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1. Induction and probability 

The first mention of probability in its modern meaning is found in a correspondence 
between Pascal and Fermat concerning a game of chance. This discussion concerns the 
estimation of the probability of events given a fixed chance setup. The probabilities are 
thus used to describe events in the world. 

After being converted to the Catholic sect of Jansenists, Pascal devised an influential 
argument for believing in God, known as Pascal’s wager. Among other things the wager 
involves the probability that God exists. The thing to note is that in this case, probability 
is used to express rational beliefs. 

The dual nature of probability facilitates its application to the problem of induction. 
Probability might be used to give a formal, and hence independently grounded account of 
the alignment of probability as rational belief with the probabilities ‘out there’. 

 
2. Axiomatisation of probability 

It is useful to specify the axiomatisation of probability due to Kolmogorov. In his 
treatment, probability is a measure of sets A, B, etc. 

- p(A) ≥ 0 
- p(Ω) = 1 
- p(A ∪ B) = p(A) + p(B)  if A ∩ B = ∅. 

We can conveniently represent the sets by means of Venn diagrams. Their areas are a 
natural measure, and thus represent the probabilities assigned to the sets. The areas nicely 
illustrate Kolmogorov’s axioms. 

A collection of sets forms a so-called algebra if it is closed under a number of set 
theoretical operations. For Kolmogorov a probability measure is defined on such an 
algebra. For the applications we will consider, it is useful to think of sets as collections of 
possible worlds. Each set is characterised by a proposition that is true in exactly those 
possible worlds belonging to the set.  

In this way we can associate sets with propositions, and thus assign probabilities to 
propositions. The beauty of Kolmogorov’s axiomatisation is that it is just a formal 
system. It does not suggest anything towards an interpretation of the probability measure. 



 
3. Probabilistic logic 

Following the work of De Finetti, Howson, and many others, we can view the theory of 
probability itself as a logic. There is a certain similarity between probability as a function 
over an algebra, and truth values as a function over a language. In this view 
Kolmogorov’s axioms determine what probability assignments are consistent. 

In the set-theoretical formulation of Kolmogorov it is rather easy to derive the theorem 
that Thomas Bayes painstakingly derived 250 years ago: P(A | B) = P(A) P(B | A) / P(B). 
Inferences that employ this consistency criterium on subjective probabilities are often 
called Bayesian. 

Probabilistic, or Bayesian logic dictates the probability values that must be assigned to 
specific propositions on the basis of certain values for other propositions. There are 
numerous philosophical applications of this idea, and often Bayes’ theorem plays a 
central role. The Monty Hall dilemma is a case in point. 

 
4. Induction and Bayesian logic 

Our present interest is in the application of probabilistic inference to induction. Induction 
is a mode of inference that brings us from data to general conclusions on the system or 
mechanism from which the data is obtained. 

The real genius of Bayes shows in the inductive application of his theorem. Up to the 
time of Bayes, probability theory was only used to derive the probability of events from a 
known cause, such as a game of chance. By contrast, Bayes used his theorem to derive 
probabilities for possible causes, e.g. a range of possible games of chance, from an 
observed series of events. He invented so-called inverse probability. 

Bayesian statistical inferences take as input a statistical model, comprising of a collection 
of statistical hypotheses, and a prior probability over these hypotheses. Observations 
determine the likelihoods of the hypotheses, and from the prior we can then compute the 
posterior probability over the hypotheses. 

The prior is an epistemic, though not necessarily a subjective input component to 
Bayesian statistical inference. It is part and parcel of Bayesian or inverse probability that 
the two interpretations of probability, physical and epistemic, coexist. Bayes’ theorem 
thus tells us how opinion can be aligned to physical probability.  

 
5. A frequentist semantics for statistical hypotheses 

There is still something peculiar about the use of statistical hypotheses as arguments of a 
probability function. Let me clarify the concept of a statistical hypothesis, making use of 
some ideas first developed by Gaifman and Snir and going back to the frequentist theory 
of von Mises. 



Von Mises’ theory centers around the notion of a ‘Kollektiv’: an infinitely long sequence 
of observations with specific limiting relative frequencies of the possible outcomes, 
which is otherwise completely random and therefore does not show any other kind of 
pattern or periodicity. This latter requirement is conveniently expressed by an assumption 
known as the ‘law of excluded gambling systems’. 

In the theory of von Mises, probability is expressed as a property of ‘Kollektiv’s’: the 
probability of a result is defined by the limiting relative frequency of that result in the 
Kollektiv. Though somewhat covertly, Gaifman and Snir argue that we may identify a 
statistical hypothesis with the set of all the ‘Kollektiv’s’ with the corresponding 
probabilities in the cylindrical algebra.  
 

6. Carnapian inductive logic 

One might argue that Bayes thereby provides an answer to the Humean problem of 
induction. But to assess this view, we first look at a slightly different answer: the straight 
rule of Laplace and Reichebach. Such rules have been studied extensively by Carnap and 
his followers. 

Carnap employs an observational language, associated with the observation algebra 
introduced earlier. The language is an expression of all salient distinctions. Over the 
language we can therefore distribute the probability evenly, respecting a distinct set of 
symmetries. This symmetric distribution leads to a continuum of inductive methods. 

The inductive rules of Carnap may indeed be viewed as a solution to Hume’s problem of 
induction, based entirely on the choice of a particular observation language. But general 
hypotheses cannot be accommodated in the inductive rules. And more importantly, as 
Goodman’s new riddle reveals, the solution works on the assumption that the language 
employs so-called projectable predicates.  

For present purposes, there is another way of saying why Carnapian inductive logic falls 
short of providing a solution. From the point of view of probabilistic logic, the Carnapian 
rules can be understood as specific probability assignments. The predictions can be 
derived from a given assignment, but the assignment itself must be assumed at the outset. 
 

7. The representation theorem 

The Bayesian statistical inferences sketched above also lead to predictions on next 
observations, like those generated by Carnapian prediction rules. A special class of 
prediction rules concerns those predictions that are invariant under the permutation of 
past observations, the so-called exchangeable prediction rules. 

An important link between Bayesian inferences over statistical hypotheses and 
exchangeable prediction rules is provided by De Finetti’s representation theorem: every 
exchangeable rule can be represented uniquely by a prior probability density over 



Bernoulli hypotheses in a Bayesian inference. As a special case, the family of Dirichlet 
distributions coincides exactly with the Carnapian continuum of rules. 

De Finetti argued that we can therefore avoid using statistical hypotheses altogether, and 
make do with exchangeable prediction rules and generalisations of them without loss of 
generality. Strictly speaking this is correct, but I want to argue there are conceptual 
advantages to using the hypotheses after all. 
 

8. A Bayesian solution to Hume’s problem? 

We saw that Carnapian logic was only a partial solution to the problem of induction: the 
derivation of predictions is justified by probabilistic logic, but the probability assignment 
itself has to be assumed. Carnap found a motivation for constraints on the probability 
assignment in the observation language.  

The situation for the Bayesian inductive logic is not much different: it provides a solution 
to the logical problem of induction but it suggests nothing towards solving the epistemic 
problem of induction. We must assume a probability assignment at the outset. The model 
and prior that fix this probability assignment and can both be understood as part of a 
projectability assumption, on a par with Carnap’s choice for an observation language and 
specific symmetries. 

Still the Bayesian representation of inductive inference has some conceptual advantages 
over the Carnapian inference rules. The model offers a particular handle on the 
projectability assumption. Bayesian inferences thereby separate the physical and 
epistemic components of the inductive assumptions, thus providing a better grip on the 
epistemic problem of induction. 

 

 


