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Abstract

This paper shows how to apply a particular chance-credence principle, called the General
Principle, to the case of two divergent level-relative chances of a given proposition in order
to single out level-relative chance that should underpin one’s credence in that proposition.
It is shown that the key move hinges on the use of admissibility clause in the GP. This
principle is, then, tested against the case of two divergent viability fitnesses understood as
level-relative survival chances. The case is taken to show that there are situations that fall
outside the scope of the admissibility clause which is essentially qualitative. As a remedy,
I suggest that the GP should be endowed with a quantitative notion of admissibility. My
suggestion exploits a line of thought employed by Brian Skyrms in his work on the notion
of the resiliency of chance.

1 Introduction

It is sometimes claimed that a proposition A does not have one unconditional chance to come
out true, but instead many conditional chances that could disagree with each other. One way
this can happen is that the properties of a chance set-up at its various levels of description
confer different chances on A’s coming out true. So, an organism’s chance of surviving given
its individual phenotype may differ from its chance of surviving given that it is a member of a
group with a certain advantageous property. Call such conditional chances level-relative chances.
Given a hierarchy of levels of properties, there will be higher- and lower-level chances. Whether
a chance is higher- or lower-level is a relative matter. To give an example, an organism’s chance
of surviving given its genotypic property is higher-level with respect to the chance of surviving
given its genic property, but it is a lower-level chance with respect to the chance of surviving
given its phenotypic property. For simplicity’s sake, let us assume that there are only two levels
of properties, i.e., the i-level and the j-level. Now, suppose that an epistemic agent knows A’s
i- and j-level chances that disagree with each other. The problem arises: which one of these
divergent chances should underpin her credence about A?

Many philosophers have recognized the significance of this problem.1 Recently, Alan Hájek
(2007, p. 579) has argued that the problem looms because ‘you can’t serve all your masters at
once, so you have to play favorites. But who trumps whom, which trumps which?’. In the light
of this recognition, to resolve this problem, we must come with a principled way to single out the
‘right’ condition (the ‘right’ level-relative property of the chance setup) for a conditional chance
of A that should underpin a credence about A. Here, ‘right’ does not mean the ontologically
privileged one, for all the level-relative chances are ontologically equal (there is no sense to
treat some of them as less real than other). Rather, the idea is that by singling out the right
level-relative property, we determine a level-relative chance of A that is a better guide for one’s
credence than the other competing level-relative chance of A.

It seems natural to think that some reasonable principle relating one’s credence and one’s
evidence about chance—the so-called chance-credence principle—will provide an answer to our

1See, for example, Price (1984), Hájek (2007), Hoefer (2007), Glynn (2010).
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concern. However, most of the well-known chance-credence principles tell us how to deal with
unconditional chances. That is, by providing a link between one’s credence bout chance and
one’s credence about the behaviour of an experimental set-up, these principles tell you that you
should set your credence equal to the unconditional chance, all things being equal. This is true
of Miller’s Principle (Miller 1966), and the Principal Principle (Lewis 1986). Could there be a
principle that tells us how to deal with conditional chances, and particularily with level-relative
chances?

One possibility is the so-called General Principle (GP) which, as proved in Vranas (2004),
entails Lewis’s Principal Principle, Lewis’s (1994) and Hall’s (1994) New Principle, and van
Fraassen’s Conditional Principle (van Fraassen 1989, p. 202).2 Roughly, it says that an agent
with evidence E ought to set her credence about A equal to the conditional chance of A given
B, if she knows B and her evidence E is admissible with respect to the proposition that the
conditional chance of A is ch(A|B). And E is admissible with respect to that proposition
if, roughly speaking, it does not provide information ‘overriding’ A’s conditional chance (or,
it tells us nothing ‘over and above’ what is told by this chance). Interestingly, we can use
the admissibility clause in the GP to decide which one of A’s divergent conditional chances
should constrain the agent’s credence in A. The key move is as follows. Given knowledge of two
divergent level-relative chances, ch(A|Bi) and ch(A|Cj), and of propositions about level-relative
properties of a chance set-up, Bi and Cj , the GP is applicable to ch(A|Bi) if Cj is admissible to
the proposition about ch(A|Bi). If this is so, then, on Lewis’s construal of admissibility which
will be explained precisely in this paper, it is precluded that the GP is applicable to ch(A|Cj).
Once Cj is admissible relative to the proposition about ch(A|Bi), it cannot be true that Bi is
admissible with respect to the proposition about ch(A|Cj). Consequently, we get A’s conditional
chance that ‘trumps’ the other one and so deserves to be called a better guide to one’s epistemic
life. This solution is possible because the GP is supplemented with the admissibility clause,
a specific ceteris paribus clause. The thought is that each of the two divergent level-relative
chances can underpin one’s credence, all else being equal. But all the other things cannot be
equal for both these chances. This raises an interesting possibility: we might single out a level-
relative chance for which the other things are equal and declare that this chance should underpin
one’s credence. It seems, then, that by using the admissibility clause, we can in principle decide
upon which one of the divergent level-relative chances should guide one’s credence.3

My main task in this paper is to examine the extent to which the use of admissibility clause
succeeds in picking out a level-relative chance to which the GP is applicable. In particular, I first
identify cases of divergent level-relative chances in which such application of the GP appears
straightforward. I then go on to argue that scientific reasoning deals with cases that cannot be
adequately handled by appealing to the admissibility clause. I illustrate this claim by means of
a case of level-relative chances in evolutionary theory. This case involves two different viability
fitnesses understood as survival chances of an organism taken from a population consisting of
groups, where each group is a mix of altruists and selfish types. That is, in each group an
organism has an individual-level fitness in virtue of its having an individual phenotype; and
also, qua member of a group, it possesses a group-level fitness, which is its fitness in virtue
of being in that group. I then provide a reason for why the GP armed with the admissibility
clause cannot provide a satisfactory answer to the question of which of these two divergent
level-relative chances should underpin an agent’s credence about the proposition that some

2In fact, the GP as presented in Vranas (2004) corresponds to Strevens’s (1995) chance-credence principle
called CP.

3Ideally, one could try to argue that the GP armed with the admissibility clause promises to resolve what
Hájek (2007) calls the epistemological reference class problem, to wit, the problem of which of many conditional
probabilities should guide our credences. This paper, however, will not try to tackle this issue.
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organism, randomly selected from the population, will survive. As a diagnosis, I claim that the
construal of admissibility clause in the GP is essentially qualitative and as such is too narrow
to handle cases of this type. As a remedy, I suggest that the admissibility clause in the GP
should be understood quantitatively rather than qualitatively. My suggestion exploits a line of
thought employed by Brian Skyrms in his work on resiliency. A secondary goal in this paper
is to motivate the claim that, upon the quantitative reading of admissibility, highly resilient
chances can underpin credences.

The structure of this paper is as follows. In section 2, I will show how the GP applies to any
pair of level-relative chance functions. In section 3, I will provide, by drawing on the idea of
screening off, a precise account of the key notion of admissibility and then will identify cases in
which the use of admissibility clause so understood seems to be perfectly adequate. In section 4,
I will test the GP and its admissibility clause against a case taken from evolutionary theory and
will argue that the solution based on the admissibility clause pales. In section 5, I will discuss
two reactions to this problem, and will argue that the GP’s inability to deal with this case stems
from the qualitative nature of admissibility clause. In section 7, I will sketch, by drawing on
Skyrms’s idea of the resiliency of chance, a quantitative approach to admissibility. Finally, in
section 8, I will provide some reasons for why a highly resilient chance might underpin one’s
credence despite the lack of maximal admissibility.

