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Part I

Progic

• A research team carrying out a two-year project.

• Aiming to marry logic and probabilistic inferential systems.

• In order to bundle the forces of these respective systems.



1 The Potential of Probabilistic Logic

The Progic project aims to formulate a general logical framework for probabilistic inference,
analogous to classical logic.

Classical logic: 1, 2, . . . , n |= b?

Probabilistic logic: X11 , X22 , . . . , Xnn |= b
?

The classical inference concerns truth value assignments, the probabilistic inference con-
cerns probability assignments.

Scope

• Progic covers inductive logic, classical and Bayesian statistics, evidential probability,
objective Bayesianism, and probabilistic argumentation theory.

• It has applications in a wide variety of areas: formal epistemology, mathematical
statistics, the philosophy of science, artificial intelligence, bioinformatics, linguistics,
psychometrics.



Progic strategy
First we show how a number of systems for probabilistic inference can be unified in the
Progic framework.

• The key question of each is representable as X11 , X22 , . . . , Xnn |= b
?.

• Each provides semantics, a notion of model, for this general question.

aX , bY

all models p

Then we show how probabilistic nets can be used to reduce the computational complexity
of the inferences that the systems have in common.

• Convex sets of probability assignments are typically all that is needed.

• Credal and Bayesian nets can handle these very well.



2 Standard Probabilistic Semantics

Models are characterised by probability assignments. Premises and conclusions are con-
straints on models. An inference is valid if satisfaction of the conclusion constraint is guar-
anteed by the combined constraints of the premises.

premises

conclusion

all models p

This notion of validity is the common core to all probabilistic logics.



Probability theory as logic
A probability space is a tuple, (W,F , p), where F is a σ-algebra over a set W and p : F −→
[0,1] is a probability measure defined on the algebra F satisfying

P1. p(∅) = 0, p(W) = 1

P2. p(
⋃∞
=1 A) =
∑∞
=(A), when A are countable, pairwise disjoint elements of F .

The probability space provides the models. They relate to a langauge as follows.

• We associate each  ∈ W with a truth assignment on atomic propositions  in a
language L by the indicator function (,) ∈ {0,1}.

• We can identify the set A1 = { : (,) = 1} with the proposition , and similarly
A1 ∧ B1 = { : (,)× (,b) = 1}.

• The expressions q and p(A1 ) = q refer to the probability assignment in the syntax
and the semantics respectively.



Sets of probabilities
A valid inference in the standard semantics is (∧ b)0.3, (¬∧ b)0 |= b0.3. A slightly more
involved example is (∧ b)0.3 |= bY?. Now the premises do not constrain the conclusion to
a sharp value of p(b) = Y but rather to a convex set of probability values.

p(a) ↑ 

p(b) → 

1

0 1

a

b

In the standard semantics, both premises and conclusion may constrain the probability
assignments only up to a convex set of probabilities: X, Y ∈ [p, p]. The inference problem
is to find the smallest upper and the largest lower bound to Y given the intervals X.



3 Credal and Bayesian Networks

We can represent much more elaborate inferential systems in the Progic framework, and
interpret the inference problem of the framework in terms of these inferential systems.

• The different inferential systems provide different ways for determining the set of
models that comply to the premises.

• These representations and interpretations allow us to unify different inferential sys-
tems, and bring out their common core.

Often probabilistic inference systems are computationally intractable. However. . .

• We provide an efficient inferential procedure for the main problem in the Progic frame-
work using so-called credal networks.

• We thereby serve all the inferential systems that can be accommodated in the frame-
work.



Bayesian networks
A Bayesian network is a representation of a probability function over random variables that
captures the independence relations among these variables graphically.

A C B 

p(C1) = 0.3

p(A1|C1) = 0.7, p(A1|C0) = 0.9

p(B1|C1) = 0.1, p(B1|C0) = 0.2

The independencies are laid down in the Markov Condition: U ⊥⊥ NDU | PrU. For the above
chain we can write

p(A,B,C) =
∏

U∈{A,B,C}
p(U | prU).



Credal networks
A credal net represents a so-called credal set: a closed convex set of probability functions.

A C B 

p(C1) ∈ [0.3,0.32]

p(A1|C1) ∈ [0.7,1], p(A1|C0) ∈ [0.1,0.9]

p(B1|C1) = 0.1, p(B1|C0) ∈ [0.2,0.5]

A credal network determines a set of credal sets. The specific extension of the network
determines the independence assumptions that the members of the credal set satisfy.

Natural: include every probability for which the conditional probabilities in the network
are within the bounds, so no independence assumptions.

Strong: assume the independence for the extremal points, and then take the convex hull.

