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1. The dual nature of probability 
The first mention of probability in its modern meaning is found in a correspondence between Pascal and 
Fermat concerning a game of chance. This discussion concerns the estimation of the probability of events 
given a fixed chance setup. The probabilities are thus assigned to events in the world. 
 
After being converted to the Catholic sect of Jansenists, Pascal devised an influential argument for 
believing in God, known as Pascal’s wager. Among other things the wager involves the probability that 
God exists. The thing to note is that in this case, probability is assigned to a belief. It is epistemic. 
 
It is this distinction between two kinds of probability that is at the heart of Bayesian inference, as it was 
first conceived by Thomas Bayes. Statistical inference, as it will be discussed in the next lecture, also drives 
on this distinction: it is about aligning epistemic probability with the probabilities ‘out there’. 
 
2. Physical probability 
Fairly quickly the notion of probability was applied to other physical events than just the rolling of dice. An 
important early application is the calculation of mortality rates with the aim of valuating insurance 
contracts. Probability, it turned out, can be used for all sorts of mass phenomena. 
 
There is a more or less continuous line from these first applications to modern times. A number of 
highlights over the centuries: 

- Jakob Bernoulli and the law of large numbers. 
- Poisson, Gauss and Daniel Bernoulli: the start of error statistics. 
- Maxwell, Quetelet and the notion of a ‘mean man’. 
- Galton, Pearson, and Fisher: statistical methodology and the advance of science. 
- Boltzmann, Einstein and quantum mechanics: using statistics at the heart of physics. 

 
3. Epistemic probability 
The basic idea of epistemic interpretations of probability is that probability is an expression of uncertain 
opinion. We may distinguish two main developments. 
 
The analyses of bets by Pascal and Huygens marked the start of decision theory. An important advance is 
the use of a notion of utility, in Daniel Bernoulli’s solution to the St Petersburg paradox. In the work of 
Ramsey, Savage, and Jeffrey, this idea is developed further. Savage axiomatised probability in tandem with 
utility, with the motivation that on itself probability does not have any empirical import. 
 
Leibniz picked up on the revolution of the probabilists, but used it for his own main interest, legal 
reasoning. Unfortunately the use of probability in court remains controversial up to the present age. But the 
use of probability in a theory of sound reasoning with uncertainty has only gained popularity. In the 
following I want to concentrate on the simplest and, to my mind, the most promising of probabilistic logics: 
Bayesian logic. 
 
4. Axiomatisation of probability 
Before doing so, it is useful to specify the modern axiomatisation that is due to Kolmogorov. In his 
treatment, probability is a measure of sets A, B, etc. 

- p(A) ≥ 0 
- p(Ω) = 1 
- p(A ∪ B) = p(A) + p(B)  if A ∩ B = ∅. 

We can conveniently represent the sets by means of Venn diagrams. Their areas are a natural measure, and 
thus represent the probabilities assigned to the sets. The areas nicely illustrate Kolmogorov’s axioms. 



 
A collection of sets forms a so-called algebra if it is closed under a number of set theoretical operations. For 
Kolmogorov a probability measure is defined on such an algebra. For the applications we will consider, it is 
useful to think of sets as collections of possible worlds. Each set is characterised by a proposition that is 
true in exactly those possible worlds belonging to the set.  
 
In this way we can associate sets with propositions, and thus assign probabilities to propositions. The 
beauty of Kolmogorov’s axiomatisation is that it is just a formal system. It does not suggest anything 
towards an interpretation of the probability measure. 
 
5. Bayesian logic 
In the set-theoretical formulation of Kolmogorov it is rather easy to derive the theorem that Thomas Bayes 
painstakingly derived some 250 years ago: p(A | B) = p(A) p(B | A) / p(B). This theorem is the centerpiece 
of Bayesian inference. 
 
Following the work of De Finetti, Howson, Fitelson, we can view the theory of probability itself as a 
deductive logic. There is a striking similarity between probability as a function over an algebra, and truth 
values as a function over a language: probabilities can be viewed as generalised truth valuations.  
 
In this view Kolmogorov’s axioms determine what probability assignments are consistent. Usually this idea 
is defended by means of so-called Dutch book arguments, betting setups in which the gambler who does 
not comply with the axioms is guaranteed to loose money. Inferences that obey this consistency criterium 
on subjective probabilities is often called Bayesian. 
 
Bayesian inference, understood in this way, dictates the probability values that must be assigned to specific 
propositions on the basis of certain values for other propositions. There are numerous philosophical 
applications of this idea, for example the Monty Hall dilemma. 
 
6. An example: Monty Hall 
There is a car behind door i = 1, 2, 3, denoted Ai. We choose door 1, denoted K1. Now say that Monty opens 
door 2, denoted M2. According to Bayes’ formula, the probability that the car is behind door i is: 
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where the expression in the denominator is 
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So we can derive everything from the so-called prior probabilities p(Ai | K1) and the so-called likelihoods, 
p(M2 | Ai & K1). The priors are p(Ai | K1) = � for each i. We further know that p(M2 | A2 & K1) = 0, because 
Monty will not open the door with the car, in this case door 2. We also know that p(M2 | A3 & K1) = 1, 
Monty opens a door you did not choose, in this case M2 or M3. Finally, we assume p(M2 | A1 & K1) = ½.. If 
the car is behind door 1, Monty can choose to open either door 2 or door 3, and in those cases he chooses 
randomly. We can now derive that p(M2 | K1) = �×½ + �×0 + �×1 = ½, and filling this in we also have 
p(A3 | M2 & K1) = � × 1 / ½ = �, and  p(A1 | M2 & K1) = � × ½ / ½ = �. 
 
7. Induction 
The interest of the next lecture is in the application of logical probabilistic inference to induction. Induction 
is supposed to bring us from data to general conclusions on the populations from which the data is 
obtained. Statistics can be seen as an attempt to provide a probabilistic warrant for such inferences. 
 
The warrant of classical statistics is based on the law of large numbers, and typically associated with the 
exclusive use of physical probability. Against this, Bayesian statistics makes explicit use of both epistemic 
and physical probability. 
 
 


