

whether iterated pooling can be given a Bayesian rationalisation. Interestingly,

this is what Aumann writes in his seminal paper:

“It seems to me that the Harsanyi doctrine is implicit in much of [the

literature on opinion pooling]. . . The result of this paper may be con-

sidered a theoretical foundation for the reconciliation of subjective

probabilities [i.e., by means of pooling].”

To the best of our knowledge, Aumann’s suggestion was never converted into

a formal result. Can we indeed reconstruct iterated pooling in Bayesian terms,

in such a way that the sequence of steps towards consensus taken by iterated

pooling can be motivated and accounted for?

Several results have already shown necessary and sufficient conditions for the

Bayesian representation of a single pooling operation (Genest and Schervish,

1985; Bonnay and Cozic, 2015; omitted for blind review, 2015). So there is a

Bayesian representation of agents engaged in pooling, and hence there is, in a

strict sense, a formal account of iterated pooling as well. But what is lacking is

an account of why these iteration steps should be taken in the first place. What

underpins the specific social influence that is modeled by iterated pooling? The

idea behind pooling is that the agents trust or respect, to various degree, the

opinion of the others (Genest and Zidek, 1986). But there is no such thing as

trust, at least on the face of it, in the Bayesian redescription of pooling, and

the iterations of pooling lack proper motivation.

We provide a representation theorem that makes good on Aumann’s sug-

gestion and thereby answers the above questions: consensus via pooling can be

represented as an Aumann-style agreement through updating. Iterated pooling

is thus rationalized according to Bayesian standards, as a matter of higher-order

reasoning. More precisely, the repeated adjustments of pooling can be repre-

sented as steps in which the agents not only rely on their own beliefs regarding

the reliability of the others, but also on their beliefs regarding the others’ beliefs

in their reliability, and so on. The representation offers a concrete interpretation

of the epistemology of iterated pooling: pooling steps constitute an exchange of
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information, and the trust that agents put in each other translates into beliefs

regarding the reliability of others on different levels of the belief hierarchy.

In what follows we assume familiarity with iterated pooling, and so only in-

troduce it briefly in Section 3. Agreement theorems and their dynamic versions,

which underlie our representation, are far less discussed in the social epistemol-

ogy literature. So we present them in some detail in Section 2. We prove the

main theorem in Section 3. Section 4 discusses the interpretation of pooling that

the representation gives, and considers the Bayesian model as an expression of

conditions of applicability.

2 Dynamic agreement result

We survey here the original agreement theorem of Aumann (1976), and the

dynamic formulation of the result by Genneakoplos and Polemarchakis (1982).

We end with a detailed analysis of the events on which agents update in their

dynamic approach to common knowledge. This is crucial for the proof of the

main theorem in the next section.

2.1 The agreement theorem

First we define the algebraic structure that will be used in what follows. Let

WA and WE be finite sets with elements wA and wE respectively and let W =

WA ×WE be a finite set of possible worlds.1 We can partition W into sets of

worlds [wA] = {w : w = 〈wA, v〉 with v ∈WE}, and similarly into sets of worlds

[wE ] = {w : w = 〈v, wE〉 with v ∈WA}. We denote the set of all such sets [wA]

with [WA] and similarly for [WE ]. Now we define A as the algebra generated by

the set [WA], that is, the algebra of factual propositionsA = P(WA)×{WE}, and

similarly we define the algebra of epistemic propositions E = P(WE) × {WA}.
Finally, we write U = P(W ) for the algebra of all propositions.

We now give more detail on the interpretation of these algebras. Consider

two agents, Raquel and Quassim. The elements A ∈ A represent material facts.

1As will be explained below, we restrict attention to a finite approximation of consensus

by iterated pooling. So it will be sufficient to work with finite algebras in the Bayesian models

as well.
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Next to this we have epistemic facts, expressed as elements of E . These concern

the opinions of Raquel and Quassim about propositions A but also the opinions

that the two agents have about each others opinions, and so on. Every world w

is characterized by a truth valuation over all the material facts in A and over

all the epistemic facts about the agents in E .

The opinions of Raquel and Quassim are expressed by probability functions

PR and PQ, both of which are defined on the algebra U . Propositions about

opinions will be denoted by means of upper corners, p·q. For example, the

proposition that Quassim has the opinion PQ(A) = q is written as pPQ(A) = qq.

In what follows we only consider opinions about A and therefore abbreviate this

to pqq, and similarly for Raquel, writing pPR(A) = rq as prq. Raquel might

assign a probability to the proposition pqq, expressed in PR(pqq), and similarly

Quassim may have an opinion about the proposition that Raquel assigns some

probability p to his opinion, PQ(pPR(pqq) = pq).

Such propositions are included in the algebra E of epistemic facts about

Raquel and Quassim. Recall that the set of worlds W and the algebras defined

on it are all finite. This also holds for E . Hence we do not consider all possible

probability assignments for the agents. We only consider the probability as-

signments and corresponding propositions salient for present purposes, namely

those that are needed for the representation of iterated pooling. We will elabo-

rate on these propositions below but first we introduce further elements of the

algebra E .

Quassim and Raquel may also have knowledge, rather than mere opinions,

about each others’ opinions.2 For instance, Raquel may know that PQ(A) = q,

written as KRpPQ(A) = qq. With such propositions on knowledge or informa-

tion states of Raquel and Quassim, we now associate the further algebras R
and Q. These algebras are based on specific partitions of W , the so-called in-

formation partitions. The members of these partitions, Rj and Qk, represent

2The proposition that Raquel knows Quassim’s opinion is logically stronger than the propo-

sition pPR(pPQ(A) = qq) = 1q. Judging some proposition to have unit probability is not

enough for saying that it will obtain. For example, if one samples individuals from an infinite

population in which there is only one individual satisfying some property, then one will assign

the satisfaction of that property for the next individual a unit probability even while, strictly

speaking, one does not know that the next individual will satisfy it.
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the maximally specific information states in which Raquel and Quassim might

find themselves, i.e., the maximally specific propositions that they might know.

