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Opinion pooling

Raquel and Quassim are both pondering over the proposition A. Raquel’s
belief is PR(A) = r, Quassim’s is PQ(A) = q. Pooling determines that

r′ =q+ (1−)r.

The parameter  ∈ [0,1] determines how much Raquel moves towards
Quassim. It measures the trust of Raquel in Quassim.



Conditionalizing on opinions

A different model for Raquel’s accommodating Quassim’s opinion employs
Bayesian conditionalization on Quassim’s opinion:

r′ = PR(A|ðqñ ∩ ðrñ) = PR(A|ðrñ)
PR(ðqñ|A ∩ ðrñ)
PR(ðqñ|ðrñ)

.

Here Quassim’s belief that PQ(A) = q is denoted by ðqñ, and similarly Raquel’s
belief is denoted ðrñ. They are categorical events concerning probabilistic
opinions.



Bayes, Condorcet and Aumann

We can provide a Bayesian model of opinion pooling. The formal link may
be employed to relate pooling to other Bayesian models of epistemic inter-
action.

• First we focus on the interpretation of the trust parameter , elabo-
rating its relation to the so-called truth-conduciveness of jurors from
Condorcet’s theorem.

• Then we relate the representation of pooling as updating to consensus
formation and disagreement among peers, in particular the agreement
theorem of Aumann.
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1 Pooling as updating

Genest and Schervish (1985) establish that we can always find likelihoods
PR(ðqñ|A ∩ ðrñ) such that, after conditionalizing on ðqñ, Raquel’s belief in A
equals the result of pooling.

Corrolary of Genest and Schervish (1985)
Let PQ(A) = q, PR(A) = PR(A|ðrñ) = r, and let P′R(A) = r

′ =q+(1−
)r be the result of linear pooling. We choose

PR(ðqñ|A ∩ ðrñ) = g(q, r)
�
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PR(ðqñ|¬A ∩ ðrñ) = g(q, r)
�

1+
r

1− r
−



1− r
q
�

.



Pooling as updating (continued)

Here g(q, r) = PR(ðqñ|ðrñ) is such that

∫ 1

0
g(q, r)dq = 1,

∫ 1

0
qg(q, r)dq = r.

Then the Bayesian update on ðqñ is identical to the update by
linear pooling, PR(A|ðqñ ∩ ðrñ) = r′ = P′R(A).

It is intuitive that the trust parameter  shows up as the skewness of the
likelihood function.



Raquel’s expectations about Quassim
The interpretation of the constraints on P(ðqñ|ðrñ) is rather natural: Raquel’s
distribution for Quassim’s opinion q is centred on r.

• Raquel might use a peaked Beta-distribution to express that she thinks
Quassim will think much like herself.

• She can use a U-shaped Beta-distribution to express the idea that
Quassim will be opinionated.

In all of this it is assumed that the events ðqñ form a partition. We can drop
constraints by presuming Quassim might return a blank.



2 Truth-conducive voting

In Condorcet’s setting, jurors are asked to vote for or against a proposition
A, denoted by V and ¬V respectively. It is standardly assumed that the
jurors are competent:

cA = P(V|A) >
1

2
> P(V|¬A),

c¬A = P(¬V|¬A) >
1

2
> P(V|¬A).

Under this assumption we can derive that for ever larger juries, the majority
vote is ever more probable to be correct.



Truth-conducive jurors
We can drop the constraint on the absolute competence of the jurors and
assume that jurors have a positive truth-conduciveness Δ:

P(V|A)− P(V|¬A) = cA + c¬A − 1 = Δ > 0,

P(¬V|¬A)− P(¬V|A) = Δ > 0.

Under this assumption we can still derive a Bayesian version of the Con-
dorcet theorem: votes for A increase the posterior of A, and votes against
A decrease it.



3 Pooling as voting

We relate the Condorcet setting to opinion pooling, by making opinion pool-
ing categorical and by using the Bayesian representation of pooling.

• The juror Quassim casts a categorical vote, but Raquel takes him to
express a probabilistic opinion.

• The votes for or against A are captured by the events ðq > rñ and
ðq < rñ.

• Raquel accommodates the coarse-grained opinion by means of Bayesian
conditioning, just as in voting.

• For this she uses the marginal likelihood of the events ðq > rñ and
ðq < rñ, as determined by the Bayesian equivalent of pooling.



A simplifying assumption
Raquel distinguishes between Quassim offering a degree of belief in A nearby
the extremes, but within these two ranges assumes the distribution to be
uniform:

PR(ðqñ|ðrñ) =











 if q < εr,

h if q > 1− ε(1− r),

0 else.

