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1 Conjunction fallacy

Linda is 31 years old, unmarried, assertive, and intelligent. She studied
philosophy and wrote her thesis on social issues and justice. She was active
in the campaign against the war in Iraq.

Which of the following two statements is more
probable?

1. Linda is a bank teller.

2. Linda is a bank teller who is active in the
feminist movement.



Probability and set inclusion
Statisticians will not give the answer that is often given by the probabilisti-
cally naive.

Linda is a bank teller…

…who is active in the
feminist movement.

Probability is a measure over sets, and the set of worlds in which Linda is a
feminist bank teller is strictly included in the set of worlds in which she is a
bank tellers.



Bayesian model selection
The idea behind BMS is to assign probabilities to models, and compare these
models by means of the marginal, or average, likelihoods:

P(M1|)
P(M0|)

=
P(|M1)
P(|M0)

P(M1)

P(M0)

where

P(|M) =
∫

M

P(|θ)P(θ)dθ.

For want of a prior over models, the likelihood ratio is often taken as the
sole guide to choosing the model.



Model selection and Linda
It seems that Bayesian model selection is prone to committing the conjunc-
tion fallacy.

The probability of the constrained model may get larger than the probability
of the unconstrained model. What do those probabilities refer to?



Bayesian information criterion
The BIC is an approximation to the marginal log-likelihood of a model in the
long run:

P(|M) ∼ − logP(|θ̂) + d logn

in which θ̂ is the maximum likelihood (ML) estimation of θ for the data
, and n is the size of the data set . It seems that the BIC is prone to
committing the same conjunction fallacy as BMS.



2 Model selection

Are other model selection tools also prone to the conjunction fallacy? And if
not, can we understand BIC along the lines of the other ICs?

AIC We estimate the expected distance between the truth and the ML-
estimation in the model.

DIC We estimate the expected predictive accuracy of the ML-estimation in
the model.

These selection tools employ some penalty term, typically the number of
model parameters d, as a measure of complexity. Note that prima facie this
makes choosing between inequality constrained models different.



AIC
The general idea of the AIC is that we determine the estimated distance
between the true chance θ? and the chance θ estimated in the model.

Δ(θ?, θ) ∼ EP(|θ?)[− logP(|θ)]

In this expression θ can still range over the whole model, while distances
are of course between two points. This is resolved by taking an expectation
towards a dummy data set y.

Δ(θ?, θ) ∼ EP(y|θ?)
�

EP(|θ?)[− logP(|θ̂y)]
�

In integrating this data set out, the number of dimensions appears:

Δ(θ?, θ) ∼ EP(|θ?)[− logP(|θ̂)] + d ∼ logP(|θ̂) + d



AIC continued
Formulas are perhaps not the best way of explaining the procedure. . . Here
is an artist’s impression of how the distance to an unknown truth θ? is esti-
mated.

θ0 ↑ 

θ1 → 

1

0 1

M0

→
 

θ2

1

θ0 ↑ 

θ1 → 

1

0 1

M1
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θ2

1
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DIC
In the DIC we determine a Bayesian expectation for the parameter θy, and
we see how well this expected value predicts data from the true distribution,
P(|θ?).

EP(|θ?)[− logP(|θy)] ∼ − logP(y|θy) + d

The predictive accuracy is measured by the logarithmic loss function:

− logP(|θ)

This is also only term that matters to the distance function featuring in the
AIC. Although different in interpretation, the loss function expressing predic-
tive accuracy and the distance to the truth may be used interchangeably.



BMS
Clearly AIC and DIC do not commit the conjunction fallacy. But can we frame
the BIC as the other ICs? There is some similarity in the use of average
likelihoods:

− logP(y|M) ∼ EP(θ)[− logP(y|θ)].

But this is a far cry from presenting BMS on a par with the other ICs.

• The true parameter value θ? is not alluded to in the BMS.

• BMS does not rest on an expression involving all possible data  but
only the data actually obtained.

In the following we are going to bite the bullet and see what else the prob-
abilities featuring in BMS might mean.



3 Comparing causal models

Say that we compare the following causal hypotheses about two binary vari-
ables:

The non-causal model has a so-called simplex as its parameter space, with
four independent probabilities adding up to one. The causal model is repre-
sented by a parameter for the probability of A, and two parameters for the
conditional probabilities of B on A.



Different uniform priors
The different parameterisations, associated with a different causal picture,
motivate different uniform priors over what is essentially the same param-
eter space.



Different predictive properties
Depending on the prior, we find predictions that approach the true parame-
ter value more or less quickly.

P(yt+1 = 1|y1 · · ·yt) =
λ

t + λ

1

2
+

t

t + λ

t1

t
.

The same expression also captures the expected values for the parameter,
because

P(yt+1 = 1|θ, y1 · · ·yt) = θ P(yt+1 = 1|y1 · · ·yt) =
∫

θP(θ)dθ = θy.

The marginal likelihoods thus capture how the expected value for θ ap-
proaches the true value.



An example
For the causal hypotheses at hand, we can derive the following likelihood
ratio for the two models as follows:

BF =
P(y1 · · ·yt |Mcausal)

P(y1 · · ·yt |Mnon-causal)
=
6(t0 + 1)(t1 + 1)

(t + 2)(t + 3)

We find the following interesting points:

Number of observations t Interval in which BF > 1
< 12 –
12 1

2
48 [14 ,

3
4]

∞ [12 −
1
2
p
3
, 12 +

1
2
p
3
]

This means that with less than 12 observations, the causal model always
performs better! What is going on?



4 Convergence measure

In the foregoing example, the Bayes-factor measures how fast the expected
value of the parameter θy approaches the true value θ?.

P(θ1) ↑ 

θ1 → 

2

0 1

M0

P(θ1) ↑ 

2

0 1

M1

θ1 → 

true θ1 true θ1

We can view BMS in this way more generally: we are comparing the priors
on their convergence properties.



Choosing the best expectation
Both models generate an expected value for the parameter value θy.

P(θ1| y) ↑ 

θ1 → 

2

0 1

M0

P(θ1| y) ↑ 

2

0 1

M1

θ1 → 

true θ1 true θ1

estimated θ1 estimated θ1

* *

If θ? lies within the restricted region, the expected value of the restricted
model will be closer to the true value.



What marginal likelihood measures
Marginal likelihood thus combine the aforementioned aspects of model se-
lection in a particular way.

• The Bayes’ factors measure the online predictive performance of the
models. This performance is determined by

– the probability distributions in the model, and

– the prior probability over the model.

• The online predictive performance is a measure for the distance to
the true parameter value: it expresses the speed of approaching the
maximum likelihood estimation.

However, the performance and distance are determined by the data that
we have obtained, and not by all data that we could have got under the
true distribution.



5 Future research

This leaves many questions unanswered. . .

• Can we derive a BIC for equi-dimensional models that only differ in the
prior defined over them? For inequality-constrained priors the answer
is affirmative, but the general case is unclear.

• Following the BIC, we can still view BMS as generating a kind of penalty
term for complexity, although different from the penalty that the ICs
give. But what exactly does it penalise for?

• We cannot interpret posterior model probabilities (PMPs) as probabil-
ities that the true parameter value is included in the region. Is the
concept of PMP terminally ill?