We can now specify the knowledge operators KR and KQ, and the notion of

common knowledge, in terms of these information partitions. We write RI(w)

for the partition cell Rj that contains w, i.e., I(w) is a function that returns

the value for j such that w ∈ Rj . The proposition that Raquel knows some

proposition U , written pKRUq, is the set of all worlds that are a member of a

partition cell fully included in U :

pKRUq = {w : RI(w) ⊆ U}.

Accordingly, Quassim knows that Raquel knows U in all the worlds whose par-

tition cell QI(w) is fully included in KRU . Worlds included in a partition cell Qk

that overlaps with, but is not fully included in KRU do not qualify. Formally:

pKQpKRUqq = {w : QI(w) ⊆ pKRUq}.

The entire hierarchy of higher-order knowledge propositions can be built up in

this way. We define “everybody knows U up to level n” inductively as follows:

E0U is just U , and En+1U is pKRpEnUqq∩ pKQpEnUqq. Following the stan-

dard definition (Aumann, 1976), the proposition that U is common knowledge

between Raquel and Quassim, written CRQU , is obtained by taking the limit of

EnU for increasing n: CRQU = ∩n<ΩE
nU . To say that U is common knowledge

for Raquel and Quassim is to say that we cannot, by some series of mutually

overlapping Rj ’s and Qk’s, reach a world outside of U : the set U is closed under

the application of knowledge operators.

To express the agreement theorem we must suppose that the opinions of

Raquel and Quassim PR and PQ have been obtained from updating a regu-

lar common prior P , i.e., a prior that is shared by both agents and non-zero

everywhere on U , on private information, R0 and Q0 respectively:

PR(·) = P (·|R0) , (1)

PQ(·) = P (·|Q0) . (2)

Clearly, Raquel and Quassim do not know what private information the other

has. The information partitions, however, are common knowledge. Raquel
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and Quassim know that the other agent receives information in the form of a

proposition from Q and R respectively, and they know what these algebras look

like.

Agreement theorem (Aumann 1976)

Assume that Raquel and Quassim have a common prior and that in a world w

their posterior beliefs PR(A) = r and PQ(A) = q are common knowledge, viz.

w ∈ CRQ(prq∩ pqq). Then their posterior beliefs coincide in that world, r = q .

This result rests on the properties of the set of worlds CRQ(prq∩pqq), i.e., worlds

in which common knowledge of the posteriors obtains. In particular, note that

for any element Rj from Raquel’s information partition we must have P (A|Rj ∩
CRQ(prq∩pqq)) = r because if not, Raquel or Quassim would consider it possible

that Raquel’s opinion were unequal to r, thus violating common knowledge. By

the law of total probability we therefore have P (A|CRQ(prq ∩ pqq)) = r. The

same will hold for Quassim, i.e., P (A|Qk ∩ CRQ(prq ∩ pqq)) = q for any k and

hence P (A|CRQ(prq ∩ pqq)) = q, and thus r = q.

2.2 Dynamic agreement

The original agreement theorem is static. It establishes the equality of the poste-

riors under the assumption that common knowledge has obtained. Our Bayesian

representation of the pooling model of consensus rather rests on a dynamic ver-

sion of the agreement theorem due to Genneakoplos and Polemarchakis (1982).

They show iterated exchange of opinions will lead to common knowledge among

Raquel and Quassim and hence, under common prior, to agreement. Impor-

tantly, there are only finitely many propositions on opinions that are exchanged

in the approach to common knowledge detailed below, and this explains that

the algebras R and Q are indeed finite.

For the dynamic approach to common knowledge, we again assume a com-

mon prior P over U , so that Raquel and Quassim start with the same opinion,

r0 = P (A) = q0, with pr0q = W = pq0q. Our agents acquire information

privately, R0 and Q0, update on this information and so arrive at the starting

opinions of Equations (1) and (2). Raquel and Quassim then disclose their opin-
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ions about A and, assuming common knowledge of the information partitions,

they each update on this information, revising their opinion on A according to

what the other person thinks, and according to what they now know the other

person knows about them. After this the cycle repeats. Importantly, they up-

date by conditioning so that their subsequent probability assignments can all

be traced back to a common prior P . Raquel and Quassim go through belief

states that are conditioned on ever more specific propositions.

Focusing first on Raquel’s epistemic development, at any stage she updates

by conditioning on the opinion that Quassim holds at that stage. For instance,

when Raquel learns Quassim’s initial opinion, PQ(A) = q1, she conditions her

probability assignment according to PR(A|pq1q) = r2. In particular, she will

progressively eliminate some set of elements Qk of Quassim’s information par-

tition that cannot be squared with Quassim’s current opinion. At every stage

her reasoning is: “If Quassim had initially learnt the information Qk, he would

not now have the opinion qi about A”. In this manner Raquel iteratively re-

constructs the element Q0 that Quassim must have learnt, up to equivalence

in terms of Quassim’s posterior. The same holds for Quassim, who eliminates

elements from the information partition of Raquel up to equivalence with R0,

at which point Raquel’s opinion does not allow him to eliminate any further

elements. This is when common knowledge of posteriors is reached.

Figure 1 illustrates this iterative process for Raquel and Quassim. The cells

are sets of possible worlds. The thinly delineated rows and columns represent

elements Rj and Qk respectively. Raquel and Quassim learn that the actual

world is in the last row R0 and in the rightmost column Q0 respectively, both

of which are coloured grey. Accordingly, the actual world is in the bottom

right grey corner. The coarse-grained rows Ri represent sets of elements Rj

that Quassim eliminates at subsequent update stages, after learning Raquel’s

subsequent opinions ri, and vice versa for the columns Qi, which consist of

elements Qk. The common knowledge proposition CRQ(prq∩ pqq) is delineated

in bold.

