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Model selection

Statistical inference concerns the comparison of statistical hypotheses from a given
set of hypotheses, or model, M. For instance,

O(Dn, M) = {Hg: P(Dn|Hg) is maximal}.

Model selection tools facilitate the comparison of statistical models on their abil-
ity to accommodate the data. The Bayesian information criterion (BIC) compares
models by their approximated marginal likelihood:

P(DpIMy) = J P(HeIM;)P(Dn|HoNM)d6 ~ —log P(Dn|HgNM;)+dlog(n) := BIC(M;).
M;

When choosing among models by means of the BIC, we make a trade-off between

simplicity and fit. They are expressed in the maximum likelihood term P(Dn|HgzNM;)

and in the dimensionality term d;log(n) respectively.



Specificity vs probability
One driving intuition is that we prefer true scientific theories that allow for few
possibilities over true ones that allow for many. But recall the paradox of Linda.

Linda is a bank teller...

...who is active in the
feminist movement.

By the very nature of probability as a measure of sets, it seems that this preference
cannot be captured by probabilistic confirmation theory.



Models with constraints

In practical applications, scientists often compare models that only differ in terms
of a set of constraints, and not in dimensionality. We can avoid trivialising the
comparison by carefully defining the models involved.

General theory

More specific theory

In this talk, | avoid the issue by restricting attention to likelihoods, and | show how
they can used for a meaningful comparison of the models.



Model selection for constrained models
We define a probability space (W, F, P), with W a set of worlds w, and F = Hx D, in

which D is the sample space and H is an algebra based on a partition of hypotheses
Hg. We will consider a comparison between the following two models:

Mo = {Ho: 6€[0,1]},

= s es[o3]).

where Mg is a so-called encompassing model, and M; constrained. In this setup
the hypotheses Hy for 6 < % are included in both models. In this setup the models
Mgy and M1 partly overlap, so a comparison of posteriors is nonsensical.



BIC vs marginal likelihood

The BIC is an approximation of marginal likelihoods, and hence can be applied to
such models. Say that the maximum likelihood hypothesis Hy is included in both
models, for instance

n N 1
G(Dn/ MO) = e(Dn/ Ml) = g'

Then the BIC of the two models is the same. The maximum likelihood terms are
equal, as are the dimensions of the models and the number of observations:

do = dj,
P(Dn|HéﬂMo) = P(Danéan).

But as argued below, the marginal likelihood of the two models differ. There is
a discrepancy between the BIC and the marginal likelihood that it is supposed to
approximate.
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1 Truncated priors and marginal likelihoods

The prior within the model M; is a truncated version of the prior within Mg:

1
P(Hg|M1)d6 = ———P(Hg|Mg)d6.
! P(M1|Mo)

In the example, the constrained model M; starts off with its prior probability closer
to the maximum likelihood point than the encompassing model My.
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Marginal likelihood for increasing sample size

For both models, with increasing sample size n the posterior probability accumu-
lates around the maximum likelihood point. But the model M; begins with a head
start.

M, M,

P(6|D) 1 P(8ID) 1

predictions predictions

As a result, the predictions from model M1 are more accurate than those of model
My, and its marginal likelihood is higher.



Limiting marginal likelihood ratio

Since all posterior probability collects around the maximum likelihood point, the
marginal likelihoods of My and M; are dominated by what goes on in its immediate
vicinity. If 8 lies within M1, we find that

lim P(Dn|My1) 1
n—c P(Dy|Mp) P(M1|MO).

And if 8 lies outside M1, we have

lim P(DnlM1)
n=e P(Dy|Mo)

So the ratio of marginal likelihoods tends to the ratio of priors at the maximum
likelihood point. The original BIC is supposed to replicate this limiting behaviour,
but it does not.



Evaluation of the result
At this point we already know what should come out of the approximation. But

there are independent reasons for aligning the BIC with this result on marginal
likelihoods, to do with the interpretation of the simplicity term.

Mo M,

6t 61

For the moment we just note that the term by which the marginal likelihoods differ
is actually the size of the constrained model, in comparison to the encompassing

model.



2 The prior-adapted BIC

In the original derivation of Schwarz (1978), it is shown that

d.
logP(Dp|M;) = IogP(Danéan-)—élog(n)+logP(Hé|Ml~)
1 1
+(d/2)1 2n) — —log|I|+0 | — |,
(d/2)log(2m) 2ogll (ﬁ)

where I is the expected Fisher information matrix for a single observation. Following
Kass and Wasserman (1992), we can eliminate the terms of order O(1) by a clever
choice of prior:

1 d;
log P(HgIMy) = = log | - Ellog(Zn).

This prior can be justified independently: it expresses that we have a roughly cor-
rect idea of where the maximum likelihood point will be.



Some more detail on the derivation

The original derivation employs the so-called Laplacian method for integrals on a
Taylor expansion of the function g(0) = log P(Hg|M{)P(Dn|Hg N M;), as it appears in
the marginal likelihood. This leads to

d,
2

~ i 1 1
P(DIM;) = exp [9(6)] (2m)Z|A|"2 + O (E) ,

with 8 the mode of the function g(6). It is assumed that g(8) can be approximated
by g(é). The remaining terms —% log(n) — % log |I| result from

|A| = d|I|+O(i)
=n 1/5 .

This approximation is based on two further assumptions: the observations in D,
are independent and identically distributed, and the second derivative of g(0) is
dominated by the likelihood factor, so that we can omit P(Hg|M;) from g(6).



