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Judy Benjamin

In an example by van Fraassen [1981], Judy Benjamin is dropped in an area
divided into Red (R) and Blue (¬R) and into Second Company (S) and Head-
quarters (¬S) sections. She assigns equal probability to all quadrants Q.

Then she learns that if she is in Red territory, the odds are 3 : 1 that she is
in Headquarters area. How probable is it now that she is in Blue territory?



Relative entropy distance minimization
The information imposes a specific constraint on the probability assignment
over the segments Q. Using a relative entropy distance between probability
assignments,

RE(P, Pold) =
∑



P(Q) log
P(Q)

Pold(Q)
,

we can look for the closest new probability assignment that satisfies the
constraint:

 =

¨

P :
P(Q2)

P(Q1)
= 3

«

, Pnew = {P ∈  : RE(P, Pold) minimal} .



Conditional as material implication
Surprisingly, if we determine the new probability in this way, the probability
of being in Blue increases!
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Van Fraassen [1989] explains this by reference to the limiting case. If Judy
learns “If in Red, then in Headquarters, period”, the increase in the proba-
bility of Blue is a matter of course. Or is it?
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1 Updating on conditionals

We can object to van Fraassen’s line of argument for a number of reasons,
having to do with the semantics of conditionals and with the event of learn-
ing a conditional. Consider the story of Sarah and Marian having sundown-
ers at the Westcliff hotel.

Conditionalization on the material conditional entails a decrease in the prob-
ability of the antecedent, which is at variance with the example.



More than conditionalization
The example suggests that learning a conditional by conditionalizing on its
truth conditions misses out on the context dependent implications of the
conditional, including its assertability conditions.

• If conditionals have truth conditions: by asserting a conditional we con-
vey more than truth-conditional content. They also have pragmatic
implicatures, arguably of a probabilistic nature.

• If conditionals do not have truth conditions: why take the material im-
plication as a limiting case to begin with?

The upshot is that we cannot simply defend the consequences of a min-
imum relative entropy update in the Judy Benjamin case by referring to
conditionalization on a conditional.



What colour is the coat?



2 Alternative update mechanisms

Information does not always come in neat propositional packages. Richard
Jeffrey devised a rule for updating a probability assignment on new infor-
mation captured by a probability assignment over a partition of possible
events.

Pnew(C) =
∑



Pnew(U)Pold(C|U).

Jeffrey’s rule does not tell us how we can obtain this probability assignment
over the partition of U, other than that it stems from our observation and
experience.



Employing Jeffrey conditionalization
Say that we learn “If R, then the odds for ¬S : S are q1 : q2”, and that we do
not want to adapt our degree of belief P(R) = r.

We can achieve this by applying Jeffrey conditionalization to the partition of
events U = {U0, U1, U2} = {¬R,R ∧ ¬S,R ∧ S} using the odds, (1−r)/r(q1 +
q2) : q1 : q2.



Adams conditioning
In the context of preference kinematics, Bradley [2005] proposes an update
rule in which the invariance of the probability of the antecedent remains
implicit: Adams conditioning.

Given a partition {U0, U1, . . . Un}, and supposing we obtain new
probabilities Pnew(U) for  = 1, . . . , n, the new probability Pnew

must be as follows:

P(C) = Pold(C|U0)Pold(U0) +
n
∑

=1

Pnew(U)Pold(C|U).

Clearly this is a special case of Jeffrey’s rule of updating: the only differ-
ence is that in Adams conditioning, the probability of one of the elements is
hardwired to be invariant.



Context as input, or implicit to rule
Applying Adams conditionalization to the cases of Judy and Sarah, we find
the intuitively correct results: the probability of the antecedent is not af-
fected by the update. We can choose to. . .

• take the invariance of the probability of the antecedent as an explicit
part of the input to the update rule, as for Jeffrey’s rule. We may then
derive the required constraint from the context of the example cases.

• take the invariance of the probability of the antecedent as implicit to
the update rule itself. Based on the context we may then decide that
Adams conditioning is applicable.

