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Abstract
This note contains a corrective and a generalization of results by Borsboom et al. (2008), based on
Heesen and Romeijn (2019). It highlights the relevance of insights from psychometrics beyond the con-
text of psychological testing.

Translational Abstract
This note addresses issues related to fairness in testing. A previous article by Borsboom et al. has shown
that two plausible ways of formalizing the idea of test fairness are inconsistent with each other. That is
(under certain assumptions), if one notion of fairness holds, then the other fails, and vice versa. Here we
note some minor errors in the mathematical proofs of Borsboom et al. and, more importantly, show that
their findings hold even if the assumptions are significantly weakened. We also point out that in the
intervening decade, similar results have been found in several other fields. We provide a brief compari-
son and highlight the potential for psychometrics research to contribute to other fields.
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Borsboom et al. (2008) showed that we cannot combine two im-
portant fairness requirements for selection procedures. On the one
hand we wish that selection procedures respect “measurement
invariance,” meaning that they treat all individuals in the same
way. Specifically, the probability for an individual to be selected
may only depend on the latent ability that they are tested for; not
on other characteristics of the individual. On the other hand they
must be “selection invariant,” that is, treat all groups within the
population equally. In particular, if we partition the population
into groups, we want the probabilities of misclassification to be
the same in these groups. In short, the procedure may not discrimi-
nate individuals or groups on the basis of any other characteristic
than the latent ability at issue.
Per Borsboom et al. (2008), fair selection is impossible if this is

understood as a procedure that makes good on both requirements.
This result is driven by the fact that groups will in general differ on
the latent variable that is being selected for; the latent ability will cor-
relate with other population characteristics. For example, the ability
may be the command of a language, and this will give certain nation-
alities or ethnicities an edge. People from different groups thereby
have different probabilities for being selected. The specific unfairness
that ensues if we maintain measurement invariance is that the

selection procedure does not work equally well for people from dif-
ferent groups: the procedure will incorrectly reject and accept mem-
bers of these groups at different rates. Moreover, the arguably most
impactful errors will be higher for more vulnerable groups.

This is not an isolated finding. We briefly review related results
in the next section. We then provide a corrective and a generaliza-
tion of the original results by Borsboom et al. (2008), based on
Heesen and Romeijn (2019). This is timely as there is widespread
concern over the transparency, adequacy, and fairness of auto-
mated selection and classification procedures. Psychometrics is in
an excellent position to advance this debate.

Similar Findings in Other Fields

Interestingly, the problem of implicit discrimination in Bors-
boom et al. (2008) was rediscovered, presumably independently,
by Kleinberg et al. (2017) and Chouldechova (2017) in the context
of the discussion on fairness in Artificial Intelligence (AI): a
machine learner that fairly judges individuals can nevertheless dis-
criminate at the group level. The result rightly received public
attention (e.g., Angwin et al., 2016) and has inspired further dis-
cussion in the AI community (e.g., Barocas et al., 2019; Barocas
& Selbst, 2016; Corbett-Davies et al., 2017).

Given that Kleinberg et al. (2017) and Chouldechova (2017) do
not compare their results to those of Borsboom et al. (2008), we
briefly do so here. At the heart of Kleinberg et al.’s (2017) and
Chouldechova’s (2017) results is Bayes’ theorem. In the terminol-
ogy of Borsboom et al. (2008), which is explained in detail in the
next section, they hold fixed the test sensitivity and specificity for
two groups taking the same test (the likelihoods in Bayes’ theo-
rem), and then observe that if the base rates are different in the
two groups, the positive and negative predictive values (the poste-
riors in Bayes’ theorem) will be different as well. Thus, assuming
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that the base rates are different, if one wants equal predictive value
across groups, one cannot have equal sensitivity and specificity,
and vice versa. Because equal predictive values are identified as a
necessary condition for fairness, requiring a test to be fair in this
sense entails that it will not operate equally well for groups with
different probabilities for the latent variable, that is, different base
rates, thereby making the test unfair in another sense. So Klein-
berg et al. and Chouldechova are ultimately highlighting a form of
base-rate neglect. In medicine and epidemiology, base-rate neglect
has been widely reported and discussed (Casscells et al., 1978;
Hoffrage et al., 2000).
This is superficially similar to the results in Borsboom et al.