Solving for the constraints yields:

 =
1− r
εr

, h =
r

ε(1− r)
.



Truth-conducive pooling
Using the afore-mentioned likelihoods and the uniform priors within ðq > rñ
and ðq < rñ, we can derive:

PR(ðq > rñ|A) − PR(ðq > rñ|¬A) = 
�

1−
ε

2

�

,

and the same for ¬A. Now notice the similarity with the truth-conduciveness
of jurors from Condorcet:

P(V|A) − P(V|¬A) = Δ.



Trust as truth-conduciveness
The formulas involving a trust parameter in pooling can be interpreted as
expressing a form of truth-conduciveness. For diminishing ε we have

Δ =.

The main conclusion is that we can thus express the trust  intuitively and
as internal to the model of beliefs.



Modelling choices
Some considerations on the modelling choices needed to relate trust to
beliefs:

• The shape of the distribution PR(ðqñ|ðrñ) is not crucial. For smaller ε it
looses import altogether.

• The translation of a categorical vote into a probabilistic opinion can be
motivated by a threshold notion of full belief.

• The literature has several other interpretations of  that are less spe-
cific but fit well with the current proposal.

• The link between trust and belief may nevertheless come across as
somewhat contrived.



Follow-up research

Opinion pooling has a Bayesian reconstruction, which allows us to connect
pooling to voting. This may stimulate research at the intersection of pooling
with other disciplines.

• The peer disagreement debate has little contact with formal interac-
tive epistemology. The current paper may serve a constructive role in
establishing contact, e.g., by illuminating the strategy of splitting-the-
difference in disagreement.

• Another application concerns consensus formation. The consensus
formation process of DeGroot (1974) and Lehrer and Wagner (1981)
can be modelled as a dynamic approach to common knowledge (Gen-
neakoplos and Polemarchakis 1982).



4 Consensus formation

Opinion pooling can be iterated. Writing PR(A) = r and PQ(A) = q, we have
on every round  > 0:

r+1 = (1−R)r +Rq.

and similarly for Quassim. If the trust parameters R and Q are fixed and
positive, the result is a convergent series of opinion pairs:

〈r1, q1〉, 〈r2, q2〉, . . . , 〈r, q〉, . . . , 〈p, p〉

The same things apply to opinion pools with more than two agents.



Aumann’s agreement
Aumann uses a Bayesian model for the interacting agents. He proves that
the agreement of opinions is automatic if we assume the opinions to be
common knowledge. He writes:

“It seems to me that the Harsanyi doctrine is implicit in much
of [the literature on opinion pooling]. . . The result of this paper
may be considered a theoretical foundation for the reconciliation
of subjective probabilities [i.e., by means of pooling].”

Surprisingly, there is no account of how the agreement theorem relates to
iterated opinion pooling.



Agreement and consensus
The remainder of this paper provides a reconstruction of the approach to
consensus based on Aumann’s result. More precisely:

• The consensus formation can be represented as a dynamic approach
to common knowledge.

• The Bayesian rendering of opinion pooling determines the requisite
constraints on the common prior.

This rationalizes consensus formation via pooling, thereby revealing its con-
ditions for applicability. Moreover, it offers a new perspective on pooling as
information sharing through higher-order knowledge.



5 The agreement theorem

In Aumann’s (1976) theorem, Raquel and Quassim are in the following epis-
temic situation:

• They share a space Ω of possible worlds and an initial probability as-
signment P over it.

• Both have their own information partition R and Q, with elements R
and Qj. These partitions are common knowledge.

• Each of them has private information, in the form of one element from
their partition, R0 and Q0.



Common knowledge
A central notion of the theorem is that of common knowledge, which relies
on a specific conception of knowing:

Knowledge of knowledge of. . .
Raquel knows the proposition X iff R0 is included in X. She knows
that Quassim knows X iff all Qj that intersect with R0, i.e., that can
be reached from R0, are included in X. And so on.

Common knowledge of the posteriors r and q is associated with a particular
set Crq that is included in both ðrñ and ðqñ.



A static result
Using this notion of common knowledge, Aumann proves the following.

Theorem
If two people have the same priors, and their posteriors for an
event A are common knowledge, then these posteriors are equal.

We can divide the set Crq using the partitions R and Q. For all R and Qj

overlapping with Crq:

P(A|R ∩ Crq) = r and P(A|Qj ∩ Crq) = q.

It does not matter in what direction we marginalize the probability for A,
hence r = q.