Complete: take all the Bayesian nets for which the conditional probabilities lie within the
bounds, so complete independence.



Parameterised credal nets
A parameterised credal net represents a credal set in which the extremal points are inter-
related. The relations arise when constraints involve more than one node in the network,
for example A and C.

A C B 

γ
df
= p(C1) ∈ [0.3,1]

p(A1|C1) =
0.3

γ
, p(A1|C0) = 0

p(B1|C1) = 0.1, p(B1|C0) ∈ [0.2,0.5]

Parameterised credal nets offer the same advantages, and allow for the same computa-
tional procedures as ordinary credal nets. But there are some restrictions to the possible
functional relations between interval bounds.



Progic inferential procedure
The inference problem in the Progic framework is to find the minimal Y such that

X11 , X22 , . . . , Xnn |= b
Y .

Credal networks can be used to speed up this process. The strategy is as follows.

Step 1: Employ the specifics of the inferential systems that can be represented in the
Progic framework to determine a probabilistic net. This will vary according to the
inferential system that determines the semantics.

Step 2: Use the network from Step 1 to calculate Y efficiently. This step is independent of
the chosen semantics. It uses a hill-climbing algorithm on the contours of the credal
set to find the upper and lower bounds for Y.



Hill climbing
Some background to the hill-climbing algorithm used for the second step.

1. Transform b into an equivalent disjoint DNF b1 ∨ · · ·∨ bs, for which b ∧ bj ≡ ⊥ if  6= j.

• For example, b = 1 ∨ 2 is transformed into b1 = 1 and b2 = ¬1 ∧ 2.

• Note that p(B1) = p(B11) + · · ·+ p(B
1
s ).

2. Perform inference in the credal network.

• Calculate lower and upper bounds p(B1) and p(B1).

• Very inefficient in general, so approximation is indispensable.

• Logical compilation: expensive offline phase, cheap online phase.

– Compile the credal net using techniques from Bayesian nets.
– Instantiate the compiled net for all disjoint queries bj.

– Apply hill-climbing to minimize and maximize p(B1) =
∑s
j=1 p(B

1
j ).

3. Use p(B1) and p(B1) as bounds for Y in bY .



4 Networks for the Standard Semantics

The natural extension of a credal net comprises of all probability functions over {A,B} for
which the restrictions on conditional probabilities hold.

A B

In this case, A and B are independent. Imagine further that we have the following premises:

[0.25,075], b[0.50,1].

In terms of the probability assignments in the semantics:

p(A1) ∈ [0.25,0.75], p(B1) = [0.50,1].

Under the natural and strong extension, the resulting credal set includes probability func-
tions for which the conditional independence suggested by the network does not hold.



Strong versus complete extension
It is only when we assume what may be called the complete extension of a credal net that
these independencies hold. Assuming the complete extension means adding the following
premise to the scheme:

∀α, β ∈ [0,1] : α ∧ bβ ∧ (∧ b)αβ.

This comes down to the following restriction to the set of probability assignments:

p(A1) =
p(A1 ∩ B1)
p(B1)

.

But we can already run efficient algorithms with credal networks on the assumption of the
strong extension: we employ independence to cover cases for which independence does
not hold.



Interestingly, it depends on the parameterisation, or the metric, of the space of probability
assignments whether assuming the strong extension is the same as assuming the complete
extension or not.

θ2

β0 →

 ↑
α

β1

θ3

θ1

θ0

↑

Using credal nets
In order to employ the computational advantages of credal networks, we must minimally
assume the strong extension. But nothing in the standard semantics itself warrants any
independence assumptions.



Dilation
It is notable that the independence relations are not only of computational use. They
can do conceptual work in the dynamics of probability intervals, in particular to avoid a
phenomenon called dilation. We do this by confining p to the complete extension of the
credal network.

A C B 

p(C1) ∈ [0,0.5], p(A1|C1) = 0.5

p(B1|C0) ∈ [0.5,1], p(B1|C1) ∈ [0,0.5]

Example: say that we learn c and condition on it, so that our belief in  is p(A1|C1), and
that we are then offered a test on b. After learning either that b or that ¬b, the probability
assignment to  is again the whole interval, because p(A1|C1 ∧ Bj) ∈ [0,1] for j = 0,1. So
by learning whether b we invariably loose all information on .



Part II

Statistical Inference and Evidence

• The Progic framework can be applied to statistical inference.

• with the aim of providing statisticians with additional logical tools.

• and widen the view on evidential relations.



5 Statistical Inference

An important application of probability theory is the use of statistics in science, predomi-
nantly classical statistics as devised by Fisher and Neyman and Pearson.

