
Colloquium talk CMU
22 September 2011

Observations and objectivity
in statistics

Jan-Willem Romeijn
University of Groningen



Research seminar CUNY
9 September 2011

Meaning shifts
and Conditioning

Jan-Willem Romeijn
University of Groningen

To appear in Studia Logica



M&E Group Toronto
3 October 2011

How to Frame
Experimental Facts?

Jan-Willem Romeijn
University of Groningen

Work in progress, in part with Jon Williamson



Games and Decision Lunchtime meeting
12 October 2011

Learning Juror Competence:
a generalised Condorcet Jury Theorem

Jan-Willem Romeijn and David Atkinson
University of Groningen

Appeared this year in Politics, Philosophy and Economics



Kevin’s seminar on simplicity
October 2011

Specificity, Accommodation
and the Sub-family Problem

Jan-Willem Romeijn
University of Groningen

To appear in an edited volume on Plurality in Statistics



LPS Colloquium UC Irvine
21 October 2011

A new resolution of the
Judy Benjamin problem

Igor Douven and Jan-Willem Romeijn
University of Groningen

To appear in Mind



Lunchtime Colloquium University of Pittsburgh
1 November 2011

Frequencies, Chances
and Undefinable Sets

Jan-Willem Romeijn
University of Groningen

Work in progress for my research project on chance



Colloquium talk CMU
22 September 2011

Observations and objectivity
in statistics

Jan-Willem Romeijn
University of Groningen

Work in progress, in part for SEP



Observing theory

Observation is never independent of implicit, or explicit, interpretation.

We see patches of colour. . .



Observing theory

Observation is never independent of implicit, or explicit, interpretation.

We see patches of colour, a man with contraptions on his head. . .



Observing theory

Observation is never independent of implicit, or explicit, interpretation.

We see patches of colour, a man with contraptions on his head, a baseball
player with glasses. . .



Observing theory

Observation is never independent of implicit, or explicit, interpretation.

We see patches of colour, a man with contraptions on his head, a baseball
player with glasses, or Dick Allen, the White Sox homerun leader of 1974.



Observing theory

Observation is never independent of implicit, or explicit, interpretation.

We see patches of colour, a man with contraptions on his head, a baseball
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But what do we see objectively?
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1 Observation in classical statistics

Classical statistical procedures are known to depend on more than just the
observations. The results of the statistical analysis depend on. . .

• the sampling plan, consisting of rules and procedures for collecting the
data, and

• the statistical model, or the set of distributions that is under consider-
ation.

Such dependencies can be characterised as violations of the likelihood prin-
ciple.



1.1 Optional stopping

Say that three ethologists study the sleeps of a fish, to test the hypothesis
that it sinks overnight with probability 2

3 .

The first researcher records for one week, the second stops recording if the
weather is good, and the third records until boredom sets in.



Conflicting analyses
As it happens, weather is awful and researchers 1 and 2 record 5 sleeps, in
which the fish sinks only once. Researcher 3 is bored after two days.

After checking the weather reports, researcher 2 can reject the null hypoth-
esis. Researcher 1 cannot.



Stopping rule controversy
The weather, and even the mood of the researcher, may influence the anal-
ysis. But this is not always wrong.

• The researchers are testing different hypotheses: the sun-loving one
brings in the chance on sunny weather, or her assessment thereof.

• Stopping itself may be informative and thus can be absorbed into the
likelihood: researcher 3 gets bored because sinking is seldom.

The issue is also controversial in more important settings: how long can we
justify not treating a control group if the tested drug appears effective?



The persistent experimenter
Another often cited argument for involving stopping rules is that if we do
not, we can at long last reject any true hypothesis. But this seems false.

P(H0) =
∑



P(H0|D)P(D)

For a Bayesian the prior is a mixture of posteriors. Intuitively, whatever the
shape of the sample space, these posteriors must even out.



Persistent worries
Nevertheless there may be reasons for worrying about persistent experi-
mentation.

• Optional stopping may still be detrimental to the ex ante quality of a
test procedure.

• It can trivially be exploited if the test compares the null with a compos-
ite alternative that has an improper prior over it.

• Finitely additive probability distributions may be non-conglomerable,
i.e. violate the above property.

We conclude that stopping rules matter to what the observations tell us.



1.2 Neyman-Pearson testing

Consider an example inspired by Hacking: two pear orchards producing
pears of three different colours. We sample one pear from a truck load.

Hypothesis \ Data Red Green Yellow
Anna 0.00 0.05 0.95
Ben 0.40 0.30 0.30

If the sampled pear is green, the optimal test rules out that the truck came
from Anna with 5% significance.



Not exactly wysiwyg
But now consider that we compare the orchard of Ben to the one of Hanna.
A green pear cannot license the conclusion that the truck is from Hanna.

Hypothesis \ Data Red Green Yellow
Hanna 0.05 0.05 0.90
Ben 0.40 0.30 0.30

Now, if the truck actually came from Anna, we falsely rejected this hypoth-
esis because, in the words of Jeffreys, “it fails to predict an outcome that
does not occur”.



1.3 Sample space dependence

In all the above cases we violate the likelihood principle: the results depend
on what we did not, but could have observed.

• The statistical procedures are sensitive to what is deemed observable
in a study or an experimental setting.

• Even if they agree on that, they depend on differences between hy-
potheses concerning events that are not observed.

In other words: what is conveyed by an observation hinges on the full frame-
work in which the observations are received.



Violating total evidence
We can maintain the likelihood principle by violating the principle of total
evidence: we reorganise sample space so that it follows the test statistic.

Hypothesis \ Data Red or Green Yellow
Anna 0.05 0.95

Hypothesis \ Data Red Green or Yellow
Hanna 0.05 0.95

In doing so, we redefine what it is that we are observing. We explicitly tailor
the content of observation.



2 Observation in likelihoodist statistics

We might think that violations of the likelihood principle are to blame for the
apparent theory-ladenness of observations in statistics. Not so.

• In Bayesian inference, the choice of a prior directly influences what
conclusions we can draw from the observations.

• Simple regression analysis by maximum likelihood estimation depends
on what we take to be exogenous variables.

In other words, the dependence on theoretical context also shows up if the
likelihood principle is adhered to.



2.1 Bayesian model selection

We compare two Bernoulli models for two binary variables A and B. The
models only differ in the prior probability assignments over the hypotheses.

The different priors are both uniform, but over different parameterisations.
One is associated with a causal relation between the variables, P(A) = α0,
P(B|Ā) = α1 and P(B|A) = α2, the other is the 3D simplex.



Comparing priors
While the likelihoods of the hypotheses in the two models are identical, the
model predictions will differ:

Pcausal(α0) = 1 , Pnon-causal(α0) = α0(1− α0).

We can derive an analytic expression for the likelihood ratio:

BF =
P(Dn|Mnon-causal)

P(Dn|Mcausal)
=
6(n0 + n1)(n2 + n3)

(n+ 2)(n+ 3)
.



Different predictive behaviour
We find the following differences in predictive behaviour.

Number of observations n Interval n0+n1
n in which BF > 1
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Notice that for the first 12 observations, the prior based on the causal pa-
rameterization uniformly outperforms the prior over the simplex.



The impact of observations
We draw some tentative conclusions from this example on the influence of
priors.

• We improve the short-term predictions by adopting a uniform prior over
the parameters associated with a causal model.

• In exchange for this short-term advantage, the long-run predictions of
the non-causal model are better.

In the context of the present paper, another conclusion is more relevant.

• The impact of the observations on a statistical model is partly deter-
mined by a theoretically motivated prior.



2.2 Regression analysis

A similar dependence on theoretical background, over and above the likeli-
hoods, is illustrated by simple regression.

The same scatterplot can be generated by an exogenous X and a dependent
Y, or by the converse roles for X and Y. Swapping these roles leads to a
different regression line.



Different regression lines
With some algebra and the substitution

 =
σXλX

εX
,

we find the following relations between the two regressions:

μY = λXμX , σY = εX

�

1+
22

1+ 2

�− 12
,

λY =
2

λX(1+ 2)
, εY =

σX
p

1+ 2
.



A simple case
To see what underlies this seeming mismatch, consider a simple case with
zero means, unit variance, and unit slope,

P(X, Y) ∼ exp
�
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We can only write this as the product of a Gaussian over Y and Gaussians
around some regression line by tweaking the parameters,
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So the standard deviation for Y is
p
2, the slope of the regression of X on Y

is 1
2 , and the errors are 1p

2
.



No violation of likelihoodism
Forster (2008) constructs the foregoing as a violation of the likelihood prin-
ciple. I think the cases show us something else.

• They reveal that the decision to view a variable as exogenous has an
impact on the estimations in a model.

• In other words, they show that the same distribution may be described
in different ways, associated with different theoretical content.

The case is notably similar to the one before. The difference seems to be in
putting the improper prior over either X or Y.



2.3 The role of parameterisation

Much like classical statistics, likelihoodist and Bayesian statistics are regu-
lated by the theoretical starting points of the analyses.

• The choice of a prior imports additional knowledge concerning the vari-
ables, thereby influencing how the observations impact on them.

• The decision to view variables as exogenous determines how the ob-
servations are decomposed into structural component and noise.

The cases illustrate that the import of the observations is not only regulated
by the likelihoods of the hypotheses under consideration.



Observations and the prior
Parameterisation and prior have an independent impact on what the obser-
vations tell us.

This impact is sometimes qualitative and lasting, despite the fact that nu-
merically the prior washes out for large data sets.



3 The use of theory-ladenness

I started by emphasizing that what we see is determined by the choice of a
theoretical framework.

Whether we see Dick Allen or patches of colour depends on our starting
points.



Theory-ladenness in statistics
The same phenomenon can be drawn out of a variety of statistical methods.

• In the case of optional stopping, the impact of observations depends
on the framework of possible observations.

• Observations in Neyman-Pearson statistics have content only relative
to the hypotheses under consideration.

• In Bayesian model selection, differences between the priors allow ob-
servations to tell otherwise identical models apart.

• In regression analysis, the choice of exogenous variable determines
how the observations are decomposed into structure and noise.



Hume’s problem
We might consider all of this bad news. Once we isolate a neutral notion
of observation, subjective starting points seem necessary for learning any-
thing.

This is yet another version of Hume’s problem and Goodman’s new riddle
of induction.



The Kantian response
I propose to view this from another angle: it is because of their theoretical
content that we can conclude anything interesting from the observations.

By choosing our language well, we allow the observations to guide us to
informative theory.



Thank you

The slides for this talk will be available at http://www.philos.rug.nl/∼romeyn.
For comments and questions, email j.w.romeijn@rug.nl.