At each round Quassim and Raquel do not only learn the opinion of the

other, though. They also learn that the other has learned their own previous

opinion. The exchange of opinion is completely transparant for both of them.
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Figure 1: The Aumann structure for Raquel and Quassim with common knowl-

edge of posteriors showing as the proposition in bold.

So Quassim will himself alter the set of worlds that he takes to be accessible

for Raquel: he eliminates all the worlds outside KRpq0q from Raquel’s domain,

and similarly for Raquel, who eliminates all worlds outside KQpr0q.

It is important to observe that even though this exchange of opinion is

completely public between Raquel and Quassim, a single round of simultaneous

updates on each other’s opinions needs not to create common knowledge of

their posteriors. It does create common knowledge of what these posteriors

were before the announcement. But upon learning the opinion of the other

about A, both Raquel and Quassim can change their own opinion about A.

When Quassim announces his current posterior to Raquel, he of course knows

that Raquel has learned his opinion. But he also realizes that Raquel’s old

opinion r1 may not be her new opinion anymore. She could have changed

her mind upon learning Quassim’s opinion, and he needs not to know exactly

how. The same goes for Raquel. So even though a simultaneous, fully public

exchange of posteriors between Raquel and Quassim creates common knowledge

of what these posterior where before the exchange, it needs not to create common

knowledge of what the posteriors are after. To reach that they more steps.
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Updates are repeated every time Quassim and Raquel disclose their new

opinions, creating two sequences of events, priq and pqiq. At each step these

sets cover fewer elements of the information partitions R and Q respectively.

The sets priq and pqiq hence form so-called filtrations, i.e., sets with index

i + 1 are nested in those with index i. Referring back to the diagrammatic

representation above, we partition W according to these filtrations into:

Ri = pri−1q \ priq , (3)

Qi = pqi−1q \ pqiq . (4)

So the sets Ri and Qi consist of those elements of the information partitions

Rj and Qk that are ruled out in update stage i. As indicated, they are coarse-

grainings of the information partitions R and Q. Notably, they do not coincide

with the sets of worlds eliminated at every update stage because Raquel and

Quassim have already learnt R0 and Q0. The agents eliminate elements of

the information partition of each other only insofar as these overlap with R0

and Q0 respectively, and they record the elimination of elements of their own

information partitions only to keep track of what the other is thinking of them.

We are now ready to offer a recursive definition of the events priq and pqiq,

and hence of the sets Ri and Qi, in terms of specific probability assignments

within these events:

pqiq = {∪kQk : P (A|Qk ∩ pri−1q) = qi} ∩ pqi−1q ,

priq = {∪jRj : P (A|Rj ∩ pqi−1q) = ri} ∩ pri−1q.

Notice that the events pqiq and priq include all the Qk and Rj that are consistent

with the information that Raquel and Quassim, respectively, have about the

opinion states of the other. Equations (3) and (4) show how these events relate

to the events that Raquel and Quassim eliminate at every stage.

In the definition of the events priq and pqiq we can see the interplay between

Raquel and Quassim at work. When Raquel wants to determine which elements

Qk are included in pqiq, she restricts attention to those Qk inside pqi−1q, which

have not been ruled out. But she then looks whether P (A|Qk ∩ pri−1q) = qi,

because she wants to see if Quassim, who now has the opinion qi and who

has updated on her earlier opinion pri−1q, could have learnt Qk. To do this,
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however, she needs to know precisely what Quassim took away from her earlier

opinion, pri−1q, and for that she needs the definitions of both pri−2q and pqi−2q,

and so on, all the way down the epistemic hierarchy.

With this in place, we can specify the two update series that govern the

opinions of Raquel and Quassim:

ri+1 = PR(A|pqiq) = P (A|R0 ∩ pqiq),

qi+1 = PQ(A|priq) = P (A|Q0 ∩ priq).

So these updates affect the probabilities that Raquel and Quassim have for A

and lead them from ri to ri+1, and from qi to qi+1, starting from r1 and q1

respectively. In addition they both update with the knowledge that the other

agent learnt something. However, this second update has no impact on their

probability for A:

PR(A|pqiq) = PR(A|pqiq ∩KQpriq),

PQ(A|priq) = PQ(A|priq ∩KRpqiq).

The update is nevertheless important for our understanding of the approach to

common knowledge. After having updated on the other agent knowing their

opinion, they do not know anymore what the other thinks about A. So this

update explains that Raquel is ready to accommodate Quassim’s new opinion

qi+1, and that Quassim is ready for Raquel’s new opinion ri+1 too, after both

have gone through update round i.

The exchange of opinions will continue until the opinions of Quassim and

Raquel concur at some stage, qn = rn say. To see how this obtains, recall

that at stage n Raquel only considers worlds within R0 ∩ pqn−1q possible and

similarly, Quassim is left only with worlds in Q0 ∩ prn−1q. Moreover, Raquel

and Quassim know of each other that they only consider worlds within pqn−1q∩
prn−1q possible. But imagine that for every Qk ∈ pqn−1q we have that P (A|Qk∩
prn−1q) = qn, and that for every Rk ∈ prn−1q we have that P (A|Rk∩pqn−1q) =

rn. In that case, the only probability for A that Raquel might have is rn, and

similarly qn is the only probability left open for Quassim. At any earlier stage,

both will have had some variation in the probability of A over the elements
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from their information partitions within pqn−1q ∩ prn−1q, but at round n this

probability is constant for both.

