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Why care?

Chances play a central role in the cognitive, social, and life sciences.

Surely the debates on disease models and health policy are about some-

thing.



The easy answer
Chances are described mathematically by probability distributions. They

are theoretical terms in scientific theory.

But how are they related to scientific data? And can we provide a realist

interpretation for them?
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1 Von Mises’ frequentism

An important starting point in the discussion on chance is the frequentist

definition of probability by von Mises.

It is based on the notion of a collective: a binary series that has a limiting

relative frequency and for which there is no gambling system.



Problems with frequentism
Frequentism has been severely criticised, primarily for being unempirical.

E The theory requires infinitely long sequences of events.

E The randomness of sequences depends on the observer.

In response, we might develop a finite version of frequentism.

E Events that do not occur may still have a definite probability.

E This theory introduces biases and spurious correlations.

I do not claim that von Mises cannot defend his theory against all these

criticisms. Despite that. . .



Alternative frequentisms
In this talk I employ frequentist ideas in the semantics and metaphysics of

chance.

Semantic frequentism provides a formal semantics for statistical

inference by specifying the nature of statistical hypotheses.

Metaphysical frequentism fosters an interpretation of single-case

chances that escapes the reference class problem.

Importantly, frequentism is thereby detached from strict empiricism.



2 Statistical hypotheses

Gaifman and Snir have become famous for the convergence results: the

priors will always wash out.

I will however focus on their wonderful idea of rich languages: they show

how to express statistical hypotheses in a space of possible observations.



Sample space
A statistical analysis is always based on a set of possible observations, a

sample space. For tossing a coin N times, the sample space is {0,1}N.
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000 001

011 110

100 101

111

E1

E2

Samples, written in lowercase as et, can be represented as sets Et in this

space.



Hypotheses as distributions
We may also construct an idealised sample space consisting of infinitely

long samples: {0,1}Ω.

e = 010011011001010 . . .

Pθ(Et |Et′) = θ

The statistical hypothesis is a distribution over this infinite sample space,

written hθ.



. . . and as events
Note that some elements e = 00110111 . . . of this sample space are collec-

tives in the sense of von Mises.

E0

Hθ. e= 010011...

. e’= 000010...

We can identify the statistical hypothesis hθ with the set of all collectives

that instantiate the probability distribution Pθ.



Events as distributions
The distribution Pθ of hypothesis hθ is thus associated with a particular set

Hθ in the sample space.

E0

Hθ

Et

Et’

Each set Hθ intersects with every observation Et that is assigned some prob-

ability by Pθ.



Reversed frequentism
Von Mises presented frequentism as a theory on what probability is, ground-

ing it in empirical phenomena.

Instead, I presuppose a notion of probability and use frequentism to relate

it to a model of empirical fact.



3 Frequentist Bayesian inference

You can be both a Bayesian and a frequentist, much in line with Jeffrey’s

mixed Bayesianism.

The association of hypotheses and events offers a fresh perspective on sta-

tistical inference.



The probability of a distribution?
It becomes natural to assign a probability to a probability distribution, P(Hθ).
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Consequently Bayesian conditionalisation can be located in sample space,

as a “zooming in” operation.



Hypotheses fix inductive dependence
Carnapian inductive logic fixes inductive relations between observations by

constraints on the probability over sample space.

Statistical hypotheses provide an alternative way of fixing these constraints.

They extend the language of inductive logic, for free!



Formal semantics for statistics
The conceptual clarity of deductive logic is partly due to a clear separation

of syntax and semantics.

The semantics of statistical hypotheses may be a step towards clearing up

inductive logic, in particular statistical inference.



4 The reference class problem

We have located chances within the epistemic domain, as components of a

formal semantics for statistical inference.

What about chances as pertaining to physical events? Can we give chance

a realist interpretation?



Reference classes
A central problem for physical probability is the reference class problem:

different descriptions of an event lead to different chances.

Chances thereby become description-relative, and thus partly epistemic.



Deterministic systems
A special case of this problem occurs for deterministic systems: a complete

description of such systems trivializes their chances.

Chances thus become entirely epistemic: they are determined by a lack of

information on deterministic states.



Perspectival chance
We might stipulate (cf. Glynn and Strevens) that the correct chances are

those that follow from our preferred theory or our explanatory ideals.

E Chances become tied up with our theoretical perspective.

One alternative is that we reduce all chances to the theory that is most

fundamental, namely quantum mechanics.

E Those chances do not relate to events that are intuitively chancy.

I will try and provide an objective motivation for choosing a theoretical per-

spective that features chance.



5 Irreducible chances

We can use ideas from the debate on reductionism and emergentism to

establish chances at a level of description.

The key concept is a radical form of multiple realizability: some concepts

principally resist translation to a different theoretical level.



Multiply realizable states
Sometimes the macro-level description of a physical state, denoted S, can-

not be defined in terms of sets of micro-level states, X .