2 The GP and Level-Relative Chances

Let A be a finite algebra of propositions, subsets of some set W . For all propositions A ∈ A,
let cr(−) be an agent’s credence function over A. It assigns to each proposition A a credence, a
number in [0, 1], that measures the agent’s degree of belief in A. Let ch(−|B) be the conditional
chance function over A, for some fixed conditioning proposition B.4 This function assigns
to each proposition A a conditional chance, a number in [0, 1]. (Nothing substantial in my
presentation hinges on whether this conditional chance measures A’s limiting relative frequency
to come out true given B, or a chance set-up’s propensity to display A given B.) Suppose
that, for some fixed A ∈ A, 〈ch(A|B) = x〉 is the proposition that A’s chance given B equals
x. Further suppose that the agent knows 〈ch(A|B) = x〉, B and has evidence E. Assume that
cr(E ∧B ∧ 〈ch(A|B) = x〉) > 0. Then:

(GP) An agent ought to have a credence in A such that

cr(A|E ∧B ∧ 〈ch(A|B) = x〉) = x,

if E is admissible with respect to 〈ch(A|B) = x〉.5

For example, the agent is about to form a credence about the proposition that a given coin will
land heads (A). If one knows that (B) the coin is biased in favour of heads, that the chance
of A given B equals x, and that (E) the coin landed heads yesterday, then one’s credence in A

4If B ∈ A and ch(B) > 0, the function ch(−|B) may be defined by the ratio of unconditional chances, that

is, for any A ∈ A, ch(A|B) = ch(A∧B)
ch(B)

. If one regards the ratio analysis of conditional chance as flawed, one

may treat ch(−|B) as a primitive notion which is not reducible to unconditional chances. For example, one may
define ch(−|B) over A × B, where B is a non-empty subset of A, as satisfying Popper’s axioms for conditional
probability.

5Strictly speaking, we should require the conjunction E ∧B to be admissible with respect to 〈ch(A|B) = x〉.
However, we can omit the reference to B in the admissibility clause because B is always admissible with respect
to 〈ch(A|B) = x〉. That is, since the conditional chance ch(A|B) must reflect all the information conveyed by B,
B cannot tell us anything about A over and above what is told by ch(A|B).
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ought to be x, provided that E is admissible with respect to the proposition that A’s chance
given B is x.

Now, let us apply the GP to the case in which there are two level-relative chance functions
over A. Let the propositions Bi and Cj stand for, respectively, some i- and j-level property of a
chance set-up. Assume that Bi and Cj belong to A. We denote the i-level chance function over
A given Bi as ch(−|Bi). Similarly, we take ch(−|Cj) to stand for the j-level chance function
over A given Cj . We take it that these two chance functions disagree on the chance assignment
over A. Suppose further that, for some fixed A ∈ A, 〈ch(A|Bi) = x〉 is the proposition that
A’s chance given Bi is x, 〈ch(A|Cj) = y〉 is the proposition that A’s chance given Cj is y, and
x 6= y. Assume that the agent knows propositions about the chance set-up’s properties and
propositions about the requisite level-relative chances. What she does not know is A’s chance
conditional on the conjunction Bi ∧ Cj , ch(A|Bi ∧ Cj), though it might be perfectly defined.
The question arises: should she defer to ch(A|Bi), or to ch(A|Cj)?

The GP, applied to ch(A|Bi), requires the following:

(GPch(A|Bi)) An agent ought to have a credence in A such that

cr(A|〈ch(A|Cj) = y〉 ∧ Cj ∧Bi ∧ 〈ch(A|Bi) = x〉) = x,

if Cj is admissible with respect to 〈ch(A|Bi) = x〉.6

Thus the agent who knows two divergent level-relative chances of A, ch(A|Bi) and ch(A|Cj),
ought to set her credence in A equal to the chance ch(A|Bi), if Cj is admissible with respect to
the proposition that A’s chance given Bi is x.

When applied to ch(A|Cj), the GP requires the following:

(GPch(A|Cj)) An agent ought to have a credence in A such that

cr(A|〈ch(A|Cj) = y〉 ∧Bi ∧ Cj ∧ 〈ch(A|Bi) = x〉) = y,

if Bi is admissible with respect to 〈ch(A|Cj) = y〉.

Thus, the agent faced with the same situation ought to set her credence in A equal to y, if Bi

is admissible with respect to the proposition that A’s chance given Cj is y.
The crucial point about this case is that once the requisite admissibility relations are de-

termined, these requirements cannot both be satisfied. That is, if the chances ch(A|Bi) and
ch(A|Cj) disagree, and Cj is admissible with respect to the proposition about ch(A|Bi), then
the GP is applicable to ch(A|Bi) and inapplicable to ch(A|Cj). Likewise, if Bi is admissible
with respect to the proposition about ch(A|Cj), then the GP is applicable to ch(A|Cj) but
inapplicable to ch(A|Bi). In either case, we get A’s level-relative chance that ‘trumps’ the other
one. And it is this trumping chance that should constrain the agent’s credence in A. This holds
because the two admissibility relations cannot both be true. So, if Cj is admissible with respect
to 〈ch(A|Bi) = x〉, it is not true that Bi is admissible with respect to 〈ch(A|Cj) = y〉. In the
next section, I give a more precise explanation of why this is so by clarifying Lewis’s idea of
admissibility.

6For simplicity’s sake, we speak of the admissibility of Cj instead of the admissibility of the conjunction
〈ch(A|Cj) = y〉 ∧ Cj ∧ Bi. This move is justified as follows. Bi is always admissible to 〈ch(A|Bi) = x〉, since it
cannot tell us anything over and above what is told by 〈ch(A|Bi) = x〉. Further, it seems reasonable to require
that if Cj is admissible, then so must be 〈ch(A|Cj) = y〉. After all, if Cj tells us nothing over and above what is
told by 〈ch(A|Bi) = x〉, then a fortiori 〈ch(A|Cj) = y〉 must do the same. For example, if the proposition that
Usain Bolt is 100m world record holder is admissible to the proposition about the chance of a coin-flip landing
heads, then so is the proposition about the chance of this coin-flip landing heads given that Usain Bolt is 100m
world record holder. Finally, if all three propositions are admissible, then their conjunction is also admissible.
This corresponds to Lewis’s (1986, p. 96) idea that any Boolean combination of admissible propositions is also
admissible.

4



3 Admissibility and Screening-Off

What makes proposition E admissible? David Lewis characterized the notion of admissibility
as follows:

Admissible propositions are the sort of information whose impact on credence about outcomes
comes entirely by way of credence about the chances of those outcomes. Once the chances are given
outright, conditionally or unconditionally, evidence bearing on them no longer matters. (Once it is
settled that the suspect fired the gun, the discovery of his fingerprint on the trigger adds nothing
to the case against him.)(Lewis 1986, p. 92)

Lewis’s characterization of admissibility does not amount to a definition, but it can be regarded
as a vague approximation of it. What is the leading idea behind it? Lewis suggested that two
kinds of information seem to fit his characterization: historical information and information
about chance itself. Historical information concerns facts about the past history of events up to
the point where the experiment in question is about to be performed. Intuitively, information
about initial conditions of a coin toss, which is essentially historical, should not override infor-
mation about the chance for heads. But, as Strevens (2006) points out, in a deterministic world
this information would be inadmissible, since it entails an outcome-specifying proposition. If
so, then historical information is not always admissible. Also, it seems that information about
chance itself is not always admissible. If you endorse the view that a chance distribution at a
given time supervenes on the past, present and future distribution of outcomes, then it appears
that information about chance itself is inadmissible: it says what the outcome will be before
the experiment runs.7 It seems then that the intuition behind Lewis’s account of admissibility
cannot be fully captured by these two sorts of information. Could we come with a better un-
derstanding of this intuition? And, more importantly, given such an understanding, could we
tell when information about a chance set-up’s property is admissible to information about its
level-relative chance?