Classical statistics
Classical statistical procedures concern probability assignments pH(E) over samples E rel-
ative to a statistical hypothesis H.

• Neyman-Pearson test function:
pH0 (E)
pH1 (E)

.

• Fisher estimate: parameterise the hypotheses with θ, then the estimate is

{θ : ∀θ′(pHθ′ (E) ≤ pHθ(E))}.

Can we faithfully accommodate classical statistics in the inferential schema of Progic? Per-
haps classical statistical procedures cannot be seen as inferences to start with. Rather they
are a guide for making decisions, which have certain error rates associated with them.



The fiducial argument
Fisher suggested a way of capturing classical statistics in terms of a probabilistic inference
by means of so-called fiducial probability.

Dawid and Stone provide a general characterisation of the set of statistical problems 〈Hθ, E〉
that allow for application of the fiducial argument, using so-called functional models:

ƒ (θ,ω) = E

VE(θ) = {ω : ƒ (θ,ω) = E}

p(E|Hθ) =
∑

ω∈VE(θ)
p(ω)

A specific class of functional models allows for the application of the fiducial argument:

∀θ 6= θ′ : VE(θ) ∩ VE(θ′) = ∅ ⇒ p(θ) =
∑

ω∈Vθ(E)
p(ω).



Support and possibility
Functional models show the limits of the fiducial argument, but as Kohlas and Monney
(200X) show, they also provide the starting point for an adapted and more general version
of the fiducial argument. The general idea is best captured in a picture.

ω ↑
θ →

f(θ,ω)=E 
H 

PH(E) 

SH(E) 



Formal explication
Based on the functional model ƒ (Hθ, ω) = E, a hypothesis H = ∪θ∈Hθ, determined by an
interval , can always be assigned a degree of support (Sp) and possibility (Pos). With
UE(ω) = {Hθ : ƒ (θ,ω) = E}, we define

SH(E) = {ω : UE(ω) ⊂ H} Sp(H) =
∑

ω∈SH(E)
p(ω),

PH(E) = {ω : UE(ω) ∩H 6= ∅} Pos(H) =
∑

ω∈PH(E)
p(ω).

This inference can be captured in the inferential scheme of Progic as follows:

(ƒ : ƒ (θ,ω) = E})1 ∧ωp(ω) ∧ e1 |= H[Sp(H),Pos(H)].



6 Networks for Statistical Inference

Credal networks apply to this version of classical statistical inference in a number of ways.
The basic idea is that we can exploit independence relations inherent to the set-up of
functional models.

Credal networks

• as tools to structure functional models;

• as used in the standard semantics;

• to express vague evidence.

Independence in functional models
One way to employ networks is by identifying and exploiting the independence relations
between statistical parameters that appear in the functional models:

ƒ (θ1, θ2, ω) = g1(θ1, ω)g2(θ2, ω).



Logical combinations of hypotheses
The conclusion H[Sp(H),Pos(H)] can be employed in derivations of the probability of logi-
cal combinations of several hypotheses. The Progic framework here provides inference
procedures based on credal networks.

Yet we must be careful in taking the intervals of Sp and Pos as interval-valued probability
assignments simpliciter.

• The functions Sp and Pos express the probability of nested but different events.

• Combining hypotheses on the level of the underlying functional models may lead
to different results than combining the hypotheses with interval-valued probability
directly.

• This signals that not all of the semantics of classical statistics is covered by the stan-
dard semantics inherent in credal networks.



Vague evidence
An interesting possibility is to introduce vagueness into the evidence, VE(θ) ( V?E(θ). This
leads to intervals for both support and possibility separately. The separate interval-valued
degrees of support and possibility do not suffer from the above defects.

H 

ω ↑

f(θ,ω)=E 

θ →

P*
H(E) 

P*H(E) 

S*
H(E) 

f*(θ,ω)=E



7 Bayesian Statistical Inference

Bayesian statistics is much more easily connected to the inferential schema of Progic.

Second-order probability
The distinguishing feature of Bayesian statistical inference is that it assigns probability over
statistical hypotheses. The inferences are captured in

∀j ≤ n : h
p(Hj)
j ∧ (e|hj)θj |= (hj|e)p(Hj |E).

The schema combines probabilistic premises, namely the priors and likelihoods of hypothe-
ses, to arrive at probabilistic conclusions, namely a conditional posterior over the hypothe-
ses.



Some notation
Arguments of the form (|b)γ are not normal expressions in the language. But at bottom
they are restrictions to a set of probability assignments, or models for short.

(|b)γ ⇔ ∀β ∈ [0,1] : p(B1) = β, p(A1 ∩ B1) = βγ.