Even stronger: the micro-level descriptions might not offer the conceptual

means to refine or alter macro-level probabilities. In such cases we call the

events random relative to the micro-level descriptions.



Random events
An event S is random relative to some algebra X iff for all refinements X
from this algebra we have

P(S|R ∩ X) = P(S|R).

This echoes ideas from Lewis and Skyrms on the robustness of chance:

adding further information from X to a reference class R does not refine

or alter the chances for S. Here robustness rests on the intricacy of the

events S and R in relation to the refinements of X .



6 Defining robust chances

We can provide a formal underpinning of randomness and robustness that

relies on ideas from frequentism. Recall the definition of the limiting relative

frequency F of a series s:

F(s) = lim
n→∞

n
t=1s(t)

n
,

where s(t) is the digit at position t in the series. Note: the denotation of the

series by s, while uppercase S is a set, is not a coincidence.



Place selections
We can use a second series  to select elements from the series , and

construct the relative frequency of a subseries:

F(s;) = lim
n→∞

n
t=1s(t)(t)

nt=1(t)
.

The series s is random relative to a set X of series or selection rules if for

all  we have:

F(s) = F(s;).

We might say that the set of series X contains “no information” about the

original series s.



Series and place selections as sets
Series and place selections can be viewed as sets of natural numbers. For

binary sequences we have:

Ss = {t | t ∈ N and s(t) = 1}.

Similar relations between a series s and a set S can be given when we con-

sider S to be a set in a continuous space. This is easiest if S is a countable

set of points in the space.



Randomness and robustness
We can now apply the same notion of invariance under place selection in

the richer context of events: the set S is random relative to a lower-level

algebra X iff for all X we have

P(S|X) = P(S).

We thus employ the mathematical machinery of place selections to arrive

at a notion of randomness for an event S, and hence at the robustness of

the probability assignment P(S).



Infinite intricacy
The ultimate version of robustness has the events S distributed uniformly

over the space X. Consider the σ-algebra X generated by all sets of the

form

B[, δ] = {′ : ′ ∈ (,  + δ)}

where the δ can be arbitrarily small, and stipulate that

P(S|B[, δ]) = P(S).

That is, no amount of fine-graining will offer additional information on the

event S, making the chances fully robust or autonomous.



Random set: example
We can construct a random set by employing a simple ergodic dynamical

system. Consider a set R with elements indexed by t,

R(t) = 2t R(0) (mod 1).

where R(0) ∈ [0,1] is the starting position generating the set. For a given

initial state R(0), we can label all the points R(t) by 0 if R(t− 1) ≤ 1/2 and by

1 if R(t − 1) > 1/2. The set of points labelled 1 we call S.



Autonomous chance: example
Assuming that R(0) is a collective under a certain notion of randomness

and with relative frequency σ of 1’s, the limiting relative frequency of points

within R ∩ S is

P(S|R) = σ.

Notice that the countable set R of points in [0,1] is dense everywhere.

Moreover, for any set X selecting out an interval within [0,1], however

small, we have

P(S|R ∩ X) = P(S|R).



Objective chance
My proposal is to call a chance ascription P(S|R) objective if it is suitably

close to being autonomous in the above sense. Some remarks:

• There are many variations on the randomness of the event S depend-

ing on the details of the algebra X . This runs parallel to the random-

ness of sequences.

• A natural line is drawn by the algebra XS that corresponds to “Schnorr

randomness”: whether or not a point  is a member of an element

X ∈ X must be computable.

• This leaves room for the random event S to be the result of an effective

procedure.



Objective chance?
There are many loose ends in this picture of objective chances on the macro-

level. Some considerations:

• Every point  in the space X, or in the class C, is labelled as either

ƒS() = 0, or ƒS() = 1. We need not violate determinism.

• Nothing guarantees that random events like S or C actually obtain. The

foregoing offers an extreme case of objective chance but the reality of

chances may fall short of this.

• The identification of a macro-level that features chances is a semi-

objective matter. It does not hinge fully on our theoretical perspective.



7 Conclusion

I have argued that the frequentist theory of chance can be used to our

advantage in two separate philosophical projects.

• It elucidates statistical inference by specifying the semantics of statis-

tical hypotheses and thereby clarifying statistical inference.

• It fosters an interpretation of single-case chance that escapes the ref-

erence class problem. The autonomy of chance is an objective matter.

• This may explain what the ultimate aim of statistical model selection

is: to find autonomous chances.

Ironically, frequentism was motivated by strict empiricism but finds promis-

ing applications in metaphysics and semantics.



Thanks!

This talk will be available at http://www.philos.rug.nl/~romeyn. For

comments and questions, email j.w.romeijn@rug.nl.

http://www.philos.rug.nl/~romeyn
http://www.philos.rug.nl/~romeyn
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