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Plan of this talk

Analogical predictions will be approached in two different ways.

• We review and reinterpret some older material involving similarities

among predicates.

• The same mathematical tools are then applied on a refined observation

space.

The move to a refined observation space is inspired by Marta Sznajder’s

project.



Eternal recurrence

The use of particular mathematical structures invokes the saying: “when

you have a hammer, every problem looks like a nail”.

The reference to Nietzsche is entirely frivolous, yet fitting: in this talk we let

go of fixed predicate categories.



Contents

1 Analogical predictions 5

2 Bayesian statistical underpinning 12

3 Observations in attribute space 19

4 A richer observation source 27

5 Analogy by similarity as proximity 30



1 Analogical predictions

Analogical predictions are predictions based on similar cases. Consider sam-

pling pieces of fruit from a bag.

We categorize items  according to their fruit kind, {A, B, C, D}, and ac-

cording to being round, R or R̄, and having a stone, S or S̄. Dates complete

the picture but they are not needed in this talk.



Analogical predictions
Two different forms of analogy can be distinguished.

• Say we observe all round fruits to have a stone, and all non-round ones

to not have one. Our next item is round. By analogy over items, we

predict it will have a stone.

• Say we consider apples and cherries similar. We pick some cherries

from the bag and so expect more cherries. By analogy over predicates,

we also expect some apples.



Similarity by shared predicates
We can relate the two kinds of analogy by appealing to similarity or, more

precisely, to their Hamming distance in terms of underlying predicates.

• Items  and ′ are similar because they share a component predicate,

namely R and R′.

• Predicates A and C are similar because they share a component predi-

cate, namely R.

In what follows we focus mostly on the similarity of predicates.



Analogy among items
Carnap’s predictions rules have the analogy among items built in. Say that

En = A1 ∩ B2 ∩ . . . ∩ An−1 ∩ Bn where A = R ∪ S̄ and B = R̄ ∪ S̄.

Let PC be a member of Carnap’s continuum of inductive methods. Then we

have

PC
�

S̄n+1|Rn+1 ∩ En
�

> PC
�

S̄n+1 ∩ Rn+1|En
�

.



Analogy among predicates
There are many models of analogical predictions based on predicate sim-

ilarity. In this talk we explore the idea of proximity among predicates, for

example via shared underlying predicates. Note that

P(An+1|En) = P(Rn+1|En) × P(S̄n+1|Rn+1 ∩ En).

We can separately specify the predictions of Rn+1, and of S̄n+1 conditional

on Rn+1, as Carnapian rules with their own parameters.



Analogy among predicates
Stipulating that nX denotes the number of occurrences of X in En, and as-

suming equal probability for all fruits at the outset, we can write

P(An+1|En) =
nR + λγR
n+ λ

×
nS̄|R + λRγS̄|R

nR + λR
,

Seeing that nA = nS̄|R and choosing λR = λγR and γA = γRγS̄|R, this reduces

to the Carnapian rule PC:

PC(An+1|En) =
nA + γAλ

n+ λ
.



Differentiating learning rates
We can introduce an analogy between apples and cherries by choosing λR >

λγR:

P(An+2|Cn+1 ∩ En) > P(An+2|Bn+1 ∩ En).

Intuitively, finding a cherry (Cn+1) will make being round (Rn+2) more prob-

able, and it makes having a stone (Sn+2) conditional on being round more

probable. But by the differing learning rates, the former effect is far more

pronounced.



2 Bayesian statistical underpinning

Prediction rules can also be derived from a Bayesian statistical treatment.

We consider hypotheses pertaining to possible proportions among apples,

bananas and cherries in the fridge.



Bayesian statistical underpinning
The hypotheses Hθ determine the probability for drawing a fruit kind from

the fridge according to:

P(Xn+1|Hθ ∩ En) = θX,

where X ∈ {A,B,C}. We define a prior probability density P(Hθ), we use

Bayesian conditioning to form the posterior, and we derive a prediction rule

P(An+1|En) from it:

P(An+1|En) =
∫

θ∈Θ
P(Hθ|En)P(An+1|Hθ ∩ En)dθ.