Before we suggest an account of Lewis’s idea of admissibility, we have to make some qual-
ifications concerning the notion of admissibility. Firstly, a proposition E is admissible always
relative to other propositions (Thau 1994). But to which other propositions? Although it is
typically taken that E should be regarded as admissible with respect to outcome-specifying
propositions A, I take it, heeding the suggestions in Vranas (2002), that E should be judged ad-
missible relative to propositions about A’s chances. The case of divergent level-relative chances
seems to provide a reason for why this should be so. For E may be admissible to 〈ch(A|Bi) = x〉,
but inadmissible to 〈ch(A|Dj) = y〉. So, by judging E’s admissibility only relative to A one
does not take into account possible admissibility relations in this case.

Secondly, E’s admissibility must be relativized to time (Lewis 1986). A proposition that
says about a result of a coin toss is inadmissible at any time before the result of this toss is
settled. But it is admissible at any time after this toss.8 For ease of exposition, whenever I speak
about a proposition’s admissibility, I mean its admissibility at time before an outcome-specifying
proposition is known to be true or false.

The account of Lewis’s idea of admissibility, I propose, goes as follows. A proposition E
is admissible with respect to the proposition about A’s chance if A’s chance gives a complete
probabilistic prediction about A given E.9 Once A’s chance is determined, the proposition E

7For a recent discussion of this issue, see Strevens (1995), Vranas (2004).
8One has to be cautious not to generalize this observation: it does not mean that any evidence about the

future is inadmissible at the time before the result of a chancy experiment is settled. Suppose that E is about
an event which will occur after the result is settled, yet it is not in any way correlated with that result. For this
reason, we would not call it inadmissible, though it is about the future.

9I should emphasize that this account is not a definition of admissibility. Rather, it provides a necessary
condition for Lewis’s notion of admissibility. But it might not be sufficient. For we might additionally require
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provides no help in predicting probabilistically the truth value of A. This is because it does
not yield information that goes beyond what A’s chance says about the truth of A. On this
account, if E entails an outcome-specifying proposition A, and A’s chance is non-trivial, then
E adds information beyond what A’s chance says. Thus, A’s chance does not yield a complete
probabilistic prediction about A given E. Thus, the specific cases of historical information
and information about chance discussed above would count as inadmissible. Further, it seems
that both relevant and irrelevant information may be admissible in the sense just given: the
chance for heads gives complete probabilistic prediction given that Usain Bolt is 100m world
record holder (irrelevant information) as well as given that the coin is made of bronze (relevant
information). Importantly, on this account of admissibility, it is not required that A’s chance
must be predictively complete simpliciter. For we might not be certain about all the factors
that could possibly affect A. We should keep in mind that chance is a guide to our epistemic life
given that we think of ourselves as finite and temporally conditioned beings. If we were certain
of all the relevant factors that could influence a chance set-up’s outcomes, we probably would
not need chances to guide our credences about these outcomes. Consequently, we should judge
whether chance is predictively complete relative to those factors that are epistemically possible
for us. Moreover, A’s chance may be predictively complete relative to E, but incomplete relative
to a different proposition F , where both E and F are epistemically accessible.

In the case of unconditional chance, the suggestion to understand admissibility qua chance’s
predictive completeness can be made precise by using the notion of statistical irrelevance.10 If
〈ch(A) = x〉 is the proposition that A’s chance is x and E is any evidence, then:

(Admissibilityuncond) E is admissible with respect to 〈ch(A) = x〉 if

ch(A|E) = ch(A),

provided that the conditional chance is defined. Thus, E is admissible with respect to 〈ch(A) =
x〉 if conditionalizing on E does not change A’s chance. For example, given a die which is about
to be rolled, the proposition that the die is yellow is stochastically irrelevant to an outcome A
(and so ch(A) should remain unchanged upon conditionalizing on E), but the proposition that
A is even seems to be stochastically relevant and so conditioning on this proposition could make
a difference to the chance of A.

Let’s apply the account of admissibility just given to the case of two divergent level-relative
chances. Whether Cj is admissible to 〈ch(A|Bi) = x〉 depends on whether ch(A|Bi) gives a
complete probabilistic prediction about A given Cj . Like in the case of unconditional chance, we
can make this more precise by using the notion of screening-off, or conditional independence. Let
us assume that Bi and Cj are stochastically relevant to the truth of A, i.e., ch(A|Bi) 6= ch(A|Ci).
Then:

(Admissibilitycond) Cj is admissible with respect to 〈ch(A|Bi) = x〉 if

ch(A|Bi ∧ Cj) = ch(A|Bi),

provided that the conditional chances are defined. In other words, Cj is admissible with respect
to the proposition about A’s chance given Bi if A’s chance conditional on Bi is the same as its
chance conditional on Bi and Cj . That is to say, the conditioning proposition Cj is stochastically
irrelevant to A given the conditioning proposition Bi, or the information it conveys does not

that the agent must be certain or justified in believing that chance gives a complete probabilistic prediction given
E.

10In doing so, I follow Levi (1980, chap. 12) and Strevens (1999).
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help to probabilistically predict whether A once Bi has been taken into account.11 We say then
that Bi screens off Cj from A’s chance.12 To use Lewis’s phrasing, we may say that information
conveyed by Cj comes by way of A’s chance given Bi. And this holds because Bi renders A and
Cj conditionally stochastically independent.

Now, given the notion of screening-off, we can account for the fact that if Cj is admis-
sible with respect to 〈ch(A|Bi) = x〉, it is not true that Bi is admissible with respect to
〈ch(A|Cj) = y〉. This can be explained by the fact that the screening-off relation, which under-
lies admissibility relations between these propositions, is construed as an asymmetric relation:
if Bi renders Cj stochastically irrelevant to A, then it does not hold true that Cj does the same
with respect to Bi. For if Bi renders Cj stochastically irrelevant to A, and if Cj renders Bi

stochastically irrelevant too, then we have

ch(A|Bi) = ch(A|Cj),

which could mean the following: to determine A’s conditional chance, it does not matter whether
one uses the conditioning proposition Bi or Cj . In any case, one ends up with the same
conditional chance of A. But this contradicts our assumption that Cj and Bi are stochastically
relevant to the truth of A, i.e., ch(A|Bi) 6= ch(A|Cj).

The asymmetry of screening-off is crucial to adjudicating between the divergent level-relative
chances. For if the admissibility relation in (GPch(A|Bi)) is true, it follows that the admissibility
relation in (GPch(A|Cj)) must be false. Whether the winner of our competition is chance ch(A|Bi)
or chance ch(A|Cj) depends on which one of these two admissibility relations holds true. The
crucial question, however, is: Could we use the admissibility clause so understood in any case
in which we have to decide which one of the divergent level-relative chances trumps which?

There seems to be cases in which by using the admissibility clause we can pick out a level-
relative chance to which the GP is applicable. To identify them, we first prove the truth of the
following proposition (proof in the appendix):

Proposition 1. If Bi ⊆ Cj, then ch(A|Bi ∧ Cj) = ch(A|Bi).