This is the point of the dynamic version of the agreement theorem due

to Genneakoplos and Polemarchakis (1982), i.e., the result that “we cannot

disagree forever”. For an informal grasp of their result, observe that at round n

the opinions of Raquel and Quassim are indeed common knowledge: neither can

conceive that the other will have a different probability for A than what they

have, and they also know this of each other, know that they know this, and so on.

In terms of the characterisation of common knowledge above: there is no series of

mutually overlapping Rj ’s and Qk’s such that either agent can arrive at a world

at which the probability assignment for A differs from rn or qn, because these

assignments are constant over all accessible rows and columns. This fact, which

establishes the common knowledge of the probability assignments, namely that

the probabilities are constant over all remaining sets within both information

partitions, is also responsible for the equality of these assignments. We obtain

full agreement about A, rn = qn, by the marginalization argument already given

in the context of Aumann’s static result.

2.3 Approach to common knowledge: example

It will be insightful to provide a brief example of the approach to common knowl-

edge, with which we can illustrate the diagrammatic representation given above.

The example is inspired by the one provided in Genneakoplos and Polemarchakis

(1982) but it is constructed to match a simple pooling case, as presented in the

next section.

Consider the set of worlds and the information partitions given in Figure

2. The dots represent equiprobable possible worlds. Solid dots are worlds in

which A is true, open dots represent worlds at which ¬A is true. At the outset

Raquel learns R0 and so she has a probability of r1 = P (A|R0) = 9
30

= 3
10

, while

Quassim learns Q0 and so has q1 = P (A|Q0) = 18
30

= 3
5
.

Raquel and Quassim then tell each other their probability assignments.

Upon hearing q1, Raquel concludes that Quassim cannot have learnt Q1 be-

cause if he had, he would have given A a probability of 1
10

instead. But he
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Figure 2: Example of an Aumann structure for Raquel and Quassim.

could still have learnt Q2 because P (A|Q2) = 12
20

= 3
5

as well. Hence Raquel

takes pq1q = Q0 ∪ Q2 and eliminates Q1. Her new probability for A becomes

r2 = P (A|R0∩pq1q) = 7
20

. Upon hearing r1, Quassim in his turn concludes that

Raquel can still have learnt R2 but that she cannot have learnt R1 because if

she had, she would have given A a probability of 17
20

. Hence pr1q = R0 ∪R2, so

that Quassim’s new probability for A becomes q2 = P (A|Q0 ∩ pr1q) = 10
20

= 1
2
.

Notice that Raquel and Quassim both realize that the other agent will have

eliminated some worlds, namely from the sets Q1 and R1 respectively. Because

they do not know what information the other obtained in the first place, they

cannot derive from that what the new probability assignment of the other agent

will be. Raquel and Quassim really learn something new when tell each other

their new probability assignments, r2 = 7
20

and q2 = 1
2
.

Upon hearing q2, Raquel concludes that Quassim cannot have learnt Q2

because if he had, he would have had q2 = 3
11

. Importantly, to determine this

Raquel uses her understanding of Quassim’s epistemic situation, including his

understanding of hers. She knows that he has updated on pr1q, i.e., eliminated

R1, and she evaluates what would have been Quassim’s opinion if he had learnt

Q2 at the outset and then accommodated pr1q, finding that he would then have

given A a probability of 3
11

. She thus eliminates all of Q2, taking pq2q = Q0. Her

new probability for A becomes r3 = P (A|R0 ∩ pq2q) = 4
10

= 2
5
. Furthermore,
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upon hearing r2, Quassim concludes that Raquel cannot have learnt R2 because

if she had, she would have had r2 = 6
11

, going through a similar train of higher-

order thought as was just described for Raquel. He eliminates R2 altogether,

taking pr2q = R0, and his new probability for A becomes q3 = P (A|Q0∩pr2q) =

2
5

as well! He comes to agree with Raquel.

At this point Raquel and Quassim have achieved common knowledge and so

agree on the probability of A. In this simple case, agreement is reached because

both agents derived what the other agent actually learnt at the outset. But

this is not necessary for the agreement to obtain: it is enough if, among the

remaining elements of the information partition, the probability of A among

the worlds still accessible for the other agent is constant.

3 Representing opinion pooling

We turn to the target of the paper: to show that a process of iterated pooling

among Raquel and Quassim can be framed as a dynamic approach to common

knowledge, through repeated Bayesian updates by Raquel and Quassim on each

other’s posteriors. In this way we establish that iterated pooling can be ratio-

nalized as a specific Bayesian procedure. We first describe a finite version of

consensus through iterated pooling, which prepares for the proof of the main

theorem. At the end of the section we consider an extension and a refinement

of the result.

3.1 Consensus in finitely many steps

Consider Raquel and Quassim who both have an opinion about A, to wit,

P 1
R(A) = r1 and P 1

Q(A) = q1. Linear pooling determines that the subsequent

opinion of Raquel P 2
R(A) is given by

r2 = wRq1 + (1− wR)r1. (5)

The parameter wR ∈ [0, 1] specifies to what extent the updated opinion of

Raquel will move towards that of Quassim. By way of interpretation: it mea-
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sures the trust that Raquel has in Quassim. With wQ we can determine the

subsequent opinion of Quassim in the same way.3

The pooling operation can be iterated with the same parameters, resulting

in a series of opinions of both Raquel and Quassim:

〈r1, q1〉, 〈r2, q2〉, . . . , 〈rn−1, qn−1〉, 〈rn, qn〉 . . . (6)

If the weights are both constant and sit within the open unit interval, the process

is guaranteed to converge to consensus, 〈p, p〉. This condition is not necessary;

see Jackson (2008, chap.8) for a more elaborate presentation of the model. The

consensus opinion is a fixed point in the Markov process for which the weights

wR and wQ determine the transition matrix. Intuitively, Raquel and Quassim

will traverse the distance between them in steps proportional to the weights

they assign to each other, and so meet at an intermediate point.