Bayesian statistical underpinning
The Carnapian predictions follow from this Bayesian procedure if we assume

a Dirichlet prior:

P(Hθ) ∝ θ
λγA−1
A × θ

λγB−1
B × θ

λγC−1
C ,

which we denote by Dir(λγA, λγB, λγC). Upon observing a sequence En, we

construct a posterior according to:

P(Hθ) ∝
∏

X∈{A,B,C}
θ
nX+γXλ−1
X .

The exponents in the Dirichlet prior directly the Carnapian predictions.



Transforming the hypothesis space
The above analogical prediction rule used two Carnapian rules: one for Rn+1
and one for S̄n+1 conditional on Rn+1. They correspond to Dirichlet priors

over the hypotheses Hρσ:

P(Rn+1|Hρσ ∩ En) = ρ,

P(Rn+1|Hρσ ∩ Rn+1 ∩ En) = σ.

We can illuminate the analogical prediction rule by considering priors over

these hypotheses.



Transforming the hypothesis space
We can transform the requisite prior over Hρσ back to the prior over Hθ by

using

θA = ρ(1− σ), θB = 1− ρ, θC = ρσ

and hence a Jacobian 1/ρ. We obtain the following correspondence:

Dir(λγR, λγR̄) × Dir(λRγS|R, λRγS̄|R) =

Dir(λRγS̄|R, λγR̄, λRγS|R) × (θA + θC)λγR−λR .

The term responsible for the analogical effects is (θA + θC)λγR−λR.



Analogy priors
The prior over H illuminates the analogical predictions. Priors with λR > λγR
are warped so as to correlate high proportions of apples and of cherries.

• In the above setup, the additional factors (θA + θC) result in a ridge

along the line θA ≈ θC.

• Observing a cherry will redistribute the probability over the simplex

towards a higher proportion of cherries.

• As a consequence, the probability will also move towards higher pro-

portions of apples.



Analogy priors
Owing to De Finetti’s result, all exchangeable analogical predictions must

somehow be encoded in a prior over H.

• The analogical predictions of Skyrms, Paris, and others can also be

illuminated by looking at the prior.

• We can define systematic relations between the above class of priors

and a relevance metric among predicates.

• Clearly there are interesting analogy priors outside this class but Dirich-

let priors have attractive properties.



3 Observations in attribute space

We now refine the space of predicates towards an underlying space of at-

tributes.

The move to a richer observation space is inspired by new approaches to

the notion of predicate by, e.g., Gärdenfors.



Attribute space
The space of hypotheses now doubles up as the space of attributes and

hence of possible observations.

• Instead of drawing fruits from a fridge, we sample fruit juice from a

blender.

• We observe proportions of fruit in each sample,  = 〈γA, γB, γC〉.

• Deviations from the true proportios arise by fallible taste or by im-

proper mixing.

• By means of these observations we aim to determine the actual pro-

portions Hθ in the blender.



Probabilities over attribute space
We can now employ the same machinery that we have used in the Bayesian

statistical underpinning of Carnapian rules. We update with these likeli-

hoods:

P(n+1|Hθ ∩Gn) = Dir(γA, γB, γC),

where Gn denotes the earlier observations. Starting with a uniform prior

and multiplying by these Dirichlet densities, we obtain

P(Hθ|Gn) = Dir(nγ̄A, nγ̄B, nγ̄C),

where γ̄X is the average over the observed γ’s.



Probabilities over attribute space
The above framework naturally extends the foregoing statistical setup.

• The points in attribute space double up as hypotheses Hθ that concern

the data generating system. We will briefly consider the move to a

richer notion of the data-generating system towards the end.

• The posterior over attribute space converges onto the true proportions

of fruits with probability 1.