That is, if Bi entails Cj , then it follows that Bi renders A and Cj conditionally stochastically
independent. Now given the asymmetry of screening-off, Cj cannot render A and Bi condi-
tionally stochastically independent. If this is the case, then we get, from a par of divergent
level-relative chances, the level-relative chance, ch(A|Bi), that should underpin by the GP one’s
credence in A. Two examples of this type of case come into mind. First, Bi may describe
some maximally fine-grained property displayed by a chance set-up, while Cj describes some
more coarse-grained property of this chance setup. Admissibility clause, then, prescribes that
in such a situation it is A’s chance conditional on the maximally fine-grained property that
should guide one’s credence in A. Second, Bi may stand for the chance set-up’s property that
asymmetrically necessitates its other property described by Cj . To put this in other words, the
latter property supervens on the former property, or whenever the chance set-up displays the
latter, it also must display the former but not vice versa. By using the admissibility clause,
we have that A’s chance conditional on the subvenient property will trump A’s chance condi-
tional of the supervenient property. The question whether the admissibility clause provides a
correct solution in these situations, though philosophically important, cannot be undertaken

11Notice that this is not to say that Cj is stochastically irrelevant to A simpliciter. We assume that both Cj

and Bi make difference to A’s holding true. The condition only says that Cj is stochastically irrelevant to A
given Bi.

12Cognoscendi will recognize this as a special case of the notion of screening-off proposed by Reichenbach (1956)
and defended by Salmon (1971). On their account, given three propositions A, B, and C, A is said to screen off
B from C if conditionalizing on A renders Bi and Cj stochastically independent.
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here. Rather, the point I am promoting is that in these situations we can use the admissibility
clause to pick out a level-relative chance to which the GP is applicable.

So far so good. But often there are cases in which we know divergent level-relative chances
and yet it seems that the admissibility clause cannot be used in this way. In the next section, I
introduce such a case. By doing so, I will argue that a successful use of the admissibility clause
is essentially limited.

4 The GP and Viability Fitnesses in Evolutionary Theory

This section introduces a case from evolutionary theory—a case of two divergent viability fit-
nesses of an organism—and its bearing on the use of admissibility clause in the GP. Firstly,
to set the stage, I briefly describe the basics of the idea of natural selection acting at different
levels of biological organization and the concept of fitness relativized to such levels. Secondly,
I introduce the case. Thirdly, I show what is required for the admissibility clause in the GP to
bring a solution in this case. Finally, I argue that this solution cannot succeed.

Natural Selection at Multiple Levels: Fitnesses as Level-Relative Chances. Let us
assume that natural selection is the only force influencing a trait’s or property’s evolution in
some population. For natural selection to act it is required that the objects of selection must
vary with respect to heritable fitness—the objective chance of surviving.13 Fitness differences
among objects are causally affected by differences among the objects’ properties that are subject
to selection. For example, when we say that, in a given population, butterflies have different
chances for surviving, we mean that they vary with respect to a certain property (e.g., being
camouflaged), and that this variation has a causal effect upon their fitnesses. This property
and the fitness covary because differences in the former affect causally differences in the latter.
This causal relation ensures that if the objects vary with respect to having some property, then
they also vary in their fitness values.14

The simple picture just presented may be made more complex by acknowledging that the
biological world exhibits a nested or hierarchical organization (genes are properly included in
organisms that in turn are properly included in groups of organisms). If so, natural selection
may act for or against properties at more than one level, e.g., for genic, genotypic, phenotypic
or group properties. And there cannot be selection at a given level unless there is variation
in fitness at that level. That is, there is group selection for or against some group property if
there is variation in fitness among objects depending on whether or not they have this property,
there is genic selection for or against some genic property if there is variation in fitness among
objects depending on whether or not they have this property, and so on for other levels.

But what are the objects that vary with respect to fitness? This issue is important, for even
if we agree upon the fact that selection can act for genic, phenotypic or group properties, it is
left open what the objects are to which these properties and thus the fitnesses are attached. For
example, we may agree that selection favours being fast over being slow, yet we may disagree
whether being fast is advantageous (increases the level of fitness) for genes, organisms or groups.

13Typically, quantitative models in evolutionary theory deal with the concept of fitness as having two compo-
nents, namely the fertility which captures the expected number of offspring, and the viability which expresses
the chance of surviving. Nothing essential hinges on the fact that my focus is only on the viability component of
fitness.

14For a similar view, see especially Okasha (2006, chap. 3). A somewhat different view is defended in Rosenberg
(1978) and Sober (2000, chap. 3). They hold that the relation between fitness and an organism’s properties
amounts to simultaneous determination or supervenience, that is to say, two organisms that are identical in their
properties must have the same fitness, but the fact that they have the same fitness does not entail that they must
be identical with respect to their properties.
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This worry is known as the problem of the ‘benchmarks’ of selection (Sober 1984, chap. 8) or
the ‘focal’ units of selection (Okasha 2006, chap. 2). For my purposes, I take it that it is
organisms that are the objects to which we attach properties for or against which selection may
act, and it is organisms that vary with respect to fitness. In particular, I assume that a given
organism has a group-level property by the fact that it belongs to that group.

Given that differences in fitness among organisms are causally influenced by differences in
properties they possess and that selection may act for or against properties at various levels,
organisms may have different level-relative fitnesses in virtue of its having different level-relative
properties. For example, it is perfectly possible that an organism may suffer in virtue of be-
longing to a group with a certain disadvantageous group property, but benefit in virtue of its
genotypic property. Intuitively, a zebra may benefit in virtue of its being fast, but suffer in
virtue of its belonging to a group with a high proportion of slow zebras that are less able to
avoid predators. These facts about zebra’s level-relative properties give rise to its different fit-
ness values: one of them is the fitness conditional on its having individual phenotypic property
of being fast, the other is the fitness conditional on its belonging to a group with slow zebras.
I suggest to think of these various fitnesses as of an organism’s conditional chances of survival,
with the conditioning propositions describing the organism’s level-relative properties that are
subject to selection force. I will then argue that once this quite intuitive way of thinking about
fitnesses is granted, the use of admissibility clause in the GP faces a serious challenge.

Case. Consider a population divided into groups each consisting of n organisms. Suppose
that groups vary in the percentage of altruistic (a) and selfish (s) individuals they contain. I
take it that a and s are two measurable phenotypic properties at the individual level. If the
propositions A and S stand for, respectively, the altruistic and selfish property of an organism
at its individual level, then we can determine the first pair of fitness functions, namely ch(−|A)
and ch(−|S). If the proposition O stands for “an organism o survives until next month”, these
functions give O’s conditional chances. I call them individual-level fitnesses, where:

• ch(O|A) is o’s fitness conditional on its altruistic phenotype a.

• ch(O|S) is o’s fitness conditional on its selfish phenotype s.

Also we may define o’s fitness conditional on o’s belonging to a group with a certain group
property. It reflects an intuitive idea that o’s viability depends on the group to which it belongs.
For the sake of simplicity, I take it that groups are individuated by a certain characteristic
concerning the average distribution of phenotypes a and s in them. If ai denotes the altruistic
phenotype of the ith individual in a group of n individuals, then the average altruism is given
by ā = 1

n

∑n
1 ai. By analogy, the average selfishness is given by s̄ = 1

n

∑n
1 si, where si denotes

the selfish phenotype of the ith individual in a group of n individuals. Further, I assume that
groups vary with respect to ā and s̄. For our purposes, let the group with a higher average
altruism than selfishness be denoted by ga and the group with a higher average selfishness by gs.
If the propositions Ga and Gs encode for, respectively, the property of belonging to group ga and
the property of belonging to group gs, we can determine the second pair of fitness functions,
ch(−|Ga) and ch(−|Gs). They give two other conditional chances, which I call group-level
fitnesses, that is:

• ch(O|Ga) which is o’s fitness conditional on its belonging to ga.

• ch(O|Gs) which is o’s fitness conditional on its belonging to gs.