For a numerical example, we can briefly return to Section 2.3. We fix r1 = 3
10

and q1 = 3
5

and we choose wR = 1
6

and wQ = 1
3
. We then find r2 = 7

20
and

q2 = 1
2
, then r3 = 9

24
and q3 = 9

20
, and so on, until we reach p = r1 + wR(q1 −

r1)/(wR + wq) = 2
5

after infinitely many iterations.

Except when the weights are the same for all agents, iterated pooling with

constant weights arrives at consensus only in the limit. But in order to align

this process to an approach to common knowledge, it is convenient to convert

it to a series with finite length. Notably, if there is indeed a consensus point p,

we can always close off the series this by adapting the weights in the final step

n, namely by scaling up the weights proportionally so that they add up to 1:

w′R =
wR

wR + wQ
= 1− w′Q.

The result of closing off in this way coincides with the result of an indefinite

iteration of pooling. In the example, we obtain w′R = 1
3

and w′Q = 2
3
. If

we close off at step n = 3, we then go from r2 = 7
20

and q2 = 1
2

straight to

r′3 = 2
5

= q′3, thereby following the approach to common knowledge of Section

3This model dates back at least to French (1956) and has been developed by Stone (1961),

DeGroot (1974) and numerous others. For philosophers the classical treatment is Lehrer and

Wagner (1981). In what follows we restrict ourselves to the model presented in DeGroot

(1974).
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2.3. Importantly, a series can be closed off in this way at any step n, and for large

n the remaining discrepancy between rn−1 and qn−1 will become vanishingly

small.

Considering that common knowledge is attained by a sequence of Bayesian

updates, it might seem crucial that the pooling operation has a Bayesian repre-

sentation. This representation is indeed available. Genest and Schervish (1985)

prove that we can always organize our likelihoods in such a way that the prior

and posterior conform to the pooling operation. More precisely, we can choose

the likelihoods such that any pair of non-extremal priors for Raquel and Quas-

sim will lead to the pair of posteriors determined by pooling. This leaves some

room for variation in the probability assignments. Specifically, while the expec-

tations that Raquel and Quassim have of each other must be centered on their

own opinion, the shape of the probability distributions over the opinions of the

other agent can be chosen freely. We return to this result and its use for our

purposes in subsection 3.3.

3.2 A common prior for iterated pooling

We have already provided an example of how a closed-off pooling process can be

accommodated in an Aumann structure: the numbers of the example of iterated

pooling match those of the approach to common knowledge in Section 2.3. In

what follows we are given a closed-off iterated pooling process,

〈r1, q1〉, 〈r2, q2〉, . . . , 〈rn−1, qn−1〉, 〈r′n, q′n〉,

such that r′n = q′n, and we show that this process can be mapped onto the

approach to common knowledge in general.

Recall that the Aumann structure consisted in a set of possible worlds W ,

carved up by two information partitions, R and Q. We first prove a generic

Lemma, which will be applied repeatedly in the proof of the main theorem.

Lemma

Let S be a set of worlds and let {Si}0≤i≤m be a filtration, with non-empty

Si+1 ( Si and S0 = S. Let S be the algebra generated by this filtration and

the set A, where A ∩ Si 6= ∅ for all i. Furthermore, let 〈p1, p2, . . . , pm〉 be a
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sequence of length m with 0 < pi < 1 and pi 6= pi′ unless i = i′. Then there is

a probability function P over S such that for all 0 ≤ i < m

P (A|Si) = pi+1,

where

0 < P (Si+1|Si) < Min
(

pi
pi+1

, 1−pi
1−pi+1

)
. (7)

Proof

We prove this for a fixed value m and by induction over i. For i = 0 the

case is trivial: we can simply fix P (A|S) = P (A|S0) = p1. For the inductive

step, assume that we satisfy P (A|Si′) = pi′+1 for all i′ < i, where i < m. In

particular, we have that P (A|Si−1) = pi. We can now add the constraint that

P (A|Si) = pi+1 and hence show that we can satisfy the constraints P (A|Si′) =

pi′+1 for all i′ < i+ 1. Writing x = P (Si|Si−1) and p̄i+1 = P (A|{Si−1\Si}), we

have

pi = xpi+1 + (1− x)p̄i+1 .

We can solve for x and p̄i+1 to obtain a range of possible values:

x =
pi − p̄i+1

pi+1 − p̄i+1

where we choose p̄i+1 such that 0 < x < 1, e.g., if pi < pi+1 then 0 < x < pi
pi+1

,

and if pi > pi+1 then 0 < x < 1−pi
1−pi+1

, which establishes the constraint Equation

(7). �

The Lemma establishes that an update series can lead to any sequence of prob-

ability values for the proposition A. So it can also replicate the probability

assignments resulting from an iterated pooling process.4 The Bayesian ratio-

nalization of pooling mentioned above falls under this general header but is

otherwise far more specific, leaving less room for variation in the common prior.

We will return to the use of this more specific equality for the purpose of linking

4Notice that we require that pi 6= pi′ unless i = i′. If we allow P (Si|Si−1) = x = 1 we

can also accommodate their equality. But for a sequence of opinions resulting from iterated

pooling they will always differ, because the pooling weights are assumed to be smaller than 1.
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agreement and consensus towards the end of this section. First we prove the

main theorem, by applying the Lemma to all the elements Rj and Qk.

Theorem

Let 〈ri, qi〉i≤n be a sequence of probability assignments for a proposition A,

resulting from an iterated pooling that is closed off at n. Then there is always a

finite two-person Aumann structure 〈W,R,Q〉, a regular common prior P over

it, and a world w ∈ W , such that the approach to common knowledge through

the exchange of posteriors matches the sequence produced by closed off iterated

pooling:

PR(A|pqiq) = ri+1 and PQ(A|priq) = qi+1 .

for all i = 0, 1, . . . , n, where PR and PQ are conditioned on events R and Q that

contain w.