• If the observation in attribute space is extremal towards, e.g., apple,

 = 〈1,0,0〉, we obtain the likelihood of the apple from the statistical

setup: P(〈1,0,0〉|Hθ ∩Gn) = θA.



Predictions from attribute space
As before, we can convert the posterior probability over Hθ into a prediction

of a predicate by taking an expectation value:

P(An+1|Gn) =
∫

θ∈Θ
P(Hθ|Gn)P(〈1,0,0〉|Hθ ∩Gn)dθ.

The idea is that we may be forced to tick a box on the taste of the juice. As-

suming a uniform prior this results in simple expressions for the predictions:

P(An+1|Gn) =
nγ̄A + 1

n+ 3
.



Predictions of categorical predicates
We can define categorical predicates like cherry-flavoured, which attach to

samples, as regions in attribute space. Predictions on predicates can then

be extracted from the posterior over the space:

P(Cn+1|Gn) =
∫

θ∈ΘC
P(Hθ|Gn)dθ.

Such predictions will naturally show analogical effects. The likelihood func-

tions are such that the occurrence of a sample within a particular predicate

will benefit nearby predicates most.



Analogical predictions
We can introduce analogical effects into either version of predictions based

on attribute space by tweaking the likelihood functions. The parameterisa-

tion in terms of component predicates is instrumental for this,

P(n+1|Hρσ ∩Gn) = Dir(λγR, λγR̄) × Dir(λRγS|R, λRγS̄|R).

To encode a relevance between apples and cherries, we must now choose

λγR > λR: different proportions of apple and cherry are less distinguishable

than different proportions of banana.



Questions, questions, questions
The idea of inductive logic over attribute spaces invites several further

questions.

• The eventual predictions are exchangeable and this leaves us to won-

der about the corresponding analogy prior.

• The likelihood functions express relevances among attributes. It seems

attractive to define a metric over attribute space by means of these

likelihoods.

• The relevances may be asymmetric: cherries may be indicative of

more apples but not conversely. How can this be arranged otherwise?



4 A richer observation source

The above move towards attribute space is only a half-way house: the ob-

servations are refined but their source is not.

We might imagine that the source of the observations is itself characterised

by a distribution over attribute space.



Statistical inference on attribute space
The inductive logic for attribute space now appears as a standard statistical

analysis.

• We assume a model, i.e., a set of distributions over attribute space,

and a prior probability over it.

• Relative to the observations we can determine a posterior probability

assignment over the distributions in the model.

• Predictions on attributes and predicates can be determined by comput-

ing marginal likelihoods for the fruit juice proportions.



Analogical predictions
We can introduce analogical effects into these systems by constraining the

statistical model in various ways.

• If the distributions over attribute space are unimodal, in the sense

that the derivative only changes sign once, then an observation  will

favour nearby fruit juice proportions.

• If we constrain a set of multimodal distributions in a specific way,

we can also orchestrate analogical effects somewhat akin to those of

hyper-Carnapian rules.



5 Analogy by similarity as proximity

We have seen two approaches to predictive systems that introduce analog-

ical effects among the predicates. They share the idea that similarity, as a

basis for the analogy between predicates, relates to proximity.

• In predicate space, the proximity is expressed by the Hamming dis-

tance in terms of the underlying predicates: apples and cherries are

closer because they are both round.

• In attribute space, the proximity is the metric of the space. We can

develop this by defining the metric in terms of the likelihood functions

over the space, i.e., by a graded distinguishability of the hypotheses.



Inductive logic: what is next?
This seems to be a suitable moment for reflecting on the future of inductive

logic.

• What makes the topic timely and important? Perhaps the development

of big data research and the increased prominence of data-driven, or

at least statistical methods.

• What are its areas of growth? Perhaps its relations to the cognitive sci-

ences, to machine learning, and to evolutionary, interactive and social

settings, e.g. prediction games.



Thank you

The slides for this talk will be available at http://www.philos.rug.nl/ romeyn.

For comments and questions, email j.w.romeijn@rug.nl.