Evolutionary biology teaches us that, under certain conditions, the following two statements
hold true (e.g., Sober 1988; Sober 2000, chap. 4):
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(Within-Group Fitness) For each organism o, regardless of what group in the
population it is in,

ch(O|A) < ch(O|S).

(Between-Group Fitness) For each organism o in the population, regardless of
its individual phenotype,

ch(O|Ga) > ch(O|Gs).

The first statement is a comparative claim about individual-level fitnesses within each group
of our population. It says that for an organism, regardless of what group it is in, it is better
to be selfish than to be altruistic: selfish organisms are fitter than altruists within each group.
This is a simple consequence of the evolutionary definition of altruism and selfishness. That
is to say, a trait is altruistic when it increases the fitness of others in a group and decreases
the fitness of an organism possessing it, while the selfish trait always increases the fitness of an
organism possessing it because it receives benefits from all altruists but never reciprocates. The
second statement says that, regardless of its individual phenotype, an organism in a group with
a higher proportion of altruists is fitter that an organism in a group with a higher proportion
of selfish types. An obvious corollary of the second statement is the following comparative
claim: altruistic organisms that belong to groups with a higher proportion of altruistic types
are fitter than selfish organisms that belong to groups with a higher proportion of selfish types.
This corollary when combined with the first statement shows that (i) within each group in
the population at hand an altruist is less fit when compared to a selfish type and (ii) in the
population at hand an altruist that belongs to a group with a higher proportion of altruistic
types is fitter than a selfish organism that belongs to a group with a higher proportion of
selfish types. We see, then, that the same altruistic organism in the ensemble of groups under
consideration may have two different fitnesses, i.e., the individual and the group-level one.

Table 1 illustrates this case. There are two groups, denoted by Ga and Gs, each with
a different proportion of altruists and selfish organisms. In each group ch(O|A) < ch(O|S)
(0.4 < 0.7 and 0.2 < 0.3). But groups also vary in fitness, i.e., the group denoted by Ga is
fitter than that denoted by Gs (0.43 > 0.29), which has effects on o’s fitness conditional on its
belonging to a certain group, i.e., on its group-level fitness. Here the group-level fitness is given
by the average individual fitness in the group, weighted by the frequency of altruistic and selfish
types in that group. So, when we say that an organism o has a group-level fitness we mean by
that its having such average individual fitness within that group. If the average altruism in a
group, denoted by Gk, of n organisms is ā and the average selfishness is s̄, then the group-level
fitness is given by

ch(O|Gk) = (ā) ch(O|A) + (s̄) ch(O|S) (1)

where ā+ s̄ = 1. Our case can then be explained by the fact that the higher the proportion ā of
altruistic types in a group with higher viability, the greater the average individual-level fitness
of that group; and the higher the proportion s̄ of selfish types in the group with lower viability,
the lower the average individual-level fitness of that group. This holds despite the fact that
altruists are less fit than selfish types in each group.

Next, I will argue that this case brings troubles in an epistemic context, namely when we
ask which one of these level-relative chances should constrain an agent who has credence about
O’s holding true.

The GP and our Case. Let 〈ch(O|A) = x〉 be the proposition that O’s chance given A
is x, and 〈ch(O|Ga) = y〉 be the proposition that O’s chance given Ga is y. Suppose that
an experimenter wants to conduct a trial on our population: she wants to know whether a
given organism selected from this population will survive until next month. She has some

10



Group ā s̄ ch(O|A) ch(O|S) ch(O|Gk)

Ga 0.9 0.1 0.4 0.7 0.43

Gs 0.1 0.9 0.2 0.3 0.29

Table 1: An example of our case.

expectation about this and her expectaion is her credence assigned to O. Further, she knows
that the organism have the properties denoted by A and Ga, knows that ch(O|A) = x and
ch(O|Ga) = y, and, in addition, she knows that A and Ga are stochastically relevant to the
truth of O, i.e.,

ch(O|A) 6= ch(O|¬A)

and
ch(O|Ga) 6= ch(O|¬Ga).

More specifically, she knows that (i) A is negatively correlated with O, i.e., ch(O|A) < ch(O|¬A),
and (ii) Ga is positively correlated with O, ch(O|Ga) > ch(O|¬Ga). She does not know, however,
the chance of O conditional on a logically stronger proposition A ∧ Ga. The question arises:
which one of the two level-relative chances for O should constrain her credence about O?

It follows from our case that these chances do not inform your credence in the same way. Her
level of expectation in O when adjusted to ch(O|Ga) is higher than her level of expectation in
O when adjusted to ch(O|A), as shown in Table 1. Speaking in a comparative way, deferring to
the chance ch(O|A) would set her expectation at a lower level when compared to one’s credence
adjusted to the chance ch(O|S). But deferring to the chance ch(O|Ga) would set your credence
at a higher level when compared to one’s credence adjusted to the chance ch(O|Gs).

To answer our question by appealing to the admissibility clause in the GP, it is required
that either A renders O and Ga conditionally stochastically independent, or Ga renders O and
A conditionally stochastically independent. But since neither A entails Ga nor Ga entails A,
this cannot be settled a priori. However, it seems that this issue can be decided upon evidence
that the experimenter could acquire.

Evidence Against Admissibility. One of our initial assumptions was that when an organ-
ism’s level-relative fitnesses covary with its level-relative properties, it is precisely because its
fitnesses are causally influenced by these properties. That is, if the covariance between its fitness
and one of its level-relative properties is non-zero, this is because the fitness and that property
are causally correlated. To recall, in our peculiar case the agent knows that there is a (nega-
tive) causal correlation between A and O’s chance, and there is a (positive) causal correlation
between Ga and O’s chance. Hence, she knows that both level-relative properties covary with
the two corresponding level-relative fitnesses. To recall, the role of admissibility clause is to
tell us that in the presence of one of these level-relative properties, causal correlation between
O’s chance and the other property disappears, having the covariance set equal to zero. That
is, its role is to tell which level-relative property is causally sufficient to determine A’s chance
and thus which leaves the other property causally irrelevant. This in turn tells which property
suffices to predict O’s chance.15 Once the property’s causal sufficiency has been settled, the
fitness conditional on that property is predictively complete.

Although this issue cannot be settled a priori on our case, the experimenter can gain evidence
that bears on it. Specifically, she may manipulate or intervene on the experimental set-up to

15The converse is not necessarily true. For example, information about barometer reading may suffice to predict
the storm, yet it is not even causally relevant to its occurrence.
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Figure 1: Possible values of four conditional survival chances, i.e., r = ch(O|A ∧ Ga), s =
ch(O|S ∧Ga), t = ch(O|A ∧Gs) and w = ch(O|S ∧Gs).

obtain evidence about the set-up prior to manipulation, evidence about how the setup’s chances
to yield an outcome are causally correlated with its level-relative properties. That is, the goal
of this manipulation test is to show, say, that if Ga is admissible with respect to the proposition
〈ch(O|A) = x〉, then manipulating the truth-value of Ga, while holding fixed O, will not change
the value of the conditional chance function ch(O|A ∧Ga), that is:

ch(O|A ∧Ga) = ch(O|A ∧ ¬Ga). (2)

This test is counterfactual, i.e., it provides what-if-things-had-been-different information, and
is aimed at providing evidence, not proof, about the causal correlations between O’s chance
and the set-up’s level-relative properties denoted by A and Ga. We ask: what would happen
to O’s chance if we wiggled the truth-value of Ga while holding fixed A? Here the operative
idea is that, by manipulating Ga, we ask whether conditionalizing on Ga makes a difference to
O’s chance conditional on A. And if such a manipulation leaves this chance unaltered, we have
evidence that Ga makes no difference to O’s chance given A.16 In other words, we are entitled
to say that A screens off Ga from O’s chance.

