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Conditioning and meaning shifts

In the Bayesian model, beliefs over sentences like s and r are represented
with probabilities over propositions S and R.

Within the set of possible worlds consistent with the sentence that is learnt,
the probability is kept unchanged.



A shift in meaning
A shift in the meaning of a sentence r is represented by a change in the
associated collection of possible worlds R.

Such meaning shifts lead to a conflict between conditional and updated
probability.



Examples of meaning shifts
Meaning shifts can be read into several well-known philosophical problem
domains.

• Violations of the principle of reflection, as discussed in van Fraassen
(1989) and Maher (1993): after drinking a bottle of whiskey, the mean-
ing of “being fit to drive home” changes.

• Vagueness in meaning, as considered by Williamson (1994) and, in
terms of conceptual covers, by Aloni (2000): learning that Bill is a monk
impacts on the meaning of “Bill is rich”.

• Reasoning about knowledge, as formalised in dynamic epistemic logic:
Bob’s being in doubt changes what Alice means with “I am not sure”.

I focus on the last domain, in the hope of stimulating a rapprochement
between probabilistic epistemology and dynamic epistemic logic.
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1 A problem case from DEL

Van Benthem (2003) shows that some belief changes cannot be modelled by
Bayesian conditioning. His example involves Alice, Bob, and three worlds.

W1: s ∧¬ r

p(W1)= 1/3

W2: s ∧ r

p(W2)= 1/3

W3: ¬ s ∧ r

p(W3)= 1/3

A B

If Alice announces that she does not know r, or ¬KAr for short, we find that
Bob knows s. The Bayesian model gives this a probability half.



A re-representation
We can represent the same semantics slightly differently, showing these
two epistemic propositions.

W1: s ∧¬ r

p= 1/3

¬ KAr

¬ KBs

KAr

KBs

W2: s ∧ r

p= 1/3

W3: ¬ s ∧ r

p= 1/3

This representation is instrumental to making the fallacy of the naive Bayesian
explicit.



Updating by Bayes’ rule
The Bayesian model of belief change simply eliminates worlds inconsistent
with the information provided.

p= 1/2p= 1/2

W1 W2

p= 1/3p= 1/3

W3

p= 1/3

¬ KAr

¬ KBs

KAr

KBs

¬ KAr

¬ KBsKBs

W1 W2

If we announce ¬KAr, we can eliminate W3. This leads to P(¬KBs|¬KAr) = 1
2 .



Updating on epistemic repercussions
A complete update requires that we also operate on epistemic relations
between worlds, leaving ¬KBs with zero probability.

p= 1/2p= 1/2

¬ KAr

KBs

p= 1/2p= 1/2

¬ KAr

¬ KBsKBs

W1 W2W1 W2

The second step in the update is effectively a shift in meaning: the exten-
sion of the sentence KBs changes.



2 A Bayesian model?

To construct a Bayesian model of meaning shifts, we provide worlds with an
internal structure that captures the epistemic relations.

All relevant aspects of the new information are made explicit in the possible
worlds semantics, so that operations on it can be kept simple.



Meaning shifts as conditioning
Specifically, we can model the the entire update by means of a conditioning
operation.

1 2 3
1

2

3

B ↑

A →

1
2

3

A →

B ↑

W
→

W
→

1

2

3

1
2

3

1 2 3

This first stage corresponds to standard Bayesian conditioning.



Operating within worlds
In the second stage, instead of operating on relations, we operate within
worlds.
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In the remaining possible worlds semantics there are no worlds left in which
Bob does not know s.



Probabilities over epistemic states?
We might think that the proper Bayesian model may simply take epistemic
states as the units of analysis.
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But in that case we arrive back at square one. To capture the meaning shift,
probabilities need to pertain to worlds, as sets of states.



3 Knowledge structures

The foregoing uses so-called knowledge structures, first discussed in Fagin
et al (1984). They can be defined inductively, assuming relations among
worlds like RA and RB.

Wk = k × { : 〈k, 〉 ∈ RA} × {j : 〈k, j〉 ∈ RB} × . . .

Possibility structures within worlds, like Wk = 〈k, , j, . . .〉, can be made as
rich as necessary, involving any depth, any number of n-ary relations, and
any interpretation of the relations.



Information versus propositional content
Sets of possibilities may cut across worlds. This creates room for distin-
guishing propositional and informational content.

• The propositional content ðñ ∈P(W) of sentence  consists of worlds
Wk for which  is true.

• The informational content of , written as [ ], is a set of possibilities,
typically included in ðñ, that may cut across worlds.

Assuming an epistemic frame and using only the first-step possibility struc-
ture, the propositional and informational content are related according to

[ ] = {〈k, , j〉 : Wk,W,Wj ∈ ðñ}.



Possibility-dependent propositions
Whether a world belongs to the propositional content of a sentence may
depend on the presence of particular possibilities within that world.
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The propositional content of the sentence ¬KBs is {W2,W3}, because in
both these two worlds we find a possibility in which Bob thinks s and one in
which he thinks ¬s.



Application to the problem case
In moving from P(·) to P¬KAr(·), we condition not on the propositional content
ð¬KArñ but on the information [¬KAr ].

Moreover, the proposition ð¬KBsñ is possibility-dependent. After condition-
ing on [¬KAr ], we find that ð¬KBsñ = ∅.



4 Dempster-shafer belief functions

Knowledge structures require a weaker notion than probability: Dempster-
Shafer belief functions. They are defined by a mass function m on worlds.

• We have m(U) ∈ [0,1] for all members of U ∈P(W), and
∑

km(Wk) = 1

• Any other set of possibilities V receives a minimal probability P(V) de-
termined by the maximal mass among those U ⊂ V.

• And it receives a maximal probability P(V) determined by the minimal
mass among those U for which V ⊂ V.

Belief functions are basically interval-probabilities [P(V), P(V) ]. If we only
consider worlds, they coincide with probabilities.



Conditioning on informational content
A special case of Dempster’s rule of combination, itself a generalization of
Bayes’ rule, covers conditioning on information V:

mV(Wk ∩ V) =
k(V)×m(Wk)

∑

k k(V)×m(Wk)
.

Here k(V) = 0 if Wk ∩ V = ∅ and else k(V) = 1. For any world Wk not
intersecting with V, we obtain PV(Wk) = 0. For worlds Wk intersecting with
V, we have

PV(Wk) = P
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So PV retains the proportions among the probabilities P(Wk) for all worlds
Wk intersecting with V.



5 Discussion

Dempster’s rule provides a Bayes-style model for belief changes framed by
knowledge structures. But there are many loose threads.

• The model hinges on a thick notion of possible worlds. What deter-
mines the trade-off between thick worlds, or thin ones with operations
over them?

• Knowledge structures are very similar to the Harsanyi type spaces used
in game theory. How exactly do these two match up?

• Dempster’s rule also allows for Jeffrey-style updating over knowledge
structures. How do such belief changes relate to what is modelled by
DEL?

• It is tempting to apply the above model to other philosophical problems
that seem to involve meaning shifts. But once you have a hammer. . .



Thank you

The slides for this talk will be available at http://www.philos.rug.nl/∼romeyn.
For comments and questions, email j.w.romeijn@rug.nl.