Reaching agreement
Geanakoplos and Polemarchakis (1982) provide an account of how agree-
ment may arise from an exchange of opinions between Raquel and Quassim.

• At the outset both receive private information, R0 and Q0, from their
own information partition.

• At each round  they exchange their posteriors r and q.

• With this new information they exclude members from the information
partition of the other agent.

• And they update their own opinions accordingly.



Sharing information
In the first round Raquel conditions on Quassim’s opinion ðq1ñ and obtains
a new opinion about A:

P2R(A) = P
1
R(A|ðq1ñ) = P(A|ðq1ñ ∩ R0).

The set ðq1ñ comprises the elements from Quassim’s information partition
that are consistent with the probability assignment P1Q(A) = q1:

ðq1ñ = {Qj : P(A|Qj) = q1}.

Quassim also deletes everything outside ðq1ñ from the sets of Qj that Raquel
considers possible. Raquel and Quassim similarly update on ðr1ñ.



Higher-order knowledge
The process is then iterated on the resulting smaller space. Notice that
Raquel and Quassim update on events that sit ever higher up in a hierarchy
of knowledge,

ðqjñ =
⋃
¦

Qk : P(A|Qk ∩ ðrj−1ñ) = qj
©

∩ ðqj−1ñ ∩ ðrj−1ñ,

and similar for r. A more explicit representation of this can be given in so-
called Harsanyi type space but for present purposes we may collapse type
space onto the information partitions.



6 Consensus as agreement

Iterated pooling and reaching agreement manifest in similar ways:

〈r1, q1〉, 〈r2, q2〉, . . . , 〈r, q〉, . . . , 〈p, p〉

We can determine the prior over R∨ Q such that approaching agreement
fits the iterated pooling process. The constraints are

P(A|Qk ∩ ðrj−1ñ) = qj

for all j and for all k such that Qk ∩ ðqj−1ñ non-empty. A similar constraint
set must hold for r.



Main result
Using Genest and Schervish (1985), this set of constraints can be imposed
coherently onto the partitioned space Ω.

• The constraints leave some space for variation, especially in the distri-
butions that agents choose for the opinions of other agents.

• Alternative pooling operations will lead to different constraints, e.g., on
what opinions we expect others to have.

• It is not part of the model that agents can derive the values of trust
parameters from the revealed opinions.

• The assignments within ðqjñC are determined by the pooling that would
happen if Quassim had revealed something other than qj.



Multiple agents
The result generalizes to any number of agents, whether they learn the
other opinions sequentially or all at the same time. Quassim and Simone,
say, can be viewed as constituting a single agent:

r+1 =
�

1− (Q +S)
�

r + (Q +S)

�

Qq +Ss

Q +S

�

.

However the model for multiple agents is organized, the likelihoods will
encode specific assumptions about dependencies among the agents:

P(ðqñ ∩ ðsñ|A ∩ ðrñ) 6= P(ðqñ|A ∩ ðrñ) × P(ðsñ|A ∩ ðrñ).



7 Discussion

The result constitutes a bridge between two models of epistemic interac-
tion. It seems natural to transport things over the bridge.

• Can we view pooling as a kind of information sharing? There seem to
be conceptual differences between consensus and agreement.

• How can we interpret the common priors? They specify the conditions
under which the epistemic shortcut of pooling is warranted.

• In addition, we may look for a taxonomy of consensus formations and
consensus failures in terms of the common prior, or lack thereof.



A new angle on pooling
The standard view is that in the context of agreement, the exchange of
opinions constitutes implicit information sharing, whereas in pooling the ex-
change amounts to a series of concessions.

• Consider the evidence presented by the opinions: after the initial round,
the information is in opinion changes, i.e., in responses of the agents
to each other.

• In the agreement context, the opinions refer to ever higher orders of
knowledge. We may reinterpret the exchange in the context of pooling
along similar lines.

The model of consensus can be viewed afresh, in terms of the conception
of opinion as evidence stemming from the agreement context.



Pooling as shortcut
Following Genest and Schervish (1985), the agreement version of consen-
sus by iterated pooling provides insights into the implicit assumptions of
pooling.

• Pooling operations ignore many aspects of the distributions in the Bayesian
model. We can motivate a consensus formation process by determin-
ing what aspects are relevant.

• Pooling entails specific dependencies among the opinions of agents.
The Bayesian model offers insights into these dependencies, and this
might help to motivate them.



Thank you

The slides of this talk will be available at http://www.philos.rug.nl/ romeyn.
Papers are available upon request. For comments and questions, email
j.w.romeijn@rug.nl.