Note, however, that in the case under consideration, the experimenter does not know the
values of conditional chances ch(O|A∧Ga) and ch(O|A∧¬Ga). Nevertheless, for the puropose
of manipulation, she might estimate these values from the observed frequencies. That is, we can
assume that she has run a series of similar experiments that resulted in some relative frequency
with which organisms of type A and Ga survive until next month and in some relative frequency
with which organisms of type A and ¬Ga survive until next month.

With these ideas in mind, we may formulate our manipulation test as follows:

(MAN1) Would o’s fitness change if o belonged to a group with a different group
property, but had the same individual altruistic phenotype?

(MAN2) Would o’s fitness change if o had a different individual phenotype, but
belonged to a group with the same group property?

To answer these questions, one may consider groups with different group properties by looking
at the possible shifts in the proportion of altruists and selfish types in each group, and we may
consider different individual phenotypes by looking at the available phenotypes in the population
under consideration. We do not need to consider all possible scenarios to answer (MAN1) and
(MAN2). I consider one scenario in the light of which the admissibility clause pales, that is,
a scenario in which an alternative to A is S and an alternative to Ga is Gs. Figure 1 gives
fitnesses that an organism o would have in each of the four possible individual phenotype/group
combinations, where their values are estimated from the observed frequencies. To answer our

16For the idea that causal relations are revealed by manipulation and intervention, see especially Woodward
(2003).
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two counterfactuals, it suffices to focus on the values t and s. These are accessible alternatives
for our altruist whose actual fitness is given by r. If both being an altruist A and being in
the group Ga causally contribute to o’s survival, then the manipulations we are considering
would have to show that r 6= t and r 6= s. Such a scenario is not far to seek. Not only is it
conceptually possible but also it is implied by empirically well-confirmed theory of multi-level
natural selection advocated by Sober and Wilson (e.g., Sober and Wilson 1998). According
to this theory, natural selection can really operate simultaneously at more than one level of
biological organization. If this is so, then the upshot of natural selection—a change in trait
frequency in a given population—is due to natural selection operating at each of those levels.
And if natural selection operates at each of those levels, then there must be fitness variation at
those levels simultaneously. So, in our case, for natural selection to be at work at the individual
level it must be true that altruistic and selfish organisms vary within each of the groups, i.e.:

ch(O|A ∧Ga) 6= ch(O|S ∧Ga). (3)

ch(O|A ∧Gs) 6= ch(O|S ∧Gs). (4)

If simultaneously natural selection operates at the level of groups, then there also must be fitness
variation at that level, i.e.:

ch(O|A ∧Ga) 6= ch(O|A ∧Gs). (5)

ch(O|S ∧Ga) 6= ch(O|S ∧Gs). (6)

Importantly, this model provided by the theory of multi-level selection is an answer to our
manipulation test. In particular, (5) is an answer to (MAN1) and (3) is an answer to (MAN2).
Both answers are in the affirmative. That is to say, (5) tells us that if o belonged to a group with
a different group property described by Gs, but had the same individual altruistic phenotype,
then its fitness would be different. Likewise, (3) tells us that if o had a different individual
phenotype, a selfish one, but belonged to a group with the same group property described by
Ga, then its fitness would change. This is a simple consequence of the fact that, in the population
at hand, there might be both natural selection for individual phenotypes and natural selection
for group-level properties.

The manipulation test just given provides evidence that neither the altruist’s individual
phenotypic property nor her group-level property is causally sufficient with respect to her chance
of survival. Thus, the thought runs, we are entitled to claim that neither one screens off the other
from O’s chance. It follows then that neither Ga is admissible with respect to 〈ch(O|A) = x〉
nor A is admissible with respect to 〈ch(O|Ga) = y〉. This has the following epistemic payoff.
Someone who adjusts her credence to only one of these level-relative chances is not epistemically
rational. She does not take into account all the evidence about level-relative chances that
has bearing on the proposition she has credence about. This is an outright violation of the
requirement of total evidence, which tells us that, as a matter of epistemic rationality, a rational
agent’s credence should reflect all the available evidence. It permits the agent to hold a credence
that reflects only some subset of all her evidence if the totality of her additional evidence is
irrelevant (Carnap 1962, p. 211). Of course the admissibility clause in the GP is intended to
prevent us from violating the requirement of total evidence. Yet it fails in our case and so the
GP is inapplicable. We are left with a hardly acceptable verdict. We are told that since the
admissibility relations do not hold, no level-relative chance under consideration can constrain
your credence. But intuitively we are far from saying that these level-relative chances have no
bearing at all on our credences. After all, they are given by the well-confirmed evolutionary
theory.

13



5 Two Reactions

There are at least two possible reactions to our verdict. First, one might argue that the case just
given does not threaten the plausibility of admissibility clause in the GP. That is, one may argue,
following Lewis’s account of chance, that the level-relative fitnesses under consideration are not
chances at all. And they are not chances precisely because they fail to satisfy Lewis’s platitude
about chance which says ‘don’t call any alleged feature of reality “chance” unless you’ve already
shown that you have something, knowledge of which could constrain rational credence’ (Lewis
1994, p. 484). On this view, the level-relative fitnesses are chances not because they figure in
stochastic models of evolutionary change but because they satisfy the GP which is an intuitive
generalization of Lewis’s Principal Principle. Because they fail to satisfy the GP in our case,
we should not treat them as genuine chances and thus perhaps we should not take information
they convey seriously. There is nothing wrong with the admissibility clause and so, our intuition
notwithstanding, the verdict should be sustained.

I take this Lewis-style reaction to be questionable. It seems that evolutionary theorists do
not investigate rational credences, but biological phenomena. Hence, they assign level-relative
chances not because they justify or underpin rational credences, but because they explain these
phenomena. If so, chances they assign remain genuine chances even though they fail to justify
rational credences in certain situations. Moreover, it seems that Lewis’s platitude is not the
only one that can be applied to level-relative chances. For example, one might well require that
a candidate for chance should explain singular occurrences or observed frequencies.17 Now,
could we say that a given level-relative chance that satisfies this platitude, but does not satisfy
the platitude captured by the GP, is not a genuine chance? There seems to be no definitive
answer to this question.

The second reaction, which I concur with, is that the level-relative fitnesses under considera-
tion are genuine chances even though they might fail to satisfy Lewis’s platitude. One may hold
that indeed a level-relative chance should constrain rational credence, yet claim that the use of
the GP is ill-founded. The key is to recognize that it hinges on the admissibility clause whose
plausibility may be called into question. How can it be questioned? One way this can be done
is to acknowledge that the admissibility clause works for a proposition’s level-relative chances
whose conditioning propositions cite properties that can, in principle, compete for causal suffi-
ciency with respect to the determination of that proposition’s chance. That is, it presupposes
that, for any pair of level-relative chances, we can say, in principle, which one of them constrains
our credence by performing a kind of bracketing operation on the other competing level-relative
chance. The bracketing operation hinges on the screening-off condition. By performing it, we
carve off the irrelevant information conveyed by one conditioning proposition and so expect to
have the relevant one left by another. This, however, might be a false assumption. As we have
seen, Sober and Wilson’s theory of multi-level selection provides a model in which neither the
organism’s individual phenotypic property nor her property of being in a group is, in principle,
causally sufficient to determine its fitness. In this light, the way in which the screening off rela-
tion, which underlies admissibility, apportions causal responsibility between these level-relative
properties is not tenable. For it purports to single out a property which is causally sufficient to
determine the organism’s survival chance, while leaving the other property causally irrelevant,
in a situation in which it is in principle impossible. On this view, then, we are entitled to ap-
peal against the verdict, keeping alive the possibility that evidence about the two level-relative
fitnesses have bearing on our credences about other propositions.