Proof

The match between dynamic agreement and consensus formation involves the

existence of a finite Aumann structure that can accommodate the exchange

and iteated pooling of opinions, and the existence of a common prior over this

structure that replicates the opinions. On the first claim we will be brief. It

is clear from the foregoing that such a finite Aumann structure can always be

constructed. It merely requires us to make the structure large enough. The

proof thus focuses on the second claim, which is proved in two parts. First we

establish that the common prior can accommodate the constraints on the pos-

teriors for Raquel and Quassim. Then we establish that the remaining freedom

in the common prior easily suffices to meet the constraints needed for adequate

definitions of the update events of Raquel and Quassim.

To accommodate the posteriors of Raquel and Quassim, the common prior

must at least conform to the following:

P (A|R0 ∩ pqiq) = ri+1 , (8)

P (A|Q0 ∩ priq) = qi+1 . (9)

We can establish that these constraints can be satisfied by a direct application

of the Lemma. Focusing on Raquel, we substitute R0 for S and for all 0 ≤ i < m
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we substitute pqiq for Si and ri+1 for pi+1, using m = n− 1. The Lemma then

states that any consensus formation process can be accommodated. The same

holds for the process of Quassim, with Q0 for S and the Si’s and pi+1’s replaced

by pri+1q’s and qi’s respectively.

Now consider an element Qk of Quassim’s information partition that Raquel

eliminates when she updates on pqmq, so Qk ⊂ Qm. Since Qk ⊂ pqiq for all

i < m, the probability assignment within Qk must comply to specific constraints.

Raquel cannot, until update stage m, rule out that Quassim learnt Qk rather

than Q0, hence we must have

P (A|Qk ∩ priq) = qi+1

for all 0 ≤ i < m. Since these constraints are the same for all Qk ∈ Qm we can

formulate the constraints on that level. Moreover, we can do so for for both

Raquel and Quassim and for any update stage. We obtain

P (A|Rm ∩ pqiq) = ri+1 , (10)

P (A|Qm ∩ priq) = qi+1 , (11)

for all 0 ≤ i < m and for all m ≤ n. It will be clear that these constraints can

also be met in virtue of the Lemma above.

Notice that R0 ⊂ Rn and Q0 ⊂ Qn, so that the constraints (8) and (9) are

covered by the constraints (10) and (11). Further constraints come from the

fact that at stage i = m, Raquel and Quassim must eliminate elements from

the information partition,

P (A|Rm ∩ pqmq) 6= rm+1 , (12)

P (A|Qm ∩ prmq) 6= qm+1 , (13)

for all m < n. Importantly, because of these inequality constraints, the con-

straints that P (A|Rm ∩ pqm−1q) = rm and P (A|Qm ∩ prm−1q) = qm do not

entail anything for the probablity assignments within Rm ∩ pqiq and Qm ∩ priq
for i > m.

Now consider what elements of the algebra U are involved in satisfying the

constraints. We identify the cells Ujk = Rj∩Qk and observe that the constraints
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of (10) can be met by adapting the probability assignments of and within all

Ujk for which j ≥ k, while the constraints of (11) involve only the probability

assignments of and within Ujk for which j ≤ k. These constraints are therefore

pertaining to disjunct, non-overlapping parts of the algebra U .

The constraints (12) and (13) do interfere with each other, as they both

pertain to the diagonal, Ujk for j = k. But they do so in a benign way, as

they only require inequality. The constraints can in fact be used to ensure that

the constraints imposed above and below the diagonal do not interfere with

each other any further. For any row Rj′ , for example, meeting the constraints

pertaining to Uj′k for k < j′ has implications for the probability of A within

∪j′≤k≤nUj′k. But because the probabilities in Uj′j′ can be chosen almost entirely

freely, the probabilities within the cells Uj′k for k > j′, sitting below the diagonal

in rowRj′ , are not constrained at all. And the same goes for any specific column

Qk′ .

The one remaining way in which the constraints might interfere is through

the requirements on the relative sizes, as expressed by Equation (7) in the

Lemma. In the Aumann structure this requirement translates to size require-

ments for both P (priq|Qm) and P (pqiq|Rm) for any m and any i < m. The

constraints can be met easily by requiring that these conditional probabilities

respect the given constraints, substituting respectively r’s and q’s for the p’s

in the Lemma. It is clear that we can always meet these constraints because

they all point in the same direction: we simply make sure that P (priq ∩ pqiq)
diminishes rapidly with inceasing i. We conclude that the common prior can

accommodate all the constraints. �

This establishes that the Aumann structure and the common prior can be cho-

sen in such a way that the dynamic approach to common knowledge of pos-

teriors reproduces the process of iterated pooling described by DeGroot. The

proof makes good on Aumann’s suggestion, cited in the introduction, that his

agreement theorem is a theoretical foundation for consensus through iterated

pooling.
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3.3 Extending and refining the result

In this section we briefly investigate extensions and developments of the above

theorem. First we consider the extension to an infinitely long iteration of pool-

ing operations. We then discuss developing the theorem by imposing further

constraints on the common prior or by employing the available freedom in the

choice of the prior.

The foregoing establishes that a closed-off pooling process can be replicated

as an approach to common knowledge by orchestrating the common prior in

the right way. But this is not exactly showing that consensus and agreement

can be aligned, because strictly speaking the former requires an infinitely long

series of operations. One response to this is to point to the limiting properties.