(2008) and to the generalization presented here. But there are nota-
ble differences. Borsboom et al. (2008) make the stronger assump-
tion of measurement invariance, which requires that for any fixed
value of the underlying continuous latent characteristic the test
operates equally well, independently of group membership. We get
a correspondingly stronger result: assuming different distributions
over the latent characteristic for the two groups, all four of the test
error rates (sensitivity, specificity, and positive and negative predic-
tive value) differ across groups. Once again, requiring the test to be
fair in one sense, this time requiring measurement invariance, the
test fails to operate equally well for groups that differ on the latent
characteristic. However, in the result from Borsboom et al. (2008),
the requirement of fairness is more specific, and the differences in
test quality between the two groups are more dramatic.
In labor market economics, there has long been awareness that

selection methods for job allocation can be discriminatory (cf. Fang
& Moro, 2011). The focus of these discussions is on the impact of
factoring in other characteristics explicitly: If skills are latent,
employers will seek proxies and end up selecting on the basis of
demographics that are known to correlate with skills. However, we
are not aware of results that match those by Borsboom et al. (2008),
which pertain to the implicit discriminatory nature of selection.
In philosophy, the above insights have been imported in several

debates. For example, Heesen and Romeijn (2019) apply the pres-
ent results to scientific peer review, viewed as a selection proce-
dure, and suggest that they may lead to a conservative bias.
Stewart and Nielsen (2020) and Stewart (2020) take Kleinberg et
al. (2017) as their starting point for, respectively, discussions of
testimonial injustice and assessment in general. We will not
review these discussions here. Rather, by drawing attention to
these connections, we hope to stimulate further work applying
insights from psychometrics in other fields.
To facilitate a more easy uptake of the results from Borsboom

et al. (2008) in these various fields, in what follows we present the
original results in corrected form, ironing out several inaccuracies.
Next we present a more general and hence more widely applicable
version of the result due to Heesen and Romeijn (2019). The result
has a more succinct proof than the original, which can be found in
their Appendix.

The Setup

We briefly rehearse the formal setup of Borsboom et al. (2008).
Assume a population of individuals who differentially possess
some latent characteristic h. We distinguish two groups in the pop-
ulation (H and L). In each of these groups, the distribution of the
latent characteristic is Gaussian (or “normal”), but the mean and

variance of this distribution may differ between the groups. We
write lg for the mean and rg for the standard deviation of h in
group g (where either g = H or g = L).

An individual is considered suitable if her individual value of
the latent characteristic exceeds a threshold value hc. This yields a
binary division of the population into suitable individuals (h $ hc,
marked S) and unsuitable individuals (h, hc, marked ´S).

We would like to select suitable individuals, but we do not
observe the value of the latent characteristic directly. We instead
rely on a test. An individual’s test score X is assumed to be linearly
related to the latent characteristic, subject to some random error.
More precisely, for an individual in group g,

X ¼ sg þ kghþ eg; (1)

where kg . 0 is the regression coefficient, sg the intercept, and eg
the error term. Errors are assumed to be Gaussian with mean zero
and standard deviation re,g.

We select individuals based on a threshold Xc on the test scores.
An individual is accepted (event A) if X $ Xc and rejected (event
´A) if X , Xc.

The requirement of measurement invariance states that, condi-
tional on the true value of the latent characteristic h, the probabil-
ity distribution of the test scores should be independent of group
membership (formally: X j h�X j h \ g for any g). In the present
context, this amounts to the requirement that sH ¼ sL; kH ¼ kL,
and re;H ¼ re;L. Borsboom et al. (2008, p. 79) further assume
hc ¼ Xc ¼ sH ¼ sL ¼ 0, supposedly without loss of generality.

Selection invariance requires instead that the error rates of the
selection process are the same across groups. The relevant quanti-
ties here are the positive predictive value pðS jAÞ, the negative pre-
dictive value pð:S j :AÞ, the sensitivity pðA j SÞ, and the specificity
pð:A j :SÞ.

Results

The main result of Borsboom et al. (2008) is that, in general, mea-
surement invariance and selection invariance cannot be achieved
simultaneously. More specifically, they claim to show two things.

First, if measurement invariance obtains and the two groups dif-
fer (only) in their means, that is, lH > lL and rH ¼ rL, then
selection invariance fails in that the test will have greater positive
predictive value and sensitivity for group H:

pðS jA \ HÞ > pðS jA \ LÞ and pðA j S \ HÞ > pðA j S \ LÞ:
(2)

As a corollary, group L will experience greater negative predictive
value and specificity.

Second, if measurement invariance obtains and the two groups
differ in both mean and variance, selection invariance fails as well.
More specifically, if l=r$l0=r0 and r . r

0
then positive predic-

tive value and sensitivity will be greater for the group with mean l
and standard deviation r. On the other hand, if l0=r 0 $ l=r and
r . r0 then negative predictive value and specificity will be
greater for the group with mean l0 and standard deviation r 0.