But how can our case be ruled on after the appeal? I suggest that the GP should be

17Other such platitudes have been defined in the case of unconditional chance in Schaffer 2007, and some of
them seem to be equally applicable to level-relative chances.
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endowed with a different admissibility clause. The admissibility clause based on screening-off
is essentially qualitative and as such is too restrictive. That is, by using it, we ask whether Bi

screens off Cj , or whether Cj screens off Bi from A’s chance. It thus excludes the possibility
that these screening-off relations might not hold absolutely, i.e., Bi (Cj) may screen off Cj (Bi)
to a certain degree. But the gist of our case is that such a possibility should not be excluded, for
we ask: is the organism fitness due more to its phenotypic property or to its being in a group?
What we need, then, is a quantitative admissibility clause which would allow us to determine a
degree to which a given proposition is admissible with respect to a proposition about chance.

6 Quantitative Admissibility: Explanation via Resiliency

The admissibility relation between propositions may not be an all-or-nothing matter, but it
may come in degrees. It seems that we may speak about some propositions being more or less
admissible than other. That is, instead of asking whether E is admissible or not, we may ask
to what extent E is admissible to a proposition about chance. Consider the following example.
You are about to throw a die today and you know that the chance that it lands up ‘2’ is one
sixth. Additionally you know the following propositions:

1. The die landed up ‘3’ yesterday.

2. The outcome of the die throw is even.

3. A reliable crystal ball predicts that ‘2’ will come up.

It seems that (1) is more admissible than (2), which in turn is more admissible than (3). (1)
conveys historical information about the past behaviour of the die which should have no impact
on its future behaviour. (2) gives us information over and above the information contained in
the chance of one sixth, but unlike (3) it does not tell us what the outcome of the die throw
will be. (3) seems to be maximally inadmissible with respect to the chance of one sixth, since it
reveals what the outcome will be. In other words, whereas (1) reveals nothing about the future
behaviour of the die, (2) reveals something and (3) reveals everything by telling us now what
that future behaviour will be.

In what follows, I propose an account of admissibility that, I believe, can capture this gradual
aspect.18 In general, it goes along Brian Skyrms’s notion of the resiliency of chance. I show
that such quantitative conception of admissibility is a natural generalization of the qualitative
account of admissibility.

Skyrms (1977; 1978; 1980) has taken the resiliency of chance, both unconditional and con-
ditional, to be a mark of its stability, and has gone on to argue that well-confirmed statistical
theories should posit resilient chances.19 According to Skyrms, resiliency of chance means its
approximate invariance under variation of experimental factors. The most important features
of Skyrms’s notion of resiliency are the following:

• resiliency of chance comes in degrees, and the degree of resiliency reflects how much chance
wiggles under conditionalization on experimental factors,

• chances should approximate the highest degree of resiliency; in other words, the higher
the resiliency, the better,

18Interestingly, Thau (1994), and after him Lewis (1994), recognized the quantitative nature of admissibility.
19Skyrms (1984, chap. 3) has also applied the idea of resiliency to a Bayesian conception of chance, it wit, the

view that chance is one’s degree of belief which is a ‘mixture’ of physical probabilities. Skyrms has argued that
to count as chance such epistemic probability must be resilient.
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• resiliency is always relative to a set of experimental factors that constitute the scope of
resiliency.

• the idea of resiliency applies both to unconditional and conditional chances.

Let us present Skyrms’s idea of resiliency more precisely, with the focus on conditional chances.
Let F be a set of propositions F1, ..., Fn, each describing an experimental factor. Then, the de-
gree of resiliency of the conditional chance ch(A|B) over F , denoted by R(ch(A|B), chFi(A|B)),
is given by

R(ch(A|B), chFi(A|B)) = 1− max
Fi⊆F

|ch(A|B)− chFi(A|B)|,

where Fi ranges over the experimental factors and chFi(A|B) comes from ch(A|B) by condi-
tionalizing on Fi.

20 That is, the degree of resiliency ch(A|B) is one minus the maximal possible
difference between the chance ch(A|B) and the chance chFi(A|B). Maximal resiliency of the
conditional chance over F equals 1. According to Skyrms (1977), this happens when B screens
off Fi from A’s chance. This is an ideal which conditional chances should approximate.

Let us now introduce a link between the quantitative admissibility and the resiliency of
conditional chance. For simplicity’s sake, suppose that an agent’s evidence E consists of one
experimental factor denoted by F . To recall, given the account of qualitative admissibility
presented in section 3, F is admissible with respect to 〈ch(A|B) = x〉 if B screens off F from
A’s chance. This in turn means that F is admissible with respect to 〈ch(A|B) = x〉 if the
resiliency of ch(A|B) over F equals 1. However, if this ideal is not attainable and the resiliency
is less than 1, it seems that we can legitimately speak about the degree of F ’s admissibility with
respect to 〈ch(A|B) = x〉. The degree of F ’s admissibility, then, will be the extent to which
the conditional chance ch(A|B) is invariant upon conditionalizing on F , or simply, its degree of
resiliency over F . More precisely:

(Quantitative Admissibility) F is admissible with respect to 〈ch(A|B) = x〉 to
degree r if

R(ch(A|B), chF (A|B)) = r.

where chF (A|B)) comes from ch(A|B) by conditionalizing on F . Here, the idea is that the
higher the value of resiliency r over F , the more admissible F is with respect to 〈ch(A|B) = x〉.
The idea of quantitative admissibility, hence, is a natural generalization of the idea of qualitative
admissibility based on the notion of screening off.

Where does this leave us vis-à-vis the question of which one of the divergent level-relative
chances should underpin one’s credence? If we emancipate the admissibility clause from the
restrictive screening-off condition, it seems that we might escape the stricture that chance
underpins one’s credence if one’s evidence is maximally admissible. In the next section, I will
make some headway towards defending this claim.

7 Near-Admissibility and Highly Resilient Chances

One might be tempted to say that the quantitative approach to admissibility should be prefer-
able to the qualitative one in cases involving divergent level-relative chances. It appears that
both these approaches lead to the same result in cases where either Bi entails Cj , or Cj entails
Bi. Moreover, whereas the use of qualitative admissibility fails to give a solution in cases like

20More generally, we may define the degree of resiliency of the conditional chance ch(A|B) over Boolean
combinations of propositions F1, ..., Fn. Also we may want A and B to be in F . If so, we need to require any
Fi ∈ F to be consistent with A ∧B and A ∧ ¬B.
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the one discussed in section 4, the use of quantitative admissibility leaves open the possibility
of giving such solution. Even if Cj is not maximally admissible with respect to 〈ch(A|Bi) = x〉,
it might be admissible with respect to that proposition to a certain degree r. And this degree of
admissibility reflects the extent to which the chance ch(A|Bi) is resilient over Cj . Likewise, Bi,
though not maximally admissible, may still be admissible to 〈ch(A|Cj) = y〉 to a certain degree
r∗, where r∗ reflects the extent to which the chance ch(A|Cj) is resilient over Bi. More gener-
ally, by using the quantitative admissibility clause, we can rank divergent level-relative chances
by the criterion of resiliency. Now given that the degrees of resiliency are different, could we
reasonably claim that one of these level-relative chances underpins one’s credence? This is a
highly nontrivial question. In the remainder of this section, I promote a positive answer to this
question. Regrettably, I have no conclusive argument to offer in this regard. But I do want
to give reasons for the claim that chance, whether unconditional or level-relative, whose degree
of resiliency is sufficiently high can underpin one’s credence. Again, my point is not to argue
that this is the correct answer, but merely to show that, unlike the use of qualitative admis-
sibility, the use of quantitative admissibility can succeed in picking out a level-relative chance
that underpins the agent’s credence in such situations.