In terms of the premises in the language:

(|b)γ ⇔ ∀β ∈ [0,1] : bβ ∧ (∧ b)βγ.

With this interpretation, the Bayesian inference follows directly from the standard seman-
tics.

A continuum of hypotheses
Many statistical applications employ a continuum of hypotheses Hθ. The inference then
involves an uncountable infinity of premises and conclusions. But by choosing θj =

2j−1
2n we

can approximate the continuous model arbitrarily close by increasing n.



Exchangeability and inductive logic
Predictions p(E′|E) can be derived from the posterior probability assignments p(Hθ|E) and
the likelihoods for E′. Such predictions also fit the framework:

∀θ : Hp(θ)θ ∧ (E|Hθ)θE ∧ (E′|Hθ)θE′ |= (E′|E)p(E
′ |E),

Using exchangeability, we can represent any such statistical inference on the basis of multi-
nomial distributions in terms of a finite number of probability assignments over observa-
tions:

∀π : π(E ∩ E′)p(E∩E
′) |= (E′|E)p(E

′ |E).

Here π is an order permutation. Carnap, Jeffrey, and others consider special cases of the
finite reformulation in what has become known as inductive logic.



Interval-valued priors
Intervals of probability assignments constitute a wider set of restrictions to the probability
assignments. They can be employed in Bayesian statistical inference in at least two ways.

• Walley shows that we can allow for interval-valued assignments to statistical hypothe-
ses. They can be dealt with adequately by considering a range of prior density func-
tions over the hypotheses. Any range of priors leads to so-called hyper-Carnapian
prediction rules.

• From the detailed knowledge of a sharp-valued probability assignment over hypothe-
ses we may derive interval-valued probability assignments for θ. Example:

– fix  and  such that
∫ 
0 p(Hθ|E)dθ =

∫ 1
 p(θ|E)dθ = 0.025;

– the inferential scheme may then take on the form

θ[.01,.99] ∧ (E|Hθ)θE |= (Hθ|E)[.08,.13];

This inferential form is elliptic: the premise θ[.01,.99] does not fix the detailed shape of
the prior probability p(Hθ)dθ, but we need this detailed form to arrive at the specific
conditional credence interval H[.08,.13]θ .



8 Networks for Bayesian Statistical Inference

There are again various ways in which credal networks may be employed in expanding and
improving standard Bayesian statistical inference.

Credal networks

• as tools to structure a statistical model;

• as used in the standard semantics;

• to express uncertain evidential relations.

Models as credal networks
A credal set can be viewed a statistical model: each member is a probability function over
some set of variables. Any credal set may be captured by a second-order probability over
all probability functions over the variables that is non-zero only at functions belonging to
the credal set.



The representation of the model as a credal network is useful when adapting the probability
over the model in learning from data. Consider subsequent observations, at times t, of
three binary variables Ut = {At , Bt , Ct}.

At Ct Bt 

A statistical hypothesis on these variables must fix 23 − 1 = 7 free probabilities. But the
complete extension of the credal net may be parameterised by a 5-tuple η = 〈γ,α0, β0, α1, β1〉,
where

p(C1t |Hη) = γ with γ ∈ [0,1],

p(A1t |C

t ∧Hη) = α with α ∈ [0,1],

p(B1t |C

t ∧Hη) = β with β ∈ [0,1].

This reduction in the dimensions of the model entails major reductions in computational
load.



Logically complex statistical hypotheses
We may include statistical hypotheses as hidden nodes in a credal network. This allows
us to derive logical combinations of statistical hypotheses by the inference machinery of
Progic.

Example: a node Hγ with values γ ∈ [0,1] may be added as a common parent to instanti-
ations, at specific t, of the single binary variable Ct.

C1 C2 Ct 

H

But we must be careful in interpreting the interval-valued probability assignments to sta-
tistical hypotheses that result from such inferences.



Uncertain evidential relations
Consider the hypotheses Hj for j = 0,1, include the hypothesis node Hj in the credal net-
work, and replace the sharp probability values for C1t = 1 with

p(C1t |H0) ∈ [0.3,0.7],

p(C1t |H1) ∈ [0.6,0.8].

The common machinery of credal networks can be applied directly to such interval-valued
likelihoods.

The interpretation of this is that the statistical hypotheses are not exactly clear on the
probability of C1t , although they do differ on it. This formal possibility is in a sense comple-
mentary to the well-known method of Jeffrey conditioning.



9 Conclusion

Part I : We may represent and interpret many different probabilistic inferential systems in
the Progic framework.

Part II : Efficient inference becomes possible with the use of credal networks. The required
independence assumptions are motivated by the different systems.
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