There are a couple of issues with the second result. First, the
inequalities for negative predictive value and specificity are back-
ward. Contrary to the claim in the previous paragraph, if
l0=r0 $ l=r and r . r

0
then negative predictive value and
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specificity will be greater for the group with mean l and standard
deviation r. The numbered Equation 17 in the original article should
actually read:

r0

r
l#l0 ) pð:S j :A \ gl;rÞ > pð:S j :A \ gl0;r0 Þ;

pð:A j :S \ gl;rÞ > pð:A j :S \ gl0;r0 Þ:
�

(17)

The second issue is that the paper encourages the slightly mis-
leading suggestion that there is something special about the ratio
between the mean and the standard deviation. But this turns out to
be a consequence of the not completely innocent assumption that
hc = 0. If we repeat the proofs without that assumption (we do not
provide this here, but the claim is a special case of the results dis-
cussed in the next section), we find that the direction of the
inequalities depends on whether

l� hc
r

$
l0 � hc
r0 or

l� hc
r

#
l0 � hc
r0 : (3)

The two issues just identified are the only ones that affect the
results of Borsboom et al. (2008). That said, there are some minor
errors in the proofs of that paper that we wish to highlight while
we are at it.
First, there is a typo in Equations A11 and A12: All three occur-

rences of lg should in fact read –lg.
Second, Borsboom et al. (2008, Appendix B) aims to identify

the marginal distribution of X (within a group g) and finds that X
is normally distributed with mean kglg and standard deviation

s ¼ re;g
1
2
þ k2gr

2
g

r2
e;g þ k2gr

2
g

 !�1=2

: (B8)

This is the result of a small mistake earlier in the proof: in Equation

B6 they write exp½�ð12 þ c2

1þc2ÞX
02� which should have been

exp½�ð12 � 1
2

c2

1þc2ÞX
02�. The correct standard deviation (independently

verified using moment-generating functions) is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
e;g þ k2gr

2
g

q
.

Third, there are some typos in Appendix D. In Equation D1
there is a minus sign missing inside both sets of square brackets.
The second line of page 98 refers to Equation C6 but should refer
to Equation C4. And the line between Equations D7 and D8
should refer to Equation D5 rather than Equation D1.

Improved Results

It turns out that the incompatibility between measurement invar-
iance and selection invariance holds under more general assump-
tions than the ones made by Borsboom et al. (2008). We drop all
structural assumptions about the test and instead assume just that it
accepts or rejects individuals and is responsive to the latent charac-
teristic. Measurement invariance then amounts to the requirement
that pðA j hÞ ¼ pðA j h \ gÞ for any g. Responsiveness to the latent
characteristic is captured in the assumption that pðA j hÞ is a strictly
increasing function of h.
We also drop the assumption that the latent characteristic fol-

lows a Gaussian distribution. We instead assume that there is a

(shared) log-concave density function f such that, for each group
g, the density function fg is given by

fgðhÞ ¼ 1
rg

f
h� lg
rg

 !
: (4)

The family of log-concave density functions is a nonparametric
family that includes, for example, the uniform and exponential dis-
tributions (Saumard & Wellner, 2014). Because the Gaussian den-
sity function is log-concave, this assumption is a strict
generalization of the one made by Borsboom et al. (2008).

The density function f may exist for all real numbers (e.g., the
Gaussian), on a half-line (e.g., the exponential), or a finite interval
(e.g., the uniform). To avoid edge cases, we assume throughout
this section that hc is chosen such that 0, pðS j gÞ, 1 for at least
one group g.

The first result then generalizes as follows (Heesen & Romeijn,
2019, Theorem 3). Assuming measurement invariance, if lH > lL
and rH ¼ rL, then

pðS jA \ HÞ > pðS jA \ LÞ and pðA j S \ HÞ$ pðA j S \ LÞ:
(5)

The latter inequality is strict unless the right tail of f is exponen-
tial. Under the same conditions we also have

pð:S j :A \ LÞ > pð:S j :A \ HÞ and

pð:A j :S \ LÞ$ pð:A j :S \ HÞ: (6)

The second result also generalizes once the factors mentioned in
the previous sector are taken into account (Heesen & Romeijn,
2019, Theorem 5). If measurement invariance is satisfied, then

lH � hc
rH

$
lL � hc
rL

& rH > rL

) pðS jA \ HÞ > pðS jA \ LÞ;
pðA j S \ HÞ > pðA j S \ LÞ:

�
(7)

And conversely,

lH � hc
rH

$
lL � hc
rL

& rL > rH

) pð:S j :A \ LÞ > pð:S j :A \ HÞ;
pð:A j :S \ LÞ > pð:A j :S \ HÞ:

�
(8)

Thus the results from Borsboom et al. (2008) are ultimately seen
to hold in a significantly more general mathematical setting.
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