Interestingly, Lewis (1994, p. 486) claimed that even if E is not perfectly admissible to
a proposition about chance, but is nearly admissible, the conclusion that chance underpins
credence should hold. And, E is nearly admissible just in case it tells us so little ‘over and
above’ what is told by chance so that its impact of the agent’s credence is negligible. I take
Lewis’s claim to have a certain plausibility. Of course, his striking statement can hardly be
called an argument. In terms of resiliency, Lewis’s statement, arguably, amounts to saying that
chance can underpin credence if its degree of resiliency over E is sufficiently high. But what
value should r have to count as sufficiently high? I suspect that not definitive answer can be
given. Whatever this value should be, it seems that a more pressing question to answer is:
how could we motivate Lewis’s claim? That is, why can highly resilient chances, albeit not
maximally resilient, underpin one’s credence? After all, Lewis’s claim stands in tension with
the stricture that a rational agent should proportion her credence to all the available evidence.

Firstly, we should recognize the fact that evidence about more resilient chance tends to make
one’s credence more stable in the face of one’s additional evidence. That is, an agent who sets
her credence equal to a highly resilient chance is more reluctant to change her credence upon
conditionalizing on her additional evidence. Consequently, her credence in a given proposition
would tend to concentrate on a certain value given by the chance of that proposition when she
conditionalizes on the rest of her evidence. Ideally, we could require that evidence about chance
makes one’s credence maximally stable in this sense so that no additional evidence will alter
its value. As it has recently been emphasized by Lyon (2010), one of the intuitions we seem
to have about chance is that evidence about chance makes one’s credence in other propositions
stable in some very strong sense. Lewis expressed this intuition as follows:

To the extent that uncertainty about outcomes is based on certainty about their chances, it is a
stable, resilient sort of uncertainty–new evidence won’t get rid of it. (Lewis 1986, p. 85)

For example, if one knows that the chance of a die landing up ‘2’ is one sixth, one’s credence for
‘2’ should be one sixth and it is a stable credence in the sense that it does not change when one
acquires additional evidence. I think that this intuition is only partially correct. For it seems
equally plausible to claim that chance is not a perfect expert for one’s credence. To put this in
other words, chance is not like truth, a function that assigns 1 to all actual truths and 0 to all
actual falsehoods. As Joyce (2007) has pointed out, truth advices us rightly no matter what
evidence we have. But often this is not so in cases when we adjust credences to chances. For
one might possess evidence concerning experimental factors over which chance is not maximally
resilient. For example, if one knew all the micro-details of the die, the resiliency of the chance
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of a die landing up ‘2’ would drop significantly. But still there might be chances whose degree
of resiliency may be sufficiently high so that one’s credence informed by such chance, upon
conditionalizing on one’s additional evidence, would tend to concentrate on the value given by
that chance. As a matter of having stable credences, such chances should guide our credences.
Of course, it is not clean-cut how the stability of credences relates to the requirement of total
evidence. Both these requirements appear to be important. In the case we have discussed in
section 4, no level-relative chance can be maximally resilient. Both individual- and group-level
chance encode information that is relevant to the outcome. The requirement of total evidence
tells us that both chances should regulate our credences. But it is equally possible that one of
these chances would be highly resilient over experimental factors. There might be only some
selection operating at the individual level while the main selective force is on the group level.
If so, it is the group-level chance that would have a profound impact on one’s credence while
the impact of the individual-level chance would be negligible. In this regard, stability tells us
that it is the group-level chance that should regulate our credences. Which recommendation
has the upper hand? The best, I think, one can offer is the following conditional answer: if we
gave more weight to stability, the latter recommendation would have the upper hand.

Secondly, and more generally, we should not assume a priori that statistical theories posit
maximally resilient chances. Skyrms (1980, p. 17) has postulated that, at best, well-confirmed
statistical laws should posit highly resilient chances. He has motivated this claim by the follow-
ing observation:

We find no absolute resiliency in physics, nice as it would be if we did. And philosophers have no
business trying to lay down, a priori, standards for the scope of resiliency appropriate for physical
theories. Standards for resiliency evolve along with physical theory in a big virtuous circle, and in
our dealings with nature we take what we can get. (Skyrms 1980, p. 19)

In the light of Skyrms’s remarks, no standard for the scope and the value of resiliency appropriate
for statistical laws seems to be a priori justifiable. Much depends on the nature of things we
deal with. Sometimes high resiliency is all we can get. But this does not necessarily mean that
high resiliency is a poor standard in scientific practice. Often chances that are highly, albeit not
maximally, resilient over all the experimental factors provide satisfactory explanations. Take,
for example, chances in classical statistical mechanics. Consider an explanation of why a cup
of coffee cools down. Classical statistical mechanics tells us that this is because given a chance
distribution over initial conditions it is overwhelmingly probable that its micro-state is one
that lies on a trajectory that deterministically takes it into the macro-state “cooled down”.
Explanations based on such chances are perfectly satisfactory, even though these chances are
not maximally resilient over the micro-details of a given chance set-up. What makes them
satisfactory is, among other things, that these chances are highly resilient: we are told that the
overwhelming majority of micro-states compatible with a given macro-state would evolve to a
higher- entropy macro-state. So, even if we knew these micro-states, this would have a negligible
impact on our credences. The point is that, for explanatory purposes, there is no sense to move
to a “truer” chance by conditionalizing on a further specification of these micro-details.

8 Concluding Remarks

I have argued that an application of the GP to a pair of divergent level-relative chances for a
given proposition is not so simple a matter as one might think. In so doing, I have explained
the admissibility clause in the GP by drawing on Lewsis’s idea of admissibility. I have shown
that the use of admissibility clause is essentially limited. This is due to the restrictive screening-
off condition that underlies admissibility. I have illustrated this point by discussing a case of
level-relative chances, i.e., viability fitnesses, in evolutionary theory.

18



As a remedy, I have, firstly, argued that we can revise the GP by providing a quantitative
rather than a qualitative understanding of the admissibility clause. To bolster this appeal, I have
developed a quantitative account of admissibility by drawing on Skyrm’s idea of the resiliency of
chance, and have shown that this account is a natural generalization of the qualitative approach.
Secondly, I have suggested and motivated the claim that highly, albeit not maximally, resilient
chances can underpin credences. Maximal admissibility may be too stringent a condition for
chance, whether unconditional or conditional, to guide our credences.

Appendix

Proof of Proposition 1. Suppose that Bi ⊆ Cj and suppose that ch is a probability function.
By probability theory, we have that ch(Cj |Bi) = 1. Then

ch(A|Bi) =
ch(A ∧Bi)

ch(Bi)

=
ch((A ∧Bi ∧ Cj) ∨ (A ∧Bi ∧ ¬Cj))

ch(Bi)

=
ch(A ∧Bi ∧ Cj) + ch(A ∧Bi ∧ ¬Cj)

ch(Bi)

=
ch(A|Bi ∧ Cj)ch(Bi ∧ Cj) + ch(A ∧ ¬Cj |Bi)ch(Bi)

ch(Bi)

=
ch(A|Bi ∧ Cj)ch(Bi ∧ Cj)

ch(Bi)
+

ch(A ∧ ¬Cj |Bi)ch(Bi)

ch(Bi)

= ch(A|Bi ∧ Cj)ch(Cj |Bi) + ch(A ∧ ¬Cj |Bi)

= ch(A|Bi ∧ Cj) +
ch(A ∧ ¬Cj ∧Bi)

ch(Bi)

= ch(A|Bi ∧ Cj)

as required. �
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