Because the closing stage n may be at any time, and because by increasing

n we can make the discrepancy between rn−1 and qn−1 indefinitely small, we

can make the discrepancy between the approach to common knowledge and the

consensus formation indefinitely small as well. We have thus shown the identity

of consensus and agreement for all practical purposes.5

Another response is to draw a parallel between closing off a series of pooling

operations, and achieving common knowledge in one update step, as described

in Genneakoplos and Polemarchakis (1982). The final update step in the ap-

proach to common knowledge is one in which all is revealed. After step n,

neither Raquel nor Quassim has any doubt left as to the posteriors of the other

agent. This step differs from preceding steps in the update sequence, in which

some variation among the probability assignments within the remaining ele-

ments of the information partitions was retained. We might consider the final

pooling operation in similar fashion: it encompasses all the considerations that

would otherwise play out over infinitely many rounds of pooling. Modeling all

these rounds explicitly can be done by expanding the information partitions

indefinitely, but in a Bayesian approach to common knowledge such an infinite

exchange can also be collapsed onto a single update step.

5In various studies on iterated pooling, e.g. (Zollman, 2007; Mayo-Wilson et al., 2011), it

is customary to apply such a more lenient criterion for consensus.
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We now turn to further developments of the theorem. Recall that the the-

orem leaves considerable freedom in choosing the prior. Consensus through

iterated pooling is thus aligned with a sizeable class of common priors that each

lead to the given pooling process. The fact that the representation is not a

tight fit invites a more extensive investigation of the systematic relations that

obtain between classes of common priors and pooling processes, with which we

will make a very modest beginning here.

One suggestion is to constrain the common prior further, by employing the

equivalence of pooling and updating that was proved in Genest and Schervish

(1985). This equivalence is both more specific and more general than the equiv-

alence of this paper. It only covers a one-shot pooling operation but it is con-

cerned with the level of operations rather than the level of instances of belief

change. It entails not merely that the actual probability assignments of Raquel

and Quassim match the pooling sequence, but also that the probability assign-

ments of Raquel and Quassim are such that other priors for the proposition

of interest would also lead them to the posteriors obtained through a pooling

operation.

We will not offer a proof of this claim, but we conjecture that the more

strict equality of consensus and agreement is indeed feasible, owing to the same

argument that supports our main theorem. The constraints that are needed to

establish the more strict equality replace the lenient constraints of the Lemma.

But they attach to the very same segments Ujk of the algebra and so, for the

reasons already stated, they do not get in the way of each other. It seems that we

can therefore construct a more narrow class of common priors that leads to the

requisite pooling process, and whose members have the additional feature that

a variation of the initial probabilities r1 and q1 while leaving the further details

of the common prior intact also results in an approach to common knowledge

that mimics a pooling process.

Other developments of the representation are concerned with the nature

of the pooling operation. For one, until now we have considered linear pool-

ing. But seeing the freedom in choosing the probability assignments that the

Lemma still offers, it seems evident that other pooling operations can also be

accommodated in a common prior. Further, we might investigate how far we
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can get in pooling probability assignments over a segment of the algebra rather

than a single proposition. Finally, through the representation we have obtained

a different characterisation of pooling processes in terms of the corresponding

common priors. It will be interesting to investigate the properties of pooling

processes by means of their common prior characterisations.

4 Discussion

The main representation theorem provides a rationalization of consensus by

iterated pooling. For any such consensus formation process starting with non-

extremal beliefs, there is a corresponding dynamic agreement model such that,

first, the agents in the latter model reach the same agreement as in the iterated

pooling scenario and, second, the intermediate opinion dynamics leading to

consensus or agreement is the same in both models. In other words, each step

in the process of iterated pooling, from first to last, could be taken by fully

rational Bayesian agents with common prior beliefs. And the iterative process

can be explained by reference to an implicit exchange of information, happening

at increasingly higher orders in the belief hierarchy.

It might seem that this result elevates iterated pooling to the same level

as Bayesian updating, even though it is conceptually far more parsimonious.

But the representation theorem merely shows that any consensus formation

process brought about by iterated pooling can be represented in a Bayesian

framework. For this representation to work we need to choose a distinct prior

probability over the richer algebra of epistemic facts. If we choose another prior

probability, we can represent all manner of other processes of opinion exchange.

The Bayesian model of agreement is thus far more powerful than the pooling

model. It provides a foundation rather than a redescription of consensus through

pooling.

One might object that this representation does not provide a satisfactory

foundation of consensus formation by iterated pooling because it is too de-

manding. In iterated pooling the agents operates on the very simple algebra

generated by just one element, A. In dynamic agreement models this alge-

bra is much richer. We have seen that it contains propositions regarding the
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opinions of the others, the opinions of others about the opinions of others, and

so on. Furthermore, the agents have sharp beliefs about all elements of this

complex algebra. So inasmuch as full opinionation is an unrealistic assump-

tion in probabilistic modeling overall, the situation is aggravated in dynamic

agreement models. The argument might be that the rationalization of iterated

pooling is only made at the cost of overly strong idealization, which renders it

less plausible.

We consider this objection in some detail. We first note that there is certainly

nothing irrational, epistemically speaking, in being fully opinionated about a

rich algebra of propositions.6 So the fact that iterated pooling can be rational-

ized in Bayesian terms is not threatened by observing that full opinionation is

not a demand of doxastic rationality.7 To undermine our representation, the

over-demandingness objection might instead appeal to practical considerations,

e.g., by arguing that such a system of beliefs about the beliefs of others is com-

putationally too costly for resource-bounded agents, or else to over-idealization.

But since we are after an epistemic rationalization, the appeal to practical con-

siderations does not apply. We thus contend that our representation theorem is

not too demanding as an epistemic rationalization.