The difference between these two ways of updating is of little consequence.
The boundary between criteria for applicability and input seems vague.



3 A distance function for Adams conditioning

An attractive feature of Jeffrey’s rule is that its results are replicated by
a distance minimization procedure. This holds for a number of different
distance functions.

≈

If the new probability assignment is not constrained by all elements in the
partition, distance minimization leads to changes in the probability of those
elements not involved.



Inverse relative entropy
Is there also a distance function that yields the results of Adams condi-
tioning? It turns out that minimizing the inverse relative entropy distance
exactly yields the required results.

RE(P, Pold) =
∑



Pod(Q) log
Pod(Q)

P(Q)

Imposing the constraint that the odds P(Q1) : P(Q2) are q1 : q2, we find
that Pnew(Q0) = Pold(Q0). Translated to the case of Judy: after learning the
radio message and updating by inverse relative entropy minimization, her
probability of being in Blue is not affected.



4 Distance minimization generalized

There are other cases than those of Sarah and Judy. In the example about
Patricia, learning the conditional should not affect the consequent.

In fact Patricia’s case can be accommodated by a variant of Adams con-
ditioning, using a fixed probability for the consequence. But what if the
update leads to a conflict between the probabilities of the antecedent and
consequent?



A large class of distance functions
To accommodate a trade-off between antecedent and consequent, we may
use a Hellinger distance and supplement it with weights  > 0 for the
quadrants,

HEL(P, Pold) =
4
∑

=1



�
p

P(Q)−
p

Pold(Q)
�2

.

The higher , the more resistance to deviations in the probability P(Q).
This idea can be generalized to more complicated conditional statements
and different kinds of dependence. Adams conditioning is a limiting case.



Epistemic entrenchment
We can model any trade-off between adapting the probability of the an-
tecedent and the consequent by varying the .
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The values of the weights express epistemic entrenchment. Or in terms of a
Lewisian imaging operation, they effectively determine the “closest possible
world”.



Numerical example
Setting the odds Pnew(Q1) : Pnew(Q2) to 3 : 1 and to 50 : 1 respectively,
fixing the weight 2 = 4 = 1, and varying  = 1 = 3 from 1 to 100, we
obtain the following updated probability assignments.

Probability

Odds Weight Q1 = R∧ S Q2 = R∧¬S Q3 = ¬R∧ S Q4 = ¬R∧¬S

- - 0.10 0.70 0.10 0.10

3 1 0.53 0.18 0.15 0.15

5 0.21 0.07 0.13 0.60

100 0.10 0.03 0.10 0.76

50 1 0.47 0.01 0.26 0.26

5 0.15 0.00 0.13 0.72

100 0.10 0.00 0.10 0.79



5 Discussion

• Conditionalization on the material implication is not necessarily the
limiting case of updating by relative entropy minimization under the
constraint of conditional odds.

• Hence, the fact that relative entropy minimization affects the probabil-
ity of the antecedent cannot be defended by reference to this condi-
tionalization.

• If we gather the constraints imposed by the Judy Benjamin story, they
pin down a complete probability assignment over a partition, and we
can apply Jeffrey’s rule of updating.

• Alternatively, we can apply Adams conditioning, using an incomplete
probability assignment over a partition as input. The further constraint
then appears as a condition of applicability.



Discussion (continued)

• The distance function IRE provides an underpinning for Adams condi-
tionalization: minimizing it under the constraint of an incomplete prob-
ability assignment gives the same results.

• We can define a whole class of distance functions, each of them asso-
ciated with different epistemic entrenchments for the probabilities of
the elements of the partition.

• In the face of this plethora of update rules, capturing the dynamics of
belief in a single update rule seems unrealistic. We apply to update
rules more generally what Richard Bradley says of conditionalization:

“it should not be thought of as a universal and mechanical
rule of updating, but as a technique to be applied in the right
circumstances, as a tool in what Jeffrey terms the ‘art of judg-
ment’. ”



Thank you

The slides for this talk will be available at http://www.philos.rug.nl/
~romeyn. For comments and questions, email j.w.romeijn@rug.nl.
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