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What this talk is about

Several items in statistics and inductive logic keep me busy:

• The analogical prediction rules pioneered by Carnap, Jef-
frey, Hintikka, and many of his students and followers.

• The representation theorem by de Finetti linking prediction

rules to Bayesian statistical inference.

• The idea of rich languages from Gaifman and Snir and the

convergence theorems that follow from that.

• The notion of a random sequence developed by von Mises,

and their use in a frequentist theory of chance.

I take this talk as a good occasion to connect these dots.



What will emerge?
An enrichment of inductive logic that fits better with Bayesian statistics and

its use of hypotheses.

Such an inductive logic can naturally accommodate analogy considerations

and universal hypotheses.
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1 Inductive logic

A Carnapian prediction rule is a probability distribution over an algebra of

observation events R. For t events the algebra is {0,1}t.

Results s1s2 · · · s occurring after time t are denoted with the element Rs1s2···st .

If t is zero we omit it.



Conditioning on a given sequence
A prediction rule defines a probability distribution P over the observation

algebra. Let tq be the number of occurrences of q in the sequence s1s2 · · · st.

P(Rqt |R
s1···st) =

tq + γqλ

t + λ
.

The prediction rule fully determines a probability over R. We accommodate

the sequence s1s2 · · · st by simple conditioning.



Universal and analogical predictions
Several interesting classes of prediction rules were developed. Imagine the

results are ternary, q ∈ {0,1,2} for apple, pear, and banana.

• Hintikka systems factor in that one of the fruits may never be observed.

• Analogical predictions bring out that, e.g., observing apples may favor

pears over banana’s.

We can encode these inductive effects directly into a prediction rule and

hence into a probability assignment over R.



2 De Finetti’s representation theorem

Any Bayesian inference over Bernoulli hypotheses corresponds to a rule

whose predictions are invariant under permutations in the order of observa-

tions:

Exchangeable P(Rqt |R
s1···st) ⇔











Prior P(hθ)

Likelihoods Pθ(R
q
t |Rs1···st)

Bayesian updating with Pθ(·) = P(·|hθ).

De Finetti used this theorem to argue that we can dispose of the metaphys-

ically suspicious story about hypotheses altogether.



Bayesian statistical inference
If we construct a probability model for Bayesian inference over statistical

hypotheses, the latter indeed appear as supra-empirical.

The hypothesis hθ shows up as a distribution Pθ over a tagged observation

algebra, hθ ×R.



3 Gaifman’s rich language

Gaifman and Snir’s [1982] paper is most well-known for the convergence

theorems: Bayesian inference converges to truth values, priors wash out.

I will now focus on their use of rich languages: they show how to express

statistical hypotheses in a space of possible observations.



Hypotheses as elements in σ(R)
We construct an idealised sample space consisting of infinitely long sam-

ples: {0,1}Ω.

 = 010011011001010 . . .

We can identify the hypothesis hθ, and its distribution Pθ, with a particular

set of sequences , so-called tail events in σ(R) \R:

Hθ = { : Relative frequency() = θ and  otherwise random}.



Hypotheses as sets of Kollektivs
Note that the elements  = 00110111 . . . of Hθ are von Mises collectives

that instantiate the probability distribution Pθ.

This is frequentism in reverse: we presuppose a distribution and use fre-

quentism to relate it to a model of empirical fact.



Events as distributions
The distribution Pθ of hypothesis hθ is thus associated with a particular set

Hθ that lie inside the sample space.

Each set Hθ intersects with every observation R that is assigned some prob-

ability by Pθ.



4 Frequentism as formal semantics

You can be both a Bayesian and a frequentist, much in line with Jeffrey’s

mixed Bayesianism.

The association of hypotheses and events offers many conceptual advan-

tages.



Unique extension and convergence
The assignment of probability to a distribution, P(Hθ), becomes automatic:

P extends uniquely from R to σ(R).

The convergence theorems show up as a matter of course: if the observa-

tions are separating, they will zoom in on one of the sets Hθ.



Hypotheses fix inductive dependence
Recall that prediction rules fix inductive relations between observations by

constraints on the probability over the observation algebra R.

For any rule we can find hypotheses that provide an alternative route to

fixing the constraints: they enrich the language of inductive logic.



Why statisticians use hypotheses
In the sciences we hardly ever find statistical analyses that employ inductive

relations among observations directly.

One explanation is that statistical hypotheses are a succinct, and perhaps

more expressive way of fixing inductive relations among observations.



5 Analogical reasoning

The efficiency of using hypotheses can be illustrated nicely in the context

of exchangeable analogical predictions.

By the foregoing, we are looking for a prior over Bernoulli hypotheses that

brings out the salient inductive relevances.



Apples, bananas, pears
Basic idea: among hypotheses that give a high chance to apples, give

higher prior probability to the ones that favor pears over bananas.

0

1 2 1

0 0

2

Observing a single apple will make apples more probable (PIR). But pears

will loose less of their probability than bananas, and may even benefit!



Analogical and universal prediction rules
Several classes of prediction rules can be understood in terms of particular

classes of priors in this way.

• Hintikka systems: non-zero probability mass on the extremities of the

space of statistical hypotheses.

• Skyrms’ hyper-Carnapian inductive rules: mixtures of Dirichlet priors

over the space of statistical hypotheses.

• Paris and Hill on analogical reasoning: Dirac-delta priors over the space

of statistical hypotheses.



6 Conclusion

I have shown how De Finetti’s representation theorem and Gaifman and

Snir’s idea of rich languages can help to align inductive logic and Bayesian

statistics.

• This elucidates statistical inference by specifying an observational con-

tent for statistical hypotheses.

• The idea of frequentist chance is thereby wedded to the Bayesian idea

that we assign probability to hypotheses.

• It provides insight into the convergence theorems for Bayesian infer-

ence.

• And it suggests why statistical hypotheses are being used in the first

place: they make inductive logic more succinct and manageable.



Thanks!

This talk will be available at http://www.philos.rug.nl/~romeyn. For

comments and questions, email j.w.romeijn@rug.nl.

http://www.philos.rug.nl/~romeyn
http://www.philos.rug.nl/~romeyn
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