Another objection concerns certain peculiarities in the generalization to more

than two agents. In the foregoing we have considered only Raquel and Quassim

but as is well-known, consensus formation and dynamic agreement can both

be run with any number of agents. On the side of iterated pooling it is easily

seen that this changes little to the nature of the approach to consensus. If we

include Simone next to Quassim and have Raquel determine her new probability

in response to two agents, we may first combine the opinions of Quassim and

Simone using Raquel’s weights, and then have Raquel adapt her opinion to the

combined opinions of the other two, again by her weights. A parallel reduction

to the two agent case can be given on the side of the approach to agreement.

However, the probability assignments required for more than two agents have

6Credal sets may or may not provide a better representation of belief states than sharp

probability assignments. However the case may be, it does not impinge on our discussion,

which only gets going once a consensus formation process with sharp probabilities is given.
7Witnessing a large body of literature on credal sets in epistemology, see e.g. (Bradley,

2015).
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to have certain correlations among the agents built in, if we want the results

of updating to match pooling. The Bayesian model thus suggests that pooling

among more than two agents requires the opinions of the agents to be correlated

in a particular way.

The objection might be that such correlations are artifacts of the way in

which pooling is represented. But we think not: rather we believe that the

Bayesian model offers us a more fine-grained understanding of what we commit

to when we engage in iterated pooling. To apply iterated pooling in a situation

with three agents, we must assume that the agents have probability assignments

that satisfy these constraints, and this is brought out by the Bayesian model.

More generally, each consensus formation process can be associated with a class

of output-equivalent Bayesian update processes, and these equivalence classes

indicate the conditions under which iterated pooling is warranted. Importantly,

this viewpoint helps us to answer the criticism that consensus via pooling is

too coarse-grained, and that it ignores epistemically relevant aspects of social

situations. It may well be that pooling blurs out salient distinctions. But

whether these distinctions are unduly neglected when applying iterated pooling

depends on the modeler, who will have to judge whether the conditions for

applying iterated pooling are met in the case at hand.

Continuing in this more positive mode, we believe the representation pro-

vides a clearer role division for epistemic trust and rational belief change. In

pooling models, trust is embodied both by the weights the agents assign to each

other and by the belief change mechanism, i.e., the linear pooling operation

itself. Learning and trusting are in a sense lumped together. In the dynamic

agreement models that we constructed, on the other hand, the two are clearly

separated. Learning is covered by the standard Bayesian machinery. Trust, on

the other hand, is hard-wired in the common prior and the common knowledge

of information partitions, which guarantees a progressive movement towards

agreement upon repeatedly learning each others’ opinion. In other words, the

representation we give is of agents who treat each others’ opinion as pieces of

evidence like any other, but which are a priori disposed to making concessions

towards consensus.
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The representation theorem thus shows that the dynamics of beliefs in it-

erated pooling can be interpreted in terms of trust and, crucially, higher-order

beliefs. At each step of the process, the agents not only learn about the pos-

teriors of others, but they also learn what the others have learned about them.

This second piece of information needs not affect the agents’ beliefs in the fac-

tual proposition at hand, that is, in the proposition A of the theorem. But it

is crucial that it may change their view on what the other person might believe

regarding that proposition, thus allowing for further eliminations of elements of

the information partition as the process is iterated. So the mutual trust between

the agents that is encoded in the prior leads to consensus through a dynamics

of higher-order beliefs.

One final worry might be that this interpretation of iterated pooling ap-

pears incompatible with the standard one, the one compatible with the classical

“peer disagreement problem” (Hartmann et al, 2009; Martini et al, 2013), in

which differences of opinion persist even when there is no difference in private

information. In such contexts iterated pooling has been suggested as rational

arbitration mechanism. If we read sameness of private information in a strict

sense, i.e., as having the same information partition and prior, then such cases

are obviously ruled out by the assumptions in our representation.

We believe that this does not speak very strongly against our rationaliza-

tion of iterated pooling, since the purported incompatibility only appears under

an extremely strong reading of “sameness of information”. In dynamic agree-

ment models, having the same factual information about the proposition A, or

even about all material facts in the algebra A, does not rule out having dif-

ferent higher-order information. The incompatibility with the traditional peer

disagreement scenario only appears if we interpret sameness of information as

sameness of first and higher-order information. But this puts the bar of being

an epistemic peer extremely high. Agents in that scenario are not only equally

informed about A, they are equally informed at all higher-order levels. In that

context it is at the very least questionable whether peer disagreement can still

occur.
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5 Conclusion

Summing up, consensus by iterated pooling can be represented as a dynamic

agreement process under common prior. This provides a plausible epistemic

rationalization of the former. It does so in a way that highlights potential

correlations between the agent’s beliefs in groups larger than two, and that

makes a clear distinction between the expression of trust and rational belief

change. Iterated pooling and dynamic agreement models should thus not be

seen as competing views on how to reach a consensus. In view of our result

they are perfectly compatible, with the latter offering an interpretation of the

former.

Bayesian models are of course more general and fine-grained. It is easy to

construct a dynamic agreement model to which there corresponds no sequence

of iterated pooling, even with changing weights. The example of Section 2.3 is

a case in point. And the rather large room to maneuver left by the theorem in

the construction of the prior suggests that the same iterated pooling sequence

can be mapped to rather different epistemic situations. Iterated pooling is thus

a special case among the many types of epistemic situations covered by dynamic

agreement models, a case that relies on a specific trust that obtains among the

agents.

Instead of weighing pros and cons of each side, what the result in this paper

suggests is to start traversing the formal bridge between the sides, taking in-

sights and modeling tools along. Among other things, based on the existence of

dynamic agreements we might look at generalizations of the pooling model that

introduce additional parameters. This may lead to rationalizable consensus for-

mation processes that are better tailored to the practice of consensus formation,

without sacrificing too much on the attractive simplicity of consensus through

iterated pooling.
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