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Stein’s paradox

Say we estimate a set of means. We can improve the predictive performance of our esti-

mations by nudging them towards the overall mean (Vassend et al, manuscript).

• Separate experts  observe values Xj, , with  = 1,2, . . . k and k > 2, and compute the

averages X = 1/N
∑

j Xj.

• They may estimate the means θ of the distributions that generate the observations

by the maximum likelihood estimator, θ̂ = X.

• However, the experts can improve the expected accuracy of these estimates by nudg-

ing them towards the grand mean X̄ = 1/k
∑

 X. The estimator

θ̂
?
= X̄ + c(X − X̄) = cX + (1 − c)X̄,

with the shrinkage factor c = 1 − (k−2)σ2/∑(X−X̄)2, has better overall predictive accu-

racy.



What’s so weird?

The proof of James and Stein (1957) is entirely formal. So the improvements in predictive

performance obtain independently of the interpretation of the estimates.

If the X are incidence rates of a disease in hospitals  dotted around the country, the nudge

towards the grand mean makes sense. But if the estimates are a completely arbitrary

collection, the result of Stein seems positively weird.



Group rationality

In what follows I will explain Stein’s result and then apply the insights to another context:

deliberating experts.

• By nudging towards the grand mean, the experts are effectively learning from each

other, i.e., they put trust in each other’s judgments.

• The size of the move towards the opinion of others is determined by considerations

of predictive performance. In this sense Stein proposes an independent way of deter-

mining mutual trust.

• In Stein’s paradox there is no role for a decision maker, someone who collates the

opinions of all the experts. But the insights from Stein may help such decision makers

as well.
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1 Explaining Stein

In this exposition I follow Stigler (1990) who offers a geometric explanation of Stein’s result.

The general idea relates to so-called regression to the mean.

We imagine that a scatter plot of X and θ is given. Then we try to find the linear relation

that minimizes expected error.



Explaining Stein
For k > 2, regressing X on θ gives another result than the opposite regression. This roughly

explains that the estimators must be nudged together.



Explaining Stein
In formulas: given a scatter plot of points 〈X, θ〉, the regression line that minimizes loss in

terms of the X given the θ is

X = θ .

But to minimize loss for the θ, conditional on the X, we must choose the relation

θ = X̄ + c(X − X̄) ,

where the factor c is the shrinkage factor of Stein,

c = 1 −
(k − 2)σ2
∑

(X − X̄)2
.



Explaining Stein
That the inverse regression line is flattened, can be seen from two extreme cases on how

the scatter plot may be generated: no variance in θ, and no variance in X given θ. The

inverse regression is a mix of both.



2 An empirical Bayesian model

Minimizing the errors when estimating the θ involves an inversion in the roles of X and θ.

This suggests that a Bayesian model can provide insights into Stein’s results.

• We want to infer the values of the θ that minimize the expected loss, on the basis of

the X.

• Ideally, we derive this expected loss from a posterior over θ. If we had a prior density

P(θ), this would be a simple calculation.

• The estimators of Stein can be understood as the after-the-fact reconstruction of a

reasonable prior, which is then used to derive a Bayesian estimator.

This arguably dissolves the paradoxical nature of Stein’s estimator: the means θ are im-

plicitly assumed to have a common source, whose statistical characteristics can be recon-

structed.



An empirical Bayesian model
Following Efron and Morris (1977) we can trace Stein’s shrinkage back to a reverse engi-

neered prior over θ. The model is that the means θ are drawn at random from a normal,

and that the data X are then drawn from normals around those means,

P(θ) ∼ Normal(θ̄, τ) and P(X|θ) ∼ Normal(θ, σ).

The expressions X̄ and
∑

(X−X̄)2/k−1 are sufficient statistics for θ̄ and σ2 + τ2 respectively.

Therefore

θ̂
?
= X̄ +

�

1 −
(k − 2)σ2
∑

(X − X̄)2

�

(X − X̄) ≈
τ2

σ2 + τ2
X +

σ2

σ2 + τ2
X̄ .

This shows that Stein’s estimator coincides with the Bayesian estimator using a particular

prior for θ.



An empirical Bayesian model
Framed as a Bayesian method, Stein’s shrinkage factor approximates the Kalman filter. The

nudge towards the grand mean is the result of the specific prior that we chose for θ.



An empirical Bayesian model
Stein’s estimator is best understood as an empirical Bayesian method: the prior for θ is

chosen on the basis of the data X.

• The crucial modeling assumption is that the distribution over θ has a finite second

moment. The squared error loss corresponds with normally distributed θ but other

distributions are possible.

• No assumption is made on the relative sizes of σ and τ as sources of diversity among

the estimates. This proportion is derived from the data Xj.

• For small k the James-Stein estimator relies a little more on the individual estimation

X owing to the factor k−2/k−1.

• We may take the other estimations as determining the prior over θ, or alternatively as

providing further data that impacts the posterior, with an improper prior at the outset.



3 Connections to opinion pooling

The foregoing shows that with minor adjustments, the Stein estimators are mixtures of the

maximum likelihood estimations by the experts θ̂ = X and the collated estimations of the

other group members. We have

θ̂
?
= θ̂ + (1 − )θ̄ ,

with θ as chances and X as opinions. A story similar to the above can be provided for Beta

distributions. Weights for Normals and Beta’s are

Normal =
τ2

σ2 + τ2
, Beta =

n

n + n
,

where n and n, like σ2 and τ2, reflect the relative sizes of uncertainty in the estimations of

θ and θ̄.



Connections to opinion pooling
Stein’s estimator can therefore be taken as a prescription for pooling opinions. Viewing

pooling along these lines offers some important lessons.

• The introduction of a latent variable θ, next to the manifest opinions X, allows for a

richer model of social deliberation.

• The revealed opinions of the experts are only an indication of the estimates that they

want to get at.

• In the richer model, the diversity of opinions has two sources: the error in the X given

θ, and the spread in the θ themselves.

• The latter source of uncertainty must be kept in place by the group. It expresses the

ambiguity in the estimation problem.



Connections to opinion pooling
Further lessons concern the rationale of pooling and potential iterations of it.

• Experts must pool because information on the prior is contained in the opinions of

others. But they must resist full deference because their own information is most

salient for their conception of the problem.

• The weight that the experts give to each other is determined by the relative sizes of

two uncertainties: ambiguity and error. This offers a new interpretation of the pooling

weights.

• The remaining diversity among experts is informative for the decision maker: she

must factor in how ambiguous a problem is.

This adds an extra layer to the model of social deliberation. The target of the decision

maker is a distribution over θ that reflects the expert opinions.



4 Conclusion

To summarize, I have argued for the following.

• Stein’s paradox can be illuminated by focusing on the inverse inference problem in-

volved in the estimation.

• This explanation of the paradox is relevant to rational opinion formation in a group of

experts, adding a notion of latent opinion to the model of social deliberation.

• In the Bayesian representation, the shrinkage factor can be related to a pooling weight

with a natural interpretation.

• It offers a new motivation for pooling opinions, presents yet another interpretation of

weights, and clarifies why experts should treasure their diversity.



Thank you

The slides for this talk will be available at http://www.philos.rug.nl/ romeyn. For comments

and questions, email j.w.romeijn@rug.nl.