Retaining the prior term

The key idea of the prior-adapted BIC is that this last step in the original derivation
must be omitted. The effect of the truncated prior can be found back in the prior
probability density. This motivates the proposal of the prior-adapted BIC:

PBIC(M;) = —2logP(Dn|Hg N M;) + dlog(n) — 21og P(Hg|M;).

Because the priors over My and M, differ by a factor P(M1|Mg), we find for Hg in M,
that

PBIC(Mg) — PBIC(M1) = —2logP(M1|Mg) > O.

The terms pertaining to likelihood and dimensionality do not differ. If H4 lies outside
M1, then the difference in likelihood terms dominates the comparison of PBIC.



And the other O(1) terms?
While the other terms of this order in the derivation of Schwarz do not disappear,
they are both equal for models that differ by constraints.

e The term % log(2m) is clearly the same, as it only depends on the dimension
which is equal for the encompassing and constrained model.

e The term %Iog |I] is also the same. It is the expectation of the second order
derivative of the likelihood of a single observation, evaluated at the maximum
likelihood point. But the models have exactly the same likelihood function.

One worry may be that the accuracy of Schwarz’s approximation is different for the
models. But nothing in that approximation hinges on the exact region of admissible
parameter values.



3 A refinement of statistical simplicity

There are a number of model selection tools available, each with their own motiva-
tion:

BIC We choose the model with the largest approximated marginal likelihood.

AIC We choose the model whose approximated distance to the hypothesized truth
is minimal.

DIC We choose the model that has the best expected predictive performance un-
der a particular loss function.

An attractive feature of the information criteria is that they independently arrive at
very similar expressions:

IC ~ Fit[P(DnlHg)] — Complexity[d]



Dimension and size as penalty

The dependence on the dimension d; drops out of the approximation methods for
all the ICs. It is not put in to express complexity, but interpreted as penalty for
complexity afterwards and on independent grounds.

Complexity(M;) = # statistical possibilities ~ d;

The intuition is that complex models include more statistical possibilities and are
therefore more versatile in adapting to observations. For models with truncated
priors, the very same intuition can be applied to interpret the additional term in
the PBIC:

1

Complexity(M;) = # statistical possibilities ~ ————
‘ P(Mi|Mo)

Both penalty terms concern differences of models size, albeit at different orders of
magnitude.



Simplicity, size, specificity

Similar refinements are available, or in the making, for the AIC and the DIC. There
seems to be a basis for adapting the concept of statistical simplicity: it is about
model size, not just about dimensionality.

e This role of size ties in with a well-known problem for Bayesian inference,
namely its failure to accommodate that science strives for high specificity as
well as high probability.

e It also throws new light on the case of Linda the bank teller: people prefer the
feminist bank teller because it is more specific, or in another word simpler,
and therefore has a higher marginal likelihood.

Recall that we can define models My and M; so that they are disjunct sets. A fully
Bayesian solution of the Linda case, concerning posterior probabilities, may still be
possible.



4 The sub-family problem

Some things remain awkward about model selection: we can gerrymander the
parameterisation of the theory in order to improve our fit while keeping the number
of parameters low.
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This is the problem of accommodation, or the sub-family problem in the context of
curve-fitting: we can always come up with a smart parameterisation of the space
of possible curves that renders a good fit at little cost.
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The sensitivity of the estimations

The solution for this problem may lie in testing the estimation for sensitivity to
slight changes in the data: if for small changes to the data the estimations vary
wildly, this tells against the family of functions used to fit the curve.

d.
logP(Dn|M;) = logP(DplHgNM;) — 5‘ log(n) + log P(Hz|M;)

+(d/2)log(2m) — % log|I|+ O (‘/iﬁ) ,

As it turns out, a measure of sensitivity is already present in the BIC approximation,
as the so-called Fisher information log|I|.



Solving the problem?

Parallel to existing tools employing minimum description length (MDL), one might
develop adapted ICs that compare different parameterisations of the same model.

ICt ~ =Fit[P(Dn|H4)] — Specificity [—d;logn]
—Specificity” [P(M{My)] + Sensitivity[log|I|]

This helps if we indeed have an independent ground for the way we label and
structure our data: the latter determines the sensitivity of the theory. But then

again, the order of the terms seems wrong, and we can still gerrymander a family
of distributions ex post.



5 Conclusions
Some general claims | am happy to defend:

e The PBIC can replace the original BIC at no extra cost, thereby bringing the
comparison of constrained models within the scope of model selection tools.

e The gain is not so much that we can apply the PBIC to such cases: we know
the results of such comparisons already. The gain is rather that the PBIC
motivates a refinement of the notion of simplicity.

e The new notion of simplicity runs parallel to that of specificity.

e Perhaps there is, after all, a probabilistic account for our preference towards
logically stronger theories: if they are right, they have higher marginal likeli-
hood.



And future work...
| think the notion of simplicity at work in model selection can be supplemented with
a number of further features:

e The parameterisation of the model at the maximum likelihood point comes
back in the log|I| term. One might argue that some PBIC’ can thus compare
different parameterisations of the same model as well as various truncated
models.

e More generally, the marginal likelihoods depend on the full prior over the mod-
els. Studying the behaviour of the marginals in the short and medium term
leads to some surprising results. Approach to the limit should perhaps play a
more important role in model selection.

e The sub-family problem keeps bothering us: we can still gerrymander the
dimensionality of the model d; and the number of parameters n. Does this
matter at all? Is there a principled way of fixing these numbers?



Thank you

The slides for this talk will be available at Kevin’'s course website and at
http://www.philos.rug.nl/~romeyn

For comments and questions, email j.w.romeijn@rug.